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Abstract: This research aims to investigate the heavy metals (i.e., Cd, Cr, Cu, Ni, and Pb) in the fruit-
ing bodies of six indigenous wild edible mushrooms including Agaricus bisporus, Agaricus campestris,
Armillaria mellea, Boletus edulis, Macrolepiota excoriate, and Macrolepiota procera, correlated with var-
ious factors, such as the growth substrate, the sampling site, the species and the morphological
part (i.e., cap and stipe), and their possible toxicological implications. Heavy metal concentra-
tions in mushroom (228 samples) and soil (114 samples) were determined by Inductively Coupled
Plasma—Mass Spectrometry (ICP-MS). In the first part of the study, the soil contamination (index of
geo-accumulation, contamination factor, and pollution loading index) and associated risks (chronic
daily dose for three exposure pathways—ingestion, dermal, and inhalation; hazard quotient of
non-cancer risks and the carcinogenic risks) were calculated, while the phytoremediation capac-
ity of the mushrooms was determined. At the end of these investigations, it was concluded that
M. procera accumulates more Cd and Cr (32.528% and 57.906%, respectively), M. excoriata accumulates
Cu (24.802%), B. edulis accumulates Ni (22.694%), and A. mellea accumulates Pb (18.574%), in relation
to the underlying soils. There were statistically significant differences between the stipe and cap
(i.e., in the cap subsamples of M. procera, the accumulation factor for Cd was five times higher
than in the stipe subsamples). The daily intake of toxic metals related to the consumption of these
mushrooms with negative consequences on human health, especially for children (1.5 times higher
than for adults), was determined as well.

Keywords: wild edible mushrooms; industrial area; touristic area; Bucegi National Reservation;
transfer factor; estimated daily intake; carcinogenic risk; daily intake metals; health risk index

1. Introduction

Throughout time, mushrooms have been considered a valuable food source in terms of
nutritional and medicinal properties [1–5]. On the other hand, mushrooms, which contain
a high amount of organic and inorganic compounds such as carbohydrates, proteins, vita-
mins, and minerals have been highly recommended for therapeutic purposes [1,2,6,7] and
for the treatment of various diseases, e.g., cancer [8–10], degenerative diseases [11,12], car-
diovascular diseases [13], stress, insomnia, and depression [14], asthma [11], diabetes [15],
allergies and skin diseases [11]. Remarkably, mushrooms have been used for treating
complex and pandemic diseases such as acquired immunodeficiency syndrome (AIDS) [16].
Mushrooms as fresh vegetables as well as aqueous extracts possess anti-allergic [17,18],
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anticholesterol [19], anti-tumor [20,21], and anti-cancer [22,23] properties. Mushrooms
behave as biological response modifiers on one side by promoting the positive factors and
on the other eliminating the negative factors from the human body, and thus are considered
as the fourth main form of conventional cancer treatment [22]. Due to the special chem-
ical composition, including polysaccharides (e.g., β–D-glucans), vitamins, and proteins,
mushrooms possess unique health-enhancing properties. In addition, fresh mushrooms
are known to contain both soluble and insoluble fibers. The soluble fibers (beta-glucans
polysaccharides and chitosan) are components of the cell walls and are important in pre-
venting cardiovascular diseases. On the other hand, mushrooms can accumulate from
substrate toxic elements, due to environmental pollution, including hazardous metals such
as Cd, Ni, Cr, Pb, Cu, Mn, V, Zn, Hg, Sb, toxic metalloids (As) or nonmetals (Se), as well as
natural radionuclide (40K) and anthropogenic radionuclides (137Cs, 134Cs, 90Sr) [24–27].

The property of mushrooms to accumulate essential elements or even toxic metals
from the substrate is expressed by the bioconcentration factor (BCF), defined as the ratio
of the element content in the fruiting body to the content in an underlying substrate. A
series of studies [28–33], including previous research of authors [25,26,34–37], reported
that wild edible or poisonous mushrooms accumulate extremely high concentrations of
metals in both cap and stipe, respectively. Radulescu et al. [25,34,35,38] reported the highest
content of toxic metals (i.e., Cd, Ni, Cr, Pb, Cu, Mn) in the fruiting body of different species
of mushrooms (over 30 wild edible species, e.g., Armillaria sp., Boletus sp., Russula sp.,
Amanita sp., Fistulina sp., Cantharellus sp., Agaricus sp., Lycoperdon sp., Macrolepiota sp.,
Pleurotus sp., Lactarius sp., Russula sp., Tricholoma sp., Lentinus tigrinus) taking into account
the following factors: various steps of growing (youthfulness 1–7 days; maturity between
20 days), two types of habitat (soil and tree bark), geographical position (hill or mountain
forest, plain), type of pollution (industrial activities or forest on the side of the road with
high traffic and natural park), type of people (who frequently consume or who trade),
location (rural or urban), and anatomical features (size, color, type of pileus, etc.). Studies
have been surprising, whereby each studied mushroom species revealed at least one unique
characteristic regarding chemical composition, behavior towards metal (different for cap
compared with stipe), and bioaccumulation factor. Studies reported that typical elements
accumulated in mushrooms (BAF > 1) include Au, Ag, As, Br, Cd, Cs, Cu, Hg, Rb, Se, V, Zn,
and Cl. Elements with typically low concentrations in macrofungi (BAF < 1) include Co, Cr,
F, I, Ni, Sb, Sn, Th, U, and rare earth elements [33]. The health risk index was widely used
as a promising tool to assess food [39–44] and water [39,45–47] contamination.

In some studies, it was reported that macrofungi (i.e., mushrooms) are rich in nutrients
and beneficial health components, but they have a good capacity to accumulate heavy
metals—making them both a potential health risk and a useful tool for bioremediation [48–52].
Liu et al. sustain that it is not clear the enrichment characteristics and functions of heavy
metal transporters in the accumulation of HMs in edible fungi [53]. In the case of cultivated
mushrooms, the main human health issues related to mushroom consumption are due
to the excessive usage of chemical pesticide, mineral fertilizer, fluorescent whitening
agents, sulfur dioxide, food additives, or HMs-polluted environment (i.e., contaminated
substrate: processing residues of sawdust, cotton seed shell, corn cob, straw, bran, and
other green plants) [54]. In the case of wild edible mushrooms, the HMs accumulation
is species-specific (i.e., it is correlated with the species’ physiology) and depends on the
environment of the collection site, i.e., the soil’s mineral content and the distance from
the pollution sources [52,55]. In the complex study of Falandysz et al., the effect of the
developmental stage on allocation and sequestration of metallic and metalloid elements
in cap and stipe was determined in the case of Amanita muscaria (L.) mushrooms [56].
They established six developmental stages of the studied mushroom and analyzed the
mineral nutrients and environmental pollutants in order to determine if these elements
affect the fungi growth [56]. As a remark, the metabolic and nutritional state of the fungi
organism determines all mechanisms related to absorption, translocation, and accumulation
of metallic and metalloid elements in macromycetes’ fruiting bodies [56].
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Regarding originality and novelty, this study is the first one that evaluates the heavy
metals accumulation (i.e., Cd, Cr, Cu, Ni, and Pb) in soils and fruiting bodies of the most
consumed indigenous wild edible mushrooms in Prahova County, correlated with the
studied area. At the same time, it was the first time that the area—industrial and touristic
cities—was analyzed from the point of view of pollution impact on wild mushrooms,
considering that three of the studied cities are at the limit of Bucegi Natural Park. People
harvest these mushrooms for consumption, believing that if they grew in the natural
park area, it is in a clean, pollution-free area. This study provides valuable information
for authorities to develop and implement some strategies and legislation for promoting
public health and reducing environmental pollution in tourist areas. Furthermore, for the
industrial areas or transition zones, citizens should be informed about the risk of consuming
wild mushrooms grown on historically contaminated soils.

2. Materials and Methods
2.1. Sampling and Sample

The wild edible indigenous species (i.e., Agaricus bisporus, Agaricus campestris, Armil-
laria mellea, Boletus edulis, Macrolepiota excoriata, and Macrolepiota procera) used in this study
were collected from Prahova County in the summer and autumn of 2023 (Figure 1). The
mushroom species chosen for this study were characterized from morphological point of
view and nutritional value in a previous study [26]. The sampling sites (two industrial
cities, three touristic cities—at the limit with the Bucegi National Reservation—and another
one in the transition area) were chosen in order to evaluate the health risk of mushroom
consumption depending on their region and species.
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Figure 1. Sampling sites.

The analyzed samples in this study were chosen because they are among the most
consumed species, the species grow both in the plains (Sites 1 and 2), but also in the
mountainous and pre-mountainous areas (Sites 3–6), and they are easy to identify and
distinguish from the poisonous ones. The mushroom samples were collected manually
using non-powdered protective gloves and cleaned with a soft brush (made of natural
fibers) to remove the vegetal and soil wastes. After that, the mushrooms were separated
by cap and stipe subsamples and were packaged in coded sterile polyethylene vials to
be transferred to the laboratory. The soil samples (substrate of the mushroom samples)
were collected according to the instructions presented in LUCAS 2009/2012 [57], from the
surface to a maximum of 10 cm depth using plastic shovels and stored in coded sterile
plastic bags. All data about the collected samples are presented in Table 1.
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Table 1. Information about the collected and analyzed six wild edible indigenous mushroom species
such as location, collection season, subsamples, and substrate codes.

No. Mushroom Specie Localization Collection
Period Subsamples (Codes) Substrate (Codes)

1 Agaricus bisporus Azuga/Site 6 Summer 2023 Cap (C1) and stipe (S1) Soil (Ss1)

2 Agaricus bisporus Busteni/Site 5 Summer 2023 Cap (C2) and stipe (S2) Soil (Ss2)

3 Agaricus bisporus Comarnic/Site 3 Summer 2023 Cap (C3) and stipe (S3) Soil (Ss3)

4 Agaricus bisporus Sinaia/Site 4 Summer 2023 Cap (C4) and stipe (S4) Soil (Ss4)

5 Agaricus campestris Campina/Site 2 Summer 2023 Cap (C5) and stipe (S5) Soil (Ss5)

6 Agaricus campestris Ploiesti/Site 1 Summer 2023 Cap (C6) and stipe (S6) Soil (Ss6)

7 Armillaria mellea Azuga/Site 6 Autumn 2023 Cap (C7) and stipe (S7) Soil (Ss7)

8 Armillaria mellea Busteni/Site 5 Autumn 2023 Cap (C8) and stipe (S8) Soil (Ss8)

9 Armillaria mellea Campina/Site 2 Autumn 2023 Cap (C9) and stipe (S9) Soil (Ss9)

10 Armillaria mellea Comarnic/Site 3 Autumn 2023 Cap (C10) and stipe (S10) Soil (Ss10)

11 Armillaria mellea Ploiesti/Site 1 Autumn 2023 Cap (C11) and stipe (S11) Soil (Ss11)

12 Armillaria mellea Sinaia/Site 4 Autumn 2023 Cap (C12) and stipe (S12) Soil (Ss12)

13 Boletus edulis Busteni/Site 5 Autumn 2023 Cap (C13) and stipe (S13) Soil (Ss13)

14 Boletus edulis Comarnic/Site 3 Autumn 2023 Cap (C14) and stipe (S14) Soil (Ss14)

15 Boletus edulis Sinaia/Site 4 Autumn 2023 Cap (C15) and stipe (S15) Soil (Ss15)

16 Macrolepiota excoriata Campina/Site 2 Autumn 2023 Cap (C16) and stipe (S16) Soil (Ss16)

17 Macrolepiota excoriata Ploiesti/Site 1 Autumn 2023 Cap (C17) and stipe (S17) Soil (Ss17)

18 Macrolepiota procera Campina/Site 2 Summer 2023 Cap (C18) and stipe (S18) Soil (Ss18)

19 Macrolepiota procera Ploiesti/Site 1 Summer 2023 Cap (C19) and stipe (S19) Soil (Ss19)

2.2. Reagents

All chemical reagents used in this study were of analytical grade. Moreover, dis-
tilled deionized water (Milli-Q Water System Millipore, Burlington, VT, USA) was used
throughout. Nitric acid (65%, Merck, Rahway, NJ, USA), hydrochloric acid (37%, Merck),
and hydrogen peroxide (30%, Merck) were used for the microwave digestion process and
blanks preparation as well. For calibration curves, the ICP multi-element standard solution
IV certified reference material (23 elements in HNO3 Suprapur® 6.5%, Merck) was used.

2.3. Sample Preparation

The collected fresh mushrooms were carefully cleaned of wastes (i.e., soil and vegetal)
with deionized water and were cut in small pieces with a plastic knife. All samples
(mushroom subsamples and soil) were dried at 40 ◦C for 48 h, until they reached the
constant weight. After that, the samples free of moisture were grinded in order to obtain a
fine and homogenous powder. These samples, as well as the blank samples, were subjected
to the microwave digestion process presented in Table 2.

2.4. Inductively Coupled Plasma—Mass Spectrometry (ICP-MS)

The clear solution samples, obtained as it was described in the previous section, were
analyzed by Inductively Coupled Plasma—Mass Spectrometry (ICP-MS) to determine the
heavy metals content (i.e., Cd, Cr, Cu, Ni, and Pb), For this purpose, the iCAP™ Qc mass-
spectrometer (Thermo Scientific, Darmstadt, Germany) was used. The measurements were
achieved in triplicate in the standard mode (STD), using the Qtegra Intelligent Scientific
Data Solution. The relative standard deviation (RSD) values were less than 10%; the
data were expressed as mg·kg−1 dried weight (d.w.) material. The quantification of this
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technique was performed by a standard curve procedure using certified reference material.
Metals calibration curves showed good linearity over the concentration range (0.1 to
10.0 mg·L−1), with R2 correlation coefficients in the range of 0.997 to 0.999. The limits of
detection (LODs) and limits of quantitation (LOQs) of analyzed elements were established
using the calibration data, and standard reference materials (i.e., NIST SRM 1515 Apple
leaves and SRM 2710a Montana I Soil) were used to verify the accuracy and traceability of
the method (Table 3).

Table 2. Samples digestion process using TOPwave microwave-assisted pressure digestion system
(Analytik Jena, Jena, Germany).

Sample
Type Mixture Waiting Time Digestion Program Cooling Time Volumetric

Flask

Mushroom
~0.4 g sample

6 mL HNO3 (65%)
1 mL H2O2 (30%)

20 min

Step 1 2

30 min 25 mL

T [◦C] 170 200

P [bar] 40 40

Power [%] 80 90

Ramp [min] 5 1

Time [min] 10 15

Soil
~4 g sample

2.5 mL HNO3 (65%)
7.5 mL HCl (37%)

30 min

Step 1

30 min 50 mL

T [◦C] 140

P [bar] 40

Power [%] 90

Ramp [min] 8

Time [min] 15

Table 3. Analytical results of the elements in NIST SRM 2710a and SRM 1515, as well as the LOD and
LOQ values.

SRM [mg·kg−1] Cd Cr Cu Ni Pb

Standard Materials (certified, reference * or information mass fraction ** values)

SRM 2710a—certified 12.300 ± 0.300 23.000 ± 6.000 * 0.342 ± 0.005 8.000 ± 1.000 * 0.552 ± 0.003

SRM 2710a—measured 12.577 ± 0.687 21.529 ± 1.810 0.317 ± 0.033 7.187 ± 0.661 0.496 ± 0.037

% recovery SRM 102 94 93 90 90

SRM 1515—certified 0.0132 ± 0.0015 0.3 ** 5.690 ± 0.130 0.936 ± 0.094 0.470 ± 0.024

SRM 1515—measured 0.014 ± 0.002 0.344 ± 0.029 6.013 ± 0.055 0.896 ± 0.077 0.503 ± 0.048

% recovery SRM 106 115 106 96 107

Limit of detection (LOD)/Limit of quantitation (LOQ)

LOD [µg/kg] 0.133 1.489 1.202 0.669 1.223

LOQ [µg/kg] 0.148 2.048 1.496 0.802 1.305

2.5. Data Analysis of Soil Samples
2.5.1. Index of Geo-Accumulation

The ICP-MS data represent the first sequence in establishing the contamination level
of the studied soils. In this respect, the index of geo-accumulation (Igeo) was calculated
according to Equation (1) proposed by Muller [58] and reported by Birch [59]:

Igeo = log2
Cn

1.5 · Bn
(1)
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where Cn = the recorded metal content, 1.5 = the correction factor (due to variation in
background values and lithogenic effects) [60], and Bn = the background values for sedi-
mentary rocks (Cd = 0.035 mg·kg−1; Cr = 11 mg·kg−1; Cu = 4 mg·kg−1; Ni = 20 mg·kg−1;
Pb = 9 mg·kg−1) [61]. The obtained data are presented in Table 2. According to the Muller
scale, the value of Igeo establishes the pollution class of the soil sample:
class 0, Igeo < 0 unpolluted; class 1, 0 < Igeo < 1 unpolluted to moderately polluted;
class 2, 1 < Igeo < 2 moderately polluted; class 3, 2 < Igeo < 3 moderately to strongly
polluted; class 4, 3 < Igeo < 4 strongly polluted; class 5, 4 < Igeo < 5 strongly polluted;
class 6, 5 < Igeo extremely polluted [62].

2.5.2. Contamination Factor (CF) and Pollution Loading Index (PLI)

The contamination factor (CF) represents a singular index calculated as a ratio between
the element concentration in the soil and the normal values in the study area—Equation (2).
In this case, the normal values are regulated by the Romanian Order no. 756/1997 [63]. The
pollution loading index was used to determine the overall level of heavy metals toxicity in
a soil sample and was calculated using Equation (3):

CFx =
Cx

NV
(2)

where CFx = the contamination factor of the metal x; Cx = the value of the metal x concen-
tration; and NV = the normal values in the studied area. The CF classes are as follows: low
contamination (CF < 1), moderate contamination (1 ≤ CF < 3), considerable contamination
(3 ≤ CF < 6), and very high contamination (CF ≥ 6) [64].

PLI = (CF1 · CF2 · . . . · CFn)
1/n (3)

where PLI = the pollution loading index; CFx = the contamination factor of the metal x
(calculated according to Equation (2)); n = the number of the determined metals. The
evaluation of the soil pollution level using PLI: 0 < PLI ≤ 1 unpolluted; 1 < PLI ≤ 2
moderately to unpolluted; 2 < PLI ≤ 3 moderately polluted; 3 < PLI ≤ 4 moderately to
highly polluted; 4 < PLI ≤ 5 highly polluted; PLI > 5 very highly polluted [65].

2.5.3. Exposure Assessment and Health Risk Evaluation

The health risk associated with using contaminated soil by adults and children was
assessed by the following:

- Ingestion exposure:

Ding =
C · IR · ED · EF

BW · AT
· CF (4)

where Ding = the chronic daily dose via ingestion (expressed as mg·kg−1·day−1); C = con-
centration of the metal (expressed as mg·kg−1); IR = ingestion rate: for adults 100 mg·day−1,
for children 200 mg·day−1; ED = exposure duration: for adults 20 years, for children 6 years;
EF = exposure frequency: for adults and children 365 days·year−1; BW = body weight:
for adults 70 kg, for children 15 kg; AT = average time: for adults 7300 days, for children
2190 days; and CF = conversion factor: for adults and children 1 × 10–6 [66,67].

- Inhalation exposure:

Dinh =
C · InhR · ED · EF

BW · AT · PEF
(5)

where Dinh = the chronic daily dose via inhalation (expressed as mg·kg−1·day−1);
C = concentration of the metal (expressed as mg·kg−1); InhR = inhalation rate: for adults
20 m3·day−1, for children 7.6 m3·day−1; ED = exposure duration: for adults 20 years,
for children 6 years; EF = exposure frequency: for adults and children 365 days·year−1;



J. Fungi 2024, 10, 844 7 of 35

BW = body weight: for adults 70 kg, for children 15 kg; AT = average time: for adults
7300 days, for children 2190 days; and PEF = particle emission factor: for adults and
children 1.36 × 109 m3·kg−1 [66,67].

- Dermal exposure:

Ddermal =
C · SA · SAF · DAF · ED · EF

BW · AT
· CF (6)

where Ddermal = the chronic daily dose via dermal exposure (expressed as mg·kg−1·day−1);
C = concentration of the metal (expressed as mg·kg−1); SA = surface area: for adults
6032 cm2, for children 2373 cm2; SAF = Specific Adjustment Factor; DAF = Dosimetric
Adjustment Factor; ED = exposure duration: for adults 20 years, for children 6 years;
EF = exposure frequency: for adults and children 365 days·year−1; BW = body weight:
for adults 70 kg, for children 15 kg; AT = average time: for adults 7300 days, for children
2190 days; and CF = conversion factor: for adults and children 1 × 10–6 [66,67].

The total exposure (Dtotal, expresses as mg·kg−1·day−1) was calculated as the sum of
ingestion, inhalation, and dermal exposure:

Dtotal = Ding + Dinh + Ddermal (7)

The hazard quotient for non-cancer risks was estimated using Equations (8)–(10):

HQing =
Ding

R f Ding
(8)

HQinh =
Dinh

R f Dinh
(9)

HQdermal =
Ding

R f Ddermal
(10)

HInCR = HQing + HQinh + HQdermal (11)

where RfD = reference dose (values are presented in Table 4).

Table 4. Reference dose (RfD) values used for hazard quotient determination [66].

RfD Cd Cr Cu Ni Pb

Ingestion 0.001 0.003 0.04 0.02 0.0014

Inhalation 0.0004 0.0000286 0.0402 0.0206 0.00325

Dermal 0.000025 0.003 0.012 0.00054 0.000524

The cancer risk was estimated using Equations (12)–(14):

CRing = Ding · CSFing (12)

CRinh = Dinh · CSFinh (13)

CRdermal = Ddermal · CSFdermal (14)

HICR = CRing + CRinh + CRdermal (15)

where CSF = cancer slope factor (values are presented in Table 5).
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Table 5. Cancer slope factor (CSF) values used for cancer risk determination [66].

CSF Cd Cr Ni Pb

Ingestion 6.30 0.5 0.91 0.0085

Inhalation 6.01 4.1 0.84 0.0420

Dermal - 2.0 4.25 -

2.6. Data Analysis of Mushroom Samples
2.6.1. Phytoremediation Capacity—Transfer Factor (TF)

Transfer factor (TF) represents the capacity of the plant (in this case, the capacity of
mushrooms) to transfer the metals from soil in their anatomic parts. It is easily calculated as
the ratio between metal content in mushroom parts (i.e., cap and stipe) and metal content
in soil [27,40,68], expressed in [%]. This factor can explain the risks of human exposure to
contaminated soils [41] and the capacity of some species to hyper-accumulate metals, and
so, it can be determined if they can be used in soil bioremediation [42].

2.6.2. Health Risk Assessment

Estimated daily intake (EDI) represents the metals ingested daily (expressed as
mg·day−1) into the human body of a consumer, without taking into account the ejected met-
als due to the metabolic processes [40]. This indicator is calculated using the
following formula:

EDI = Cmushroom × I (16)

where Cmushroom represents the metal content in mushroom (mg·kg−1 d.w.) and I represent
the daily intake rate of the mushrooms (i.e., 0.1 kg·day−1 d.w. for adults and 0.03 kg·day−1 d.w.
for children).

Carcinogenic risk associated with lead exposure (CRPb) represents the estimation of
the probability of developing a cancer form after exposure to Pb sources. The CR can also
be estimated for As exposure [43], but this element was not determined for this study. In
this respect, CRPb was calculated using the following formula:

CRPb = EDI × CSF (17)

where CSF represents the cancer slope factor (i.e., 0.0085 mg−1·kg·day). The US EPA
establishes the acceptable risk levels for CRPb between 10−6 and 10−4 [44].

Daily intake metals (DIM), expressed in mg·kg−1·day−1, was calculated using follow-
ing formula:

DIM =
EDI
BM

(18)

where BM represents the average body mass of a standardized person (i.e., 70 kg for adults
and 14 kg for children).

Health risk index (HRI) was used to estimate the health risks induced by the consump-
tion of contaminated mushrooms. This indicator takes into account the DIM (calculated
according to the previous formula) and the oral reference dose established by the US EPA:
0.001 mg·kg−1·day−1 for Cd, 0.003 mg·kg−1·day−1 for Cr(VI), 1 mg·kg−1·day−1 for Cr(III),
0.040 mg·kg−1·day−1 for Cu, 0.020 mg·kg−1·day−1 for Ni, and 0.035 mg·kg−1·day−1 for
Pb [40,43–47,69].

2.7. Statistical Processing of the Obtained Data

For the basic statistical processing of the obtained data (i.e., minimum, maximum,
average value etc.), the functions of Microsoft Office Excel were used. For an advance
statistical analysis of the data, IBM SPSS Statistics software (v.26) was used to interpret the
descriptive data, to perform correlation tests, and to use advanced data modeling methods
through cluster analysis.
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3. Results and Discussion

Eight heavy metals (i.e., Cu, Cr, Cd, Pb, Zn, Ni, Hg, and As) are considered by the
United States Environmental Protection Agency (US EPA) as the most common harmful
heavy metals in the environment [69]. Heavy metals (HMs) can be found in the environment
in different forms: vapors, dissolved ions in water, and salts/minerals (in rock, soil, dust,
and sand), among other forms. Moreover, they can be found in both organic and inorganic
molecules and may adhere to airborne particles [29]. Therefore, heavy metals coming from
many sources are accumulated in mushrooms [25,26,29,61,70–72], and because HMs are so
persistent in the environment, there may be a significant concern for human health.

3.1. Heavy Metals in Soil Samples

The mean values of the HM content in soil samples are shown in Table 6 (full data
are presented in Supplementary Material S1—Soil samples). The concentrations of Cd,
Cr, Cu, Ni, and Pb ranged from 2.324 to 6.416 mg·kg−1, 1.360 to 5.773 mg·kg−1, 11.804
to 43.970 mg·kg−1, 5.099 to 13.464 mg·kg−1, and 8.355 to 18.102 mg·kg−1, respectively,
with mean contents of 4.359 mg·kg−1, 3.462 mg·kg−1, 16.041 mg·kg−1, 8.991 mg·kg−1, and
10.432 mg·kg−1, respectively. It can be easily highlighted that the content of Cd was
higher than the normal level established by the Romanian Ministry of Waters, Forests
and Environmental Protection (Order 756/1997, updated in 2011) [63]; thus, this element
requires intensive monitoring to prevent further accumulation. The fact that Cd and
Cu have been recorded in concentrations higher than the European average value in
topsoils [61] represents another worrying aspect.

The highest values for Cu, Ni, and Pb were recorded in the Ss11 sample as well as the
mean values of all soil samples collected in Ploiesti City (Site 1). This is the result of the
historical pollution, due to the intensive industrial (oil industry—refineries; food, beverage,
and tobacco industry; building and building materials industry; etc.) and agricultural
activities over time. Site 3 (Comarnic City) was in the category of industrial cities until
25 years ago, with the main polluters being cement and brick factories, as well as the
furniture factory. At present, because the main road (National Road 1/ European Road
E60) passes through the middle of the city, the car traffic represents the main pollution
source. The highest level of cadmium recorded in Site 6 (Azuga City) can be explained by
the former industrial activities carried out in the glass, textile, lime, cement, and timber
factories, while the highest value for chromium was recorded in Site 4 (Sinaia City). It
must be mentioned that in this site, the fine mechanics factory still exists, which includes
activities such as chrome, nickel, and zinc plating, as well as metal prototyping.

3.2. Ecological Indices
3.2.1. Index of Geo-Accumulation

Figure 2 (and Supplementary Material S1—Soil samples) presents the geo-accumulation
index (Igeo) of HMs within the studied area. For cadmium, the Igeo values exceeded value
6 in 16 samples and 5 in 3 samples, indicating extreme pollution of this metal, while for
copper, Igeo values exceeded value 2 in 2 samples and value 1 in 14 samples (the values
for the remaining 3 samples were close to value 1), indicating moderate pollution. In the
case of chromium, nickel, and lead, the Igeo values were negative—this suggests a low-level
contamination.
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Table 6. Mean values of elements (i.e., Cd, Cr, Cu, Ni, and Pb) determined in soil samples in terms of
both species and collecting sites (mg·kg−1 d.w.), compared with values recommended by Romanian
Order no. 756/1997 [63] and European average value [61].

Cd Cr Cu Ni Pb

Collecting sites

Site 1 (n = 24) 3.800 3.824 21.248 11.257 12.532

Site 2 (n = 24) 4.386 3.667 13.174 9.264 9.926

Site 3 (n = 18) 4.984 2.531 20.713 6.841 9.740

Site 4 (n = 18) 4.156 4.127 12.429 7.733 9.926

Site 5 (n = 18) 4.149 2.871 13.289 10.026 10.533

Site 6 (n = 12) 5.104 3.615 13.903 7.476 8.890

Mushroom species

Agaricus bisporus (n = 24) 4.766 3.478 17.625 8.181 9.273

Agaricus campestris (n = 12) 4.729 3.910 13.202 11.033 9.212

Armillaria mellea (n = 36) 5.261 3.176 19.912 9.509 10.959

Boletus edulis (n = 18) 2.999 3.528 12.379 7.144 11.354

Macrolepiota excoriata (n = 12) 3.454 4.825 11.841 8.033 9.587

Macrolepiota procera (n = 12) 3.412 2.378 13.796 10.749 11.852

Values recommended by Romanian Order no. 756/1997 [63]

Normal values 1.000 30.000 20.000 20.000 20.000

Maximum threshold 3.000 100.000 100.000 75.000 50.000

Intervention threshold 5.000 300.000 200.000 150.000 100.000

Statistical data of analytical results for topsoil (European average value) [61]

0.145 22.000 13.000 37.300 22.600
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Taking into account the soil distribution in terms of collecting sites (Table 7 and
Supplementary Material S1—Soil samples), it can be easily seen that all sites are extremely
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polluted with cadmium and moderately polluted with copper. The same observation can
be made for the soil distribution in terms of mushroom species: all soils are extremely
polluted with cadmium and moderately polluted with copper (except the M. excoriata
which recorded a mean value of 0.981).

Table 7. Mean values obtained for the index of geo-accumulation (Igeo) of soils, in terms of both
species and collecting sites.

Cd Cr Cu Ni Pb

Collecting sites

Site 1 6.105 −2.114 1.605 −1.440 −0.172

Site 2 6.380 −2.347 1.124 −1.704 −0.445

Site 3 6.531 −2.821 1.657 −2.155 −0.485

Site 4 6.242 −2.068 1.050 −2.060 −0.460

Site 5 6.251 −2.536 1.141 −1.588 −0.361

Site 6 6.603 −2.292 1.199 −2.081 −0.603

Mushroom species

Agaricus bisporus (n = 24) 6.500 −2.310 1.403 −1.903 −0.553

Agaricus campestris (n = 12) 6.493 −2.079 1.133 −1.443 −0.558

Armillaria mellea (n = 36) 6.637 −2.415 1.581 −1.738 −0.350

Boletus edulis (n = 18) 5.820 −2.445 1.044 −2.142 −0.253

Macrolepiota excoriata (n = 12) 6.030 −1.802 0.981 −1.901 −0.494

Macrolepiota procera (n = 12) 5.945 −2.941 1.197 −1.498 −0.208

The average Igeo revealed that all the examined samples fell into class 6, indicating
extremely contaminated soils because of the high values of Igeo of Cu, Ni, and Pb. For
the other analyzed metals, the Igeo values are in the range of −3.026 to −3.837 for Cd,
which highlights uncontaminated soils, and 4.124 to 5.145 for Cr, which highlights strong
to extreme contamination. These high values are caused mainly by industry; at present,
Sites 1 and 2 still have industrial activity, but the other sites (i.e., 3–6) are recognized as
tourist areas where car traffic and anthropic activity are the main polluting sources. The
index of geo-accumulation in the areas affected by industrial activity may be elevated in
the next years due to the expansion of industries and the growing number of cars.

3.2.2. Contamination Factor (CF) and Pollution Loading Index (PLI)

The obtained results for the contamination factors of the soil samples are shown in
Figure 3 and Supplementary Material S1—Soil samples. The CF of Cr, Cu, Ni, and Pb were
within low contamination (1 > CF) for the entire studied area (except Ss3 and Ss11, with
CFCu 1.667 and 2.198, respectively). The Cd CF values for the analyzed samples indicate
considerable contamination (3 ≤ CF < 6) for 16 samples, while the other values indicate
moderate contamination (1 ≤ CF < 3).
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Figure 3. Contamination factor (CF—empty squares) and pollution loading index (PLI—red full
square) of the heavy metals within the studied area.

Regarding the PLI values of the soil samples (shown in Figure 3 and Supplementary
Material S1—Soil samples), the results revealed that the PLI does not exceed 1, indicating
that the soil is unpolluted.

3.2.3. Exposure Assessment

Table 8 shows the chronic daily dose calculated for three exposure pathways (ingestion,
dermal, and inhalation) and the total value for adults and children. The trend for both
categories (adults and children) was found in order of ingestion > dermal > inhalation.

The inhalation exposure route presents the lowest dose among the three exposure
routes determined with 3–4 orders of increase, comparatively with ingestion or dermal
routes, which were the major pathways for both categories. In the case of cadmium, the total
values for chronic daily dose were higher in Sites 6 and 3, while in the case of chromium, the
maximum total value for chronic daily dose was recorded in Site 4. Table 3 highlights the
maximum value for copper and lead in Site 1 and for nickel in Site 3. The values for adults
were lower than the values for children across both sampling locations and mushroom
species (Supplementary Material S1—Soil samples). These results are in accordance with
other scientific research demonstrating that children are more exposed than adults [66,73].

3.2.4. Health Risk Evaluation

The hazard quotient of non-cancer risks (HQ and HQtotal) and the carcinogenic risks
(CR and HItotal) represent the main components for a complete health risk assessment. All
calculated data are available in Supplementary Material S1—Soil samples, and the total
values of hazard quotient of non-cancer risks and hazard index of cancer risks calculated
for adults and children, in terms of both species and collecting sites, are shown in Table 9.
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Table 8. Chronic daily dose (expressed as mg·kg−1·day−1) of HMs in the soil calculated for adults and children.

Path Site
Adults Children

Cd Cr Cu Ni Pb Cd Cr Cu Ni Pb

Ingestion

Site 1 5.43 × 10−6 5.46 × 10−6 3.04 × 10−5 1.61 × 10−5 1.79 × 10−5 5.07 × 10−5 5.10 × 10−5 2.83 × 10−4 1.50 × 10−4 1.67 × 10−4

Site 2 6.27 × 10−6 5.24 × 10−6 1.88 × 10−5 1.32 × 10−5 1.42 × 10−5 5.85 × 10−5 4.89 × 10−5 1.76 × 10−4 1.24 × 10−4 1.32 × 10−4

Site 3 7.12 × 10−6 3.62 × 10−6 2.96 × 10−5 9.77 × 10−6 1.39 × 10−5 6.65 × 10−5 3.38 × 10−5 2.76 × 10−4 9.12 × 10−5 1.30 × 10−4

Site 4 5.94 × 10−6 5.90 × 10−6 1.78 × 10−5 1.10 × 10−5 1.42 × 10−5 5.54 × 10−5 5.50 × 10−5 1.66 × 10−4 1.03 × 10−4 1.32 × 10−4

Site 5 5.93 × 10−6 4.10 × 10−6 1.90 × 10−5 1.43 × 10−5 1.50 × 10−5 5.53 × 10−5 3.83 × 10−5 1.77 × 10−4 1.34 × 10−4 1.40 × 10−4

Site 6 7.29 × 10−6 5.16 × 10−6 1.99 × 10−5 1.07 × 10−5 1.27 × 10−5 6.81 × 10−5 4.82 × 10−5 1.85 × 10−4 9.97 × 10−5 1.19 × 10−4

Inhalation

Site 1 7.98 × 10−10 8.03 × 10−10 4.46 × 10−9 2.37 × 10−9 2.63 × 10−9 1.42 × 10−9 1.42 × 10−9 7.92 × 10−9 4.19 × 10−9 4.67 × 10−9

Site 2 9.21 × 10−10 7.70 × 10−10 2.77 × 10−9 1.95 × 10−9 2.09 × 10−9 1.63 × 10−9 1.37 × 10−9 4.91 × 10−9 3.45 × 10−9 3.70 × 10−9

Site 3 1.05 × 10−9 5.32 × 10−10 4.35 × 10−9 1.44 × 10−9 2.05 × 10−9 1.86 × 10−9 9.43 × 10−10 7.72 × 10−9 2.55 × 10−9 3.63 × 10−9

Site 4 8.73 × 10−10 8.67 × 10−10 2.61 × 10−9 1.62 × 10−9 2.09 × 10−9 1.55 × 10−9 1.54 × 10−9 4.63 × 10−9 2.88 × 10−9 3.70 × 10−9

Site 5 8.72 × 10−10 6.03 × 10−10 2.79 × 10−9 2.11 × 10−9 2.21 × 10−9 1.55 × 10−9 1.07 × 10−9 4.95 × 10−9 3.74 × 10−9 3.92 × 10−9

Site 6 1.07 × 10−9 7.59 × 10−10 2.92 × 10−9 1.57 × 10−9 1.87 × 10−9 1.90 × 10−9 1.35 × 10−9 5.18 × 10−9 2.79 × 10−9 3.31 × 10−9

Dermal

Site 1 9.88 × 10−9 9.94 × 10−9 5.52 × 10−8 2.93 × 10−8 3.26 × 10−8 5.01 × 10−8 5.04 × 10−8 2.80 × 10−7 1.48 × 10−7 1.65 × 10−7

Site 2 1.14 × 10−8 9.53 × 10−9 3.43 × 10−8 2.41 × 10−8 2.58 × 10−8 5.78 × 10−8 4.83 × 10−8 1.74 × 10−7 1.22 × 10−7 1.31 × 10−7

Site 3 1.30 × 10−8 6.58 × 10−9 5.39 × 10−8 1.78 × 10−8 2.53 × 10−8 6.57 × 10−8 3.33 × 10−8 2.73 × 10−7 9.01 × 10−8 1.28 × 10−7

Site 4 1.08 × 10−8 1.07 × 10−8 3.23 × 10−8 2.01 × 10−8 2.58 × 10−8 5.47 × 10−8 5.44 × 10−8 1.64 × 10−7 1.02 × 10−7 1.31 × 10−7

Site 5 1.08 × 10−8 7.46 × 10−9 3.46 × 10−8 2.61 × 10−8 2.74 × 10−8 5.47 × 10−8 3.78 × 10−8 1.75 × 10−7 1.32 × 10−7 1.39 × 10−7

Site 6 1.33 × 10−8 9.40 × 10−9 3.61 × 10−8 1.94 × 10−8 2.31 × 10−8 6.72 × 10−8 4.76 × 10−8 1.83 × 10−7 9.85 × 10−8 1.17 × 10−7

Total

Site 1 5.44 × 10−6 5.47 × 10−6 3.04 × 10−5 1.61 × 10−5 1.79 × 10−5 5.07 × 10−5 5.10 × 10−5 2.84 × 10−4 1.50 × 10−4 1.67 × 10−4

Site 2 6.28 × 10−6 5.25 × 10−6 1.89 × 10−5 1.33 × 10−5 1.42 × 10−5 5.85 × 10−5 4.89 × 10−5 1.76 × 10−4 1.24 × 10−4 1.32 × 10−4

Site 3 7.13 × 10−6 3.62 × 10−6 2.96 × 10−5 9.79 × 10−6 1.39 × 10−5 6.65 × 10−5 3.38 × 10−5 2.76 × 10−4 9.13 × 10−5 1.30 × 10−4

Site 4 5.95 × 10−6 5.91 × 10−6 1.78 × 10−5 1.11 × 10−5 1.42 × 10−5 5.55 × 10−5 5.51 × 10−5 1.66 × 10−4 1.03 × 10−4 1.32 × 10−4

Site 5 5.94 × 10−6 4.11 × 10−6 1.90 × 10−5 1.44 × 10−5 1.51 × 10−5 5.54 × 10−5 3.83 × 10−5 1.77 × 10−4 1.34 × 10−4 1.41 × 10−4

Site 6 7.31 × 10−6 5.17 × 10−6 1.99 × 10−5 1.07 × 10−5 1.27 × 10−5 6.81 × 10−5 4.82 × 10−5 1.86 × 10−4 9.98 × 10−5 1.19 × 10−4
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Table 9. Hazard quotient of non-cancer risks and hazard index of cancer risks (the term “total” represents the sum of the three exposure routes: ingestion, inhalation,
and dermal) calculated for adults and children, in terms of both species and collecting sites.

HQtotal HItotal

Adults

Cd Cr Cu Ni Pb Total Cd Cr Ni Pb Total

A. bisporus 7.31 × 10−3 1.68 × 10−3 6.33 × 10−4 6.24 × 10−4 9.51 × 10−3 1.98 × 10−2 4.29 × 10−5 2.51 × 10−6 1.08 × 10−5 1.13 × 10−7 5.64 × 10−5

A. campestris 7.25 × 10−3 1.89 × 10−3 4.74 × 10−4 8.41 × 10−4 9.45 × 10−3 1.99 × 10−2 4.26 × 10−5 2.82 × 10−6 1.45 × 10−5 1.12 × 10−7 6.00 × 10−5

A. mellea 8.07 × 10−3 1.54 × 10−3 7.16 × 10−4 7.25 × 10−4 1.12 × 10−2 2.23 × 10−2 4.74 × 10−5 2.29 × 10−6 1.26 × 10−5 1.33 × 10−7 6.24 × 10−5

B.edulis 4.60 × 10−3 1.71 × 10−3 4.45 × 10−4 5.45 × 10−4 1.16 × 10−2 1.89 × 10−2 2.70 × 10−5 2.54 × 10−6 9.43 × 10−6 1.38 × 10−7 3.91 × 10−5

M. excoriata 5.30 × 10−3 2.34 × 10−3 4.26 × 10−4 6.13 × 10−4 9.83 × 10−3 1.85 × 10−2 3.11 × 10−5 3.48 × 10−6 1.06 × 10−5 1.16 × 10−7 4.53 × 10−5

M. procera 5.23 × 10−3 1.15 × 10−3 4.96 × 10−4 8.20 × 10−4 1.22 × 10−2 1.99 × 10−2 3.07 × 10−5 1.71 × 10−6 1.41 × 10−5 1.44 × 10−7 4.67 × 10−5

Cd Cr Cu Ni Pb Total Cd Cr Ni Pb Total

Site 1 5.83 × 10−3 1.85 × 10−3 7.64 × 10−4 8.58 × 10−4 1.29 × 10−2 2.22 × 10−2 3.42 × 10−5 2.75 × 10−6 1.49 × 10−5 1.52 × 10−7 5.20 × 10−5

Site 2 6.72 × 10−3 1.78 × 10−3 4.73 × 10−4 7.06 × 10−4 1.02 × 10−2 1.99 × 10−2 3.95 × 10−5 2.64 × 10−6 1.22 × 10−5 1.21 × 10−7 5.44 × 10−5

Site 3 7.64 × 10−3 1.23 × 10−3 7.44 × 10−4 5.22 × 10−4 9.99 × 10−3 2.01 × 10−2 4.49 × 10−5 1.82 × 10−6 9.13 × 10−6 1.18 × 10−7 5.59 × 10−5

Site 4 6.37 × 10−3 2.00 × 10−3 4.47 × 10−4 5.90 × 10−4 1.02 × 10−2 1.96 × 10−2 3.74 × 10−5 2.97 × 10−6 1.02 × 10−5 1.21 × 10−7 5.07 × 10−5

Site 5 6.36 × 10−3 1.39 × 10−3 4.78 × 10−4 7.64 × 10−4 1.08 × 10−2 1.98 × 10−2 3.73 × 10−5 2.07 × 10−6 1.32 × 10−5 1.28 × 10−7 5.27 × 10−5

Site 6 7.82 × 10−3 1.75 × 10−3 5.00 × 10−4 5.70 × 10−4 9.12 × 10−3 1.98 × 10−2 4.59 × 10−5 2.60 × 10−6 9.88 × 10−6 1.08 × 10−7 5.85 × 10−5

Children

Cd Cr Cu Ni Pb Total Cd Cr Ni Pb Total

A. bisporus 6.61 × 10−2 1.55 × 10−2 5.89 × 10−3 5.65 × 10−3 8.86 × 10−2 1.82 × 10−1 4.00 × 10−4 2.33 × 10−5 1.00 × 10−4 1.05 × 10−6 5.25 × 10−4

A. campestris 6.55 × 10−2 1.74 × 10−2 4.42 × 10−3 7.62 × 10−3 8.80 × 10−2 1.83 × 10−1 3.97 × 10−4 2.62 × 10−5 1.35 × 10−4 1.04 × 10−6 5.59 × 10−4

A. mellea 7.29 × 10−2 1.42 × 10−2 6.66 × 10−3 6.57 × 10−3 1.05 × 10−1 2.05 × 10−1 4.42 × 10−4 2.13 × 10−5 1.16 × 10−4 1.24 × 10−6 5.81 × 10−4

B.edulis 4.16 × 10−2 1.57 × 10−2 4.14 × 10−3 4.94 × 10−3 1.08 × 10−1 1.75 × 10−1 2.52 × 10−4 2.36 × 10−5 8.74 × 10−5 1.29 × 10−6 3.64 × 10−4

M. excoriata 4.79 × 10−2 2.15 × 10−2 3.96 × 10−3 5.55 × 10−3 9.15 × 10−2 1.70 × 10−1 2.90 × 10−4 3.23 × 10−5 9.81 × 10−5 1.09 × 10−6 4.22 × 10−4

M. procera 4.73 × 10−2 1.06 × 10−2 4.61 × 10−3 7.43 × 10−3 1.13 × 10−1 1.83 × 10−1 2.87 × 10−4 1.59 × 10−5 1.31 × 10−4 1.34 × 10−6 4.35 × 10−4

Cd Cr Cu Ni Pb Total Cd Cr Ni Pb Total

Site 1 5.27 × 10−2 1.71 × 10−2 7.11 × 10−3 7.78 × 10−3 1.20 × 10−1 2.04 × 10−1 3.19 × 10−4 2.56 × 10−5 1.38 × 10−4 1.42 × 10−6 4.84 × 10−4

Site 2 6.08 × 10−2 1.64 × 10−2 4.41 × 10−3 6.40 × 10−3 9.48 × 10−2 1.83 × 10−1 3.68 × 10−4 2.45 × 10−5 1.13 × 10−4 1.13 × 10−6 5.07 × 10−4

Site 3 6.91 × 10−2 1.13 × 10−2 6.93 × 10−3 4.73 × 10−3 9.30 × 10−2 1.85 × 10−1 4.19 × 10−4 1.69 × 10−5 8.42 × 10−5 1.10 × 10−6 5.21 × 10−4

Site 4 5.76 × 10−2 1.84 × 10−2 4.16 × 10−3 5.34 × 10−3 9.48 × 10−2 1.80 × 10−1 3.49 × 10−4 2.76 × 10−5 9.45 × 10−5 1.13 × 10−6 4.72 × 10−4

Site 5 5.75 × 10−2 1.28 × 10−2 4.44 × 10−3 6.93 × 10−3 1.01 × 10−1 1.82 × 10−1 3.49 × 10−4 1.92 × 10−5 1.22 × 10−4 1.19 × 10−6 4.91 × 10−4

Site 6 7.07 × 10−2 1.61 × 10−2 4.65 × 10−3 5.17 × 10−3 8.49 × 10−2 1.82 × 10−1 4.29 × 10−4 2.42 × 10−5 9.15 × 10−5 1.01 × 10−6 5.45 × 10−4
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The HQ results for the studied samples were higher than the HI values for both
categories (i.e., adults and children). Taking into account the fact that a HI value lower
than 1 indicates a low non-cancer risk to both age categories [74,75], as expected, the values
for adults were lower than the values for children across both sampling locations and
mushroom species (Table 9 and Supplementary Material S1—Soil samples). These results
are in agreement with previously reported data [75] and demonstrate that children are
more exposed than adults.

In terms of mushroom species, it can be easily observed that A. mellea induces the
highest total risk for human health (for both age categories and in terms of cancer and
non-cancer risks) due to the high values of risks induced by cadmium, copper, and lead.
The HI values < 10–6 represent a low risk, while values > 10–4 mean a high risk to human
health [76]. As a general observation, the HI results were higher than 10–4 for the children,
indicating a likely cancer risk [77], while the HI values higher than 10–5 for adults were
within a tolerable limit.

3.3. Heavy Metals in Mushroom Samples

The results obtained in the study of elemental content (i.e., Cd, Cr, Cu, Ni, and Pb) of
128 analyzed mushroom subsamples are shown in Table 10. Regarding the cadmium and
lead contents, all the samples exceed the maximum permitted limits for vegetables [78–80]
and seem to pose a health risk for people (adults and children). Regarding the copper
content, it should be noted that all the samples comply with the maximum permitted limit
established by the Romanian order [78]. Taking into account that the Commission Regula-
tion (EC) no. 2023/915 establishes maximum levels for Cd and Pb in wild fungi (i.e., 0.500
mg·kg−1 and 0.800 mg·kg−1, respectively) [81], values which are highest comparatively
with other regulations, it was highlighted that in all mushroom stipe subsamples, except
A. mellea, values were recorded that comply with the maximum permitted limits.

Table 10. Mean values of elements (i.e., Cd, Cr, Cu, Ni, and Pb) determined in mushroom samples
and subsamples in terms of both species and collecting sites (expressed in mg·kg−1 d.w.).

Cd Cr Cu Ni Pb

Collecting sites

Site 1 1.108 0.985 3.062 1.147 1.845

Site 2 0.679 0.870 3.226 1.264 1.406

Site 3 0.326 0.795 2.965 1.448 0.667

Site 4 0.522 0.721 2.748 1.511 1.255

Site 5 0.785 0.755 3.155 1.055 1.310

Site 6 0.783 1.428 3.037 1.211 1.914

Mushroom species

Agaricus bisporus 0.422 0.859 2.745 1.361 0.796

Agaricus campestris 0.905 0.450 2.830 0.954 1.636

Armillaria mellea 0.858 1.023 3.387 1.287 1.972

Boletus edulis 0.581 0.749 2.874 1.452 0.885

Macrolepiota excoriata 0.650 0.966 2.936 1.306 1.332

Macrolepiota procera 0.963 1.218 3.186 1.031 1.462

Subsamples

Agaricus bisporus
Cap 0.620 0.774 3.457 1.072 0.576

Stipe 0.223 0.943 2.033 1.649 1.016
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Table 10. Cont.

Cd Cr Cu Ni Pb

Agaricus campestris
Cap 1.364 0.373 3.637 0.571 1.738

Stipe 0.446 0.528 2.024 1.338 1.534

Armillaria mellea
Cap 1.158 1.220 4.132 1.268 2.134

Stipe 0.558 0.827 2.642 1.305 1.809

Boletus edulis
Cap 0.924 0.845 3.453 1.062 0.682

Stipe 0.238 0.653 2.294 1.843 1.088

Macrolepiota excoriata
Cap 1.096 0.906 3.608 0.918 1.274

Stipe 0.205 1.025 2.265 1.694 1.391

Macrolepiota procera
Cap 1.605 1.616 3.513 1.016 1.783

Stipe 0.321 0.819 2.860 1.047 1.140

Romanian Order no. 975/1998 (i.e., fresh
vegetable) 0.100 nd* 5.000 nd* 0.500

Commission Regulation (EC) no. 2023/915
(i.e., Brassicaceae vegetables and wild
mushrooms”)

0.200′

0.500′′ nd* nd* nd* 0.300′

0.800′′

Codex Alimentarius CODEX-STAN
193-1995 (i.e., Brassicaceae vegetables) 0.050 nd* nd* nd* 0.100

nd*—not specified value(s) in the regulations.

3.4. Phytoremediation Capacity—Transfer Factor (TF)

It is well known that the phytoremediation capacity represents the ability of a plant
to remove toxic compounds from the environment [82–85]. In the present study, the
phytoremediation capacity of the analyzed mushrooms was assessed by using the transfer
factor (also known as bioaccumulation or bioconcentration factor), which represents the
capacity to absorb one or more heavy metals from soil. The obtained results are presented in
Figure 4 and Table 11 (as well as in the Supplementary Material S2—Mushroom samples).
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Figure 4. The transfer factor in cap (a) and stipe subsamples (b).

The mean values of the transfer factor for A. mellea show a good phytoremediation
capacity for all analyzed HMs (mean values 14.559—34.701%). At the same time, the
maximum value for cadmium accumulation was recorded in the M. procera cap subsample
(76.774%), which is another mushroom species with good phytoremediation ability. The
lowest levels of TF were recorded in the Agaricus samples (A. bisporus and A. campestris).
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Table 11. Descriptive statistics of transfer factor (TF [%]) calculated for the mushroom subsamples
(cap and stipe).

TF [%] Cd Cr Cu Ni Pb

Cap

min 4.899 4.757 9.746 1.631 1.528

max 76.774 115.648 33.984 26.534 35.200

average 27.628 35.062 25.857 12.998 13.825

median 24.952 23.802 26.958 12.167 11.506

SD 18.359 29.532 6.417 6.313 9.773

Stipe

min 3.171 8.701 3.741 2.936 6.568

max 19.529 69.880 30.505 35.221 27.396

average 8.417 26.682 16.667 17.982 13.512

median 6.428 21.270 17.204 19.150 13.344

SD 5.290 16.891 6.026 8.675 5.169

The highest TF value for chromium was recorded in the cap subsample C18 of M.
procera (115.648%), while the highest TF value for cadmium was recorded in the cap sub-
sample C19 of M. procera (76.774%), which means that this sample can be considered
a hyper-accumulator of these metals and can be successfully used in the phytoremedi-
ation of contaminated soils. In almost all cases, the cap subsample recorded a higher
TF than the stipe subsample; these results are closely correlated with the reported data
of other authors [86–89] due to the increased physiological activity in these parts of the
fruiting body [90].

3.5. Health Risk Assessment

The estimated daily intake (EDI) represents the amount of metal to be taken into the
body daily depending on the consumption of the mushroom species investigated in this
research. The obtained results compared with recommended values or tolerable intake
level and the carcinogenic risk induced by Pb exposure are presented in Table 12 and
Supplementary Material S2—Mushroom samples.

Table 12. Mean values of estimated daily intake (EDI) and carcinogenic risk induced by lead (CRPb)
for each determined element (i.e., Cd, Cr, Cu, Ni, and Pb) in mushroom samples in terms of both
species and collecting sites.

Adults
Estimated Daily Intake [mg·Day−1]

CRPb
Cd Cr Cu Ni Pb

Collecting sites

Site 1 0.111 0.099 0.306 0.115 0.184 1.57 × 10−3

Site 2 0.068 0.087 0.323 0.126 0.141 1.19 × 10−3

Site 3 0.033 0.080 0.296 0.145 0.067 5.67 × 10−4

Site 4 0.052 0.072 0.275 0.151 0.126 1.07 × 10−3

Site 5 0.078 0.075 0.315 0.105 0.131 1.11 × 10−3

Site 6 0.078 0.143 0.304 0.121 0.191 1.63 × 10−3
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Table 12. Cont.

Adults
Estimated Daily Intake [mg·Day−1]

CRPb
Cd Cr Cu Ni Pb

Mushroom species

Agaricus bisporus 0.042 0.086 0.274 0.136 0.080 6.77 × 10−4

Agaricus campestris 0.090 0.045 0.283 0.095 0.164 1.39 × 10−3

Armillaria mellea 0.086 0.102 0.339 0.129 0.197 1.68 × 10−3

Boletus edulis 0.058 0.075 0.287 0.145 0.088 7.52 × 10−4

Macrolepiota excoriata 0.065 0.097 0.294 0.131 0.133 1.13 × 10−3

Macrolepiota procera 0.096 0.122 0.319 0.103 0.146 1.24 × 10−3

Children
Estimated daily intake [mg·day−1]

CRPb
Cd Cr Cu Ni Pb

Collecting sites

Site 1 0.033 0.030 0.092 0.034 0.055 4.70 × 10−4

Site 2 0.020 0.026 0.097 0.038 0.042 3.58 × 10−4

Site 3 0.010 0.024 0.089 0.043 0.020 1.70 × 10−4

Site 4 0.016 0.022 0.082 0.045 0.038 3.20 × 10−4

Site 5 0.024 0.023 0.095 0.032 0.039 3.34 × 10−4

Site 6 0.023 0.043 0.091 0.036 0.057 4.88 × 10−4

Mushroom species

Agaricus bisporus 0.013 0.026 0.082 0.041 0.024 2.03 × 10−4

Agaricus campestris 0.027 0.014 0.085 0.029 0.049 4.17 × 10−4

Armillaria mellea 0.026 0.031 0.102 0.039 0.059 5.03 × 10−4

Boletus edulis 0.017 0.022 0.086 0.044 0.027 2.26 × 10−4

Macrolepiota excoriata 0.020 0.029 0.088 0.039 0.040 3.40 × 10−4

Macrolepiota procera 0.029 0.037 0.096 0.031 0.044 3.73 × 10−4

Tolerable intake level/
Recommended daily intake/

Acceptable risk level for CRPb

0.025 0.025 0.900 1.000 0.250
1.00 ×

10−6–1.00 ×
10−4

For Cd and Pb are presented the values for tolerable intake level, calculated from the tolerable weekly intake
(TWI) of 2.5 µg/kg b.m. and 25 µg/kg b.m., respectively, considering the average body mass = 70 kg; for Cr and
Cu is presented the recommended daily intake; for Ni is presented the values for tolerable intake level.

The obtained EDI values for adults are higher than the values for children due to
the recommended amount of mushrooms per day, for each age category. Taking into
account the tolerable intake levels or the recommended daily intake values, it can be
assumed that three of the analyzed species (i.e., A. campestris, A. mellea, and M. procera)
induce high cadmium daily intake for children, but for the adult category, all analyzed
species induce high cadmium daily intake. It is well known and published in previous
studies that oral cadmium exposure induces bone (i.e., osteoporosis, fractures) [91–93],
cancer [94], cardiovascular [95], endocrine [96], kidney [97], and reproductive diseases [98],
as well as hyperuricemia [99], anemia [100], or neurodevelopment issues [101]. In the
case of chromium, four species (i.e., A. bisporus, A. mellea, M. excoriata, and M. procera)
were recorded with values higher than the recommended daily intake when it comes
to the children’s category and, similar to cadmium, all analyzed species induce high
chromium daily intake. The main health effects of ingested chromium (i.e., trivalent and
hexavalent) have already been studied: hepatotoxicity [102,103], neurotoxicity [102,104],
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nephrotoxicity [102,105], immunotoxicity [102,106], and developmental toxicity [102,107].
In terms of collecting sites, Ploiesti City records cadmium values higher than the tolerable
intake level for children and of all studied cities for the adult category, while in the case of
chromium, Sites 1, 2, and 6 recorded values higher than the recommended daily intake for
children and all studied cities for the adult category. Even if the lead values do not exceed
the tolerable intake level, the carcinogenic risk induced by the lead content shows higher
values than the acceptable risk level for all mushroom species and for all studied cities, in
the case of both age categories.

The estimated daily intake (EDI) represents the first step in the assessment of the
health risk; the second step is represented by the daily intake of metals (DIM); the obtained
values are presented in Table 13 and Supplementary Material S2—Mushroom samples.

The evaluation of the daily metal intake data was made taking into account the val-
ues of EDI reported to the body mass for each age category. The mean values were
calculated in terms of both species and collecting sites (Table 13 and Supplementary
Material S2—Mushroom samples). The mean DIM values for Cd, Cr, Cu, Ni, and Pb
were found to be 0.0010, 0.0013, 0.0043, 0.0018, and 0.0020 for adults and 0.0015, 0.0019,
0.0065, 0.0027, and 0.0030 for children. Regarding the mushroom species, M. procera
recorded the maximum values for cadmium and chromium and A. mellea recorded the
maximum values for copper and lead, while for nickel, B. edulis recorded the maximum
value for both age categories. In terms of collecting sites, Ploiesti City has the maximum
value for cadmium, Campina City for copper, Sinaia City for nickel, and Azuga City for
chromium and lead—these observations are for both age categories. Comparative with EDI
values, the DIM data were higher for children than for adults due to the body mass taken
into account.

Globally, normal values for copper concentration in unpolluted soils range from
2 to 109 mg/kg. However, anthropogenic activities such as mining, oil refining, waste
incineration, fossil fuel burning, road traffic, and the widespread use of agrochemicals
(such as fungicides, fertilizers, pesticides, and herbicides), as well as soil amendments,
have led to an increase in the level of copper in the environment [108]. Copper is an
essential element for humans and plants when present in small amounts, but in excessive
amounts, it can have harmful effects. Copper concentrations in dry biomass between 20 and
100 mg/kg are considered toxic to most plants [109]. The Acceptable Daily Intake (ADI)
for copper has been reduced from 0.15 mg/kg body weight to 0.07 mg/kg body weight
by the European Food Safety Authority [110]. This reduction reflects the need to maintain
copper concentrations in food at safe levels, as an amount exceeding this level can be toxic.
EFSA has determined that, in the case of an adult weighing 70 kg, an amount greater than
10 mg/day of copper can have major harmful effects on the body. In addition, the World
Health Organization recommends a maximum daily intake of 0.5 mg of copper per kilogram
of body weight for adults (which would equate to approximately 35 mg of copper per day
for a 70 kg adult) [111]. On the other hand, the United States Environmental Protection
Agency has established a reference level for daily copper intake of 0.04 mg per kilogram
of body weight per day (for a 70 kg adult, which would equate to approximately 2.8 mg
per day) [112]. Copper is not very mobile in soil and tends to accumulate at the soil surface
due to its specific adsorption on mineral and organic fractions. Average concentrations of
copper in the topsoil are about 55 mg/kg. Generally, the average concentration of copper
in soil ranges from 5 to 70 mg/kg in protected areas and is higher in soils located near
smelters and mining areas [113].
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Table 13. Mean values of daily intake metals (DIM) for each determined element (i.e., Cd, Cr, Cu, Ni,
and Pb) in mushroom samples in terms of both species and collecting sites.

Adults
Daily Intake Metals [mg·kg−1·Day−1]

Cd Cr Cu Ni Pb

Collecting sites

Site 1 0.0016 0.0014 0.0044 0.0016 0.0026

Site 2 0.0010 0.0012 0.0046 0.0018 0.0020

Site 3 0.0005 0.0011 0.0042 0.0021 0.0010

Site 4 0.0007 0.0010 0.0039 0.0022 0.0018

Site 5 0.0011 0.0011 0.0045 0.0015 0.0019

Site 6 0.0011 0.0020 0.0043 0.0017 0.0027

Mushroom species

Agaricus bisporus 0.0006 0.0012 0.0039 0.0019 0.0011

Agaricus campestris 0.0013 0.0006 0.0040 0.0014 0.0023

Armillaria mellea 0.0012 0.0015 0.0048 0.0018 0.0028

Boletus edulis 0.0008 0.0011 0.0041 0.0021 0.0013

Macrolepiota excoriata 0.0009 0.0014 0.0042 0.0019 0.0019

Macrolepiota procera 0.0014 0.0017 0.0046 0.0015 0.0021

Childrens
Daily intake metals [mg·kg−1·day−1]

Cd Cr Cu Ni Pb

Collecting sites

Site 1 0.0024 0.0021 0.0066 0.0025 0.0040

Site 2 0.0015 0.0019 0.0069 0.0027 0.0030

Site 3 0.0007 0.0017 0.0064 0.0031 0.0014

Site 4 0.0011 0.0015 0.0059 0.0032 0.0027

Site 5 0.0017 0.0016 0.0068 0.0023 0.0028

Site 6 0.0017 0.0031 0.0065 0.0026 0.0041

Mushroom species

Agaricus bisporus 0.0009 0.0018 0.0059 0.0029 0.0017

Agaricus campestris 0.0019 0.0010 0.0061 0.0020 0.0035

Armillaria mellea 0.0018 0.0022 0.0073 0.0028 0.0042

Boletus edulis 0.0012 0.0016 0.0062 0.0031 0.0019

Macrolepiota excoriata 0.0014 0.0021 0.0063 0.0028 0.0029

Macrolepiota procera 0.0021 0.0026 0.0068 0.0022 0.0031

Globally, normal values for copper concentration in unpolluted soils range from
2 to 109 mg/kg. However, anthropogenic activities such as mining, oil refining, waste
incineration, fossil fuel burning, road traffic, and the widespread use of agrochemicals
(such as fungicides, fertilizers, pesticides, and herbicides), as well as soil amendments,
have led to an increase in the level of copper in the environment [108]. Copper is an
essential element for humans and plants when present in small amounts, but in excessive
amounts, it can have harmful effects. Copper concentrations in dry biomass between 20 and
100 mg/kg are considered toxic to most plants [109]. The Acceptable Daily Intake (ADI)
for copper has been reduced from 0.15 mg/kg body weight to 0.07 mg/kg body weight
by the European Food Safety Authority [110]. This reduction reflects the need to maintain
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copper concentrations in food at safe levels, as an amount exceeding this level can be toxic.
EFSA has determined that, in the case of an adult weighing 70 kg, an amount greater than
10 mg/day of copper can have major harmful effects on the body. In addition, the World
Health Organization recommends a maximum daily intake of 0.5 mg of copper per kilogram
of body weight for adults (which would equate to approximately 35 mg of copper per day
for a 70 kg adult) [111]. On the other hand, the United States Environmental Protection
Agency has established a reference level for daily copper intake of 0.04 mg per kilogram
of body weight per day (for a 70 kg adult, which would equate to approximately 2.8 mg
per day) [112]. Copper is not very mobile in soil and tends to accumulate at the soil surface
due to its specific adsorption on mineral and organic fractions. Average concentrations of
copper in the topsoil are about 55 mg/kg. Generally, the average concentration of copper
in soil ranges from 5 to 70 mg/kg in protected areas and is higher in soils located near
smelters and mining areas [113].

For plants, including mushrooms, it is the micronutrient considered vital for growth
and development, a structural constituent of numerous regulatory proteins, conferring
key roles in CO2 assimilation, by participating in mitochondrial respiration, cell wall
metabolism, photosynthetic electron transport, responses to oxidative stress, protein syn-
thesis, and so on. In general, a content of 5–30 mg/kg Cu is considered satisfactory for
plant tissues [114]. On the other hand, concentration beyond the critical limits promotes
leaf chlorosis, causing cytotoxicity. For example, the recommended value in food crops
for copper is 30 mg kg−1 [115]. Chen et al. revealed that an excessive amount of copper
interferes with nutrient absorption, inhibits the photosynthesis of plants, and also affects
the functions of key cellular components such as lipids, ARD, or DNA [116]. Due to its dual
nature (essential at an optimal level but toxic at high levels), this metal involves a complex
network of uptake, sequestration and transport, essentiality and toxicity, and detoxification
within plants as already highlighted by Shabbir et al. in their research [114].

One of the most significant soil pollutants is lead, which, once in the soil, can be easily
transferred to groundwater, or surface water; it can be absorbed by plants, translocated
to their various components, and then transferred to humans, affecting the entire food
chain. In soil, this heavy metal is mostly retained by clay loams and extremely fine particles
of organic matter. On the other hand, the availability of lead ions in soil depends on its
solubility. At a low soil pH (pH < 5), lead ions are retained less and are more soluble,
and at a higher pH (pH > 6.5), lead ions are retained more strongly, and their solubility is
lower [117]. In previous researches, it was revealed that lead influences the photosynthesis
of plants, by inhibiting the activity of carboxylation enzymes, with the specification that a
high concentration of Pb2+ causes inhibition of enzyme activities, water imbalance, changes
in cell membrane permeability, and mineral nutrition disturbances in plants [31,40]. In
addition, Pb2+ inhibits the activity of enzymes at the cellular level through its reaction
with the sulfhydryl groups of plants. Along with Co, Cr, Ni, and Cd, Pb is considered
an “environmental health hazard”, and was included in the priority list of dangerous
substances, in the first ten positions, by the Agency for the Register of Toxic Substances
and Medicines [118].

Lead, being a very toxic metal, can damage the nervous system and kidneys of children.
Young children are especially susceptible to lead poisoning because they have 4–5 times
greater intestinal absorption. In adults, at blood lead levels of 50–80 µg·dL−1, signs of
chronic lead toxicity may occur, including fatigue, insomnia, irritability, headache, joint
pain, and gastrointestinal symptoms. The total amount of Pb2+ for an adult can vary from
20 to 150 µg·day−1 in most countries, with a daily dose of 0.2–2 mg being considered
safe. The main routes of entry of lead into the human body, i.e., ingestion and inhalation,
involve the intestinal system. Lead exposure causes 0.6% of all global diseases [119]. The
accumulation of lead in biological substrates is determined by the level of exposure to lead
toxicity. Thus, if lead ions are found in blood samples, then a recent exposure is evidenced;
if lead ions are present in the teeth, it means that the exposure was long-term. Lead ions
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present in the bones show an accumulation of metal ions during the fetal period, and the
presence of lead ions in hair is an indicator of exposure for a long period.

Nickel (Ni), along with lead (Pb), is one of the most toxic environmental pollutants.
Ni can enter the human body through inhalation, ingestion, and dermal absorption and is
known to cause a variety of adverse health effects, including contact dermatitis, pulmonary
fibrosis, cardiovascular, and kidney disease [120,121]. There is also evidence that some
nickel compounds are carcinogenic and have been linked to lung and respiratory tract can-
cer [122]. Regarding inhalation, the particle size of particulate matter (PMs) is a determining
factor in Pb deposition in the body [123]. Inhalation exposure in occupational settings is a
major pathway for nickel-induced toxicity in the respiratory system, lungs, and immune
system [124]. Water-soluble nickel compounds are absorbed into the body through the
lungs by diffusion, while water-insoluble nickel compounds enter the respiratory system
by phagocytosis and remain in the lungs for a longer period. Guo et al., (2019) reported that
nickel ingested or inhaled is accumulated in the kidneys, which are the main target organs
for deposition, followed by the brain and pancreas [125]. In brief, Ni as a metal is immuno-
toxic, hemotoxic, neurotoxic, genotoxic, nephrotoxic, and hepatotoxic. The International
Agency for Research on Cancer (IARC), in 1990, classified all nickel compounds, except
for metallic nickel, to be carcinogenic to humans [126,127]. The carcinogenic potential
of nickel compounds depends on their solubility in water. Depending on the dose and
duration of exposure, as an immunotoxic and carcinogenic agent, Ni can cause a variety
of health effects, such as contact dermatitis, cardiovascular disease, asthma, pulmonary
fibrosis, and respiratory tract cancer. Apart from those mentioned, in biological systems,
Ni plays a well-established role. For instance, nickel deficiency in the human body leads
to abnormal cellular morphology and oxidative metabolism, increases or decreases lipid
levels, and can induce anemia in terms of reduced iron adsorption [121,126,127]. Several
studies revealed that the average daily intake of nickel from various fresh or cooked foods
(i.e., vegetables, fruits, grains, etc.), water, and beverages is 101–162 µg per day for adults,
specifically, 136–140 µg per day for males, and 107–109 µg per day for females. The average
nickel intakes for different children’s categories were recorded, such as for those aged
0–6 months, a value of 9 µg per day; for those aged 7–12 months, a value of 39 µg per day;
for ages 1–3 years, 82 µg per day; and for ages 4–8 years, 99 µg per day. In addition, the
average nickel intake for pregnant women was revealed to be 121 µg per day [121,128,129].

Chromium (Cr) is one of the most significant environmental and human contaminants.
The most stable and toxic forms of Cr, depending on pH, are Cr(III) (less toxic) and Cr(VI)
(highly toxic) [130]. Thus, Cr(III) is a microelement with relatively low toxicity and is only
slightly soluble in water, while Cr(VI) is known to be carcinogenic, quite water-soluble,
and mobile [131]. He and Li (2020) revealed that Cr(VI) risks to human health depend
on the dose, exposure level, and duration [132]. Long-term and continuous exposure
to chromium even at low concentrations, i.e., in the case of occupational exposure, can
affect the skin, eyes, blood, respiratory, and immune systems [133]. Long-term exposure
to Cr(VI) can cause acute diseases and adverse reactions, such as allergic reactions and
skin ulcers, and even lead to the well-known triad of mutagenesis, carcinogenesis, and
teratogenesis [134]. The World Health Organization (WHO) suggests 50 µg/L of Cr as
a guideline value based on health for drinking water [135]. Most wastewater contains
Cr(VI) and organic pollutants, and many studies revealed the synergy between them in
photocatalytic degradation. Therefore, the toxicity and mobility of Cr is mainly controlled
by its oxidation state and, thus, by redox reactions [136].

Of all the heavy metals, cadmium (Cd) is one of the most mobile and potentially
toxic elements (PTEs) that have garnered attention due to their persistence, toxicity, non-
degradability, and bioaccumulation [29,137,138]. Even at low concentrations, it is toxic to all
life forms, including plants, fish, birds, mammals, and microorganisms [139]. In brief, Cd as
an environmental pollutant ranked eighth place in the Top 20 priority hazardous substances
due to its high toxicity and slow rate of metabolism. Cadmium is mainly bound to blood
cells and only after chronic exposure is it also stored in the kidney cortex. Therefore, blood
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cadmium levels represent recent exposure to cadmium, while urine levels of cadmium are
more likely to be a measure of chronic and cumulative exposure over a lifetime [140]. The
health effects of cadmium exposure are exacerbated by the inability of the human body to
excrete cadmium [141]. Cd absorption occurs primarily through the respiratory system and
to a lesser extent through the gastrointestinal system, while dermal absorption is relatively
rare. When cadmium enters the body, it is transported into the blood via erythrocytes and
albumin and then accumulates in the kidneys, liver, and intestine. In humans, Cd exposure
can lead to a variety of adverse effects, such as renal and hepatic dysfunction, pulmonary
edema, and damage to the adrenal and hematopoietic systems. An association between
markers of Cd exposure (blood and urine) and coronary heart disease, stroke, peripheral
arterial disease, and atherogenic changes in the lipid profile has also been observed by Vogel
et al. [140]. In addition to its cytotoxic effects that could lead to apoptotic or necrotic events,
cadmium is a proven human carcinogen (group I of the International Agency for Research
on Cancer classification) [140]. Cadmium is statistically associated with an increased risk
of cancer and participates in the process of bone demineralization [141]. Some conflicting
reports are suggesting that cadmium may be an anti-inflammatory factor [142].

The last step in the health risk assessment is the calculation of the health risk index
(HRI) based on the DIM values and oral reference doses (RfD); the obtained results are
presented in Table 14 and Supplementary Material S2—Mushroom samples.

Table 14. Mean values of health risk index (HRI) and total target hazard quotient (TTHQ) for each
determined element (i.e., Cd, Cr, Cu, Ni, and Pb) in mushroom samples in terms of both species and
collecting sites.

Adults
Health Risk Index

TTHQ
Cd Cr Cu Ni Pb

Collecting sites

Site 1 1.582 0.001 0.109 0.082 0.075 1.850

Site 2 0.971 0.001 0.115 0.090 0.057 1.235

Site 3 0.466 0.001 0.106 0.103 0.027 0.703

Site 4 0.746 0.001 0.098 0.108 0.051 1.004

Site 5 1.121 0.001 0.113 0.075 0.053 1.364

Site 6 1.119 0.002 0.108 0.086 0.078 1.394

Mushroom species

Agaricus bisporus 0.602 0.001 0.098 0.097 0.032 0.831

Agaricus campestris 1.293 0.001 0.101 0.068 0.067 1.529

Armillaria mellea 1.225 0.001 0.121 0.092 0.080 1.520

Boletus edulis 0.830 0.001 0.103 0.104 0.036 1.074

Macrolepiota excoriata 0.929 0.001 0.105 0.093 0.054 1.183

Macrolepiota procera 1.375 0.002 0.114 0.074 0.060 1.624

Childrens
Health risk index

TTHQ
Cd Cr Cu Ni Pb

Collecting sites

Site 1 2.374 0.004 0.164 0.123 0.113 2.778

Site 2 1.456 0.004 0.173 0.135 0.086 1.854

Site 3 0.698 0.003 0.159 0.155 0.041 1.057

Site 4 1.118 0.003 0.147 0.162 0.077 1.507

Site 5 1.682 0.003 0.169 0.113 0.080 2.047

Site 6 1.678 0.006 0.163 0.130 0.117 2.093
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Table 14. Cont.

Adults
Health Risk Index TTHQ

Cd Cr Cu Ni Pb

Mushroom species

Agaricus bisporus 0.904 0.004 0.147 0.146 0.049 1.249

Agaricus campestris 1.939 0.002 0.152 0.102 0.100 2.295

Armillaria mellea 1.838 0.004 0.181 0.138 0.121 2.282

Boletus edulis 1.245 0.003 0.154 0.156 0.054 1.612

Macrolepiota excoriata 1.394 0.004 0.157 0.140 0.082 1.777

Macrolepiota procera 2.063 0.005 0.171 0.111 0.089 2.439

As a result of the calculations, it was highlighted that M. procera harms human health
in terms of cadmium and chromium, as well as the total hazard quotient; A. mellea has a
negative effect on human health in terms of copper and lead; and B. edulis has a negative
effect on human health in terms of nickel—for both age categories (i.e., adults and children).
The worrying data were related to cadmium because in the case of all species (except
A. bisporus), the HRI exceeded the recommended level 1 for the children’s category; for
the adult category, just A. campestris, A. mellea, and M. procera exceeded this level. The
classification of cities according to the maximum HRI value is identical to that presented
in the case of DIM: Ploiesti City has the maximum value for cadmium, Campina City for
copper, Sinaia City for nickel, and Azuga City for chromium and lead—these observations
are for both age categories. Similar data were obtained for B. edulis and A. campestris
collected from Salaj County (North-Western Romania) [143] and on M. procera, B. edulis,
and A. campestris collected from Dambovita County (South-Eastern Romania) [144], which
demonstrate the human risk induced by the consumption of wild edible mushrooms
collected from the uncontrolled environment.

3.6. Statistical Analysis of Obtained Results

Within the analyzed soil samples, the descriptive values of the indicators presented in
Table 15 reveal a significant variability.

Table 15. Descriptive statistics for soil samples.

Elements Range Minimum Maximum Mean Standard
Deviation Variance

Cd 4.09200 2.32400 6.41600 4.3589474 1.08212258 1.171

Cr 4.41300 1.36000 5.77300 3.4620526 1.24062836 1.539

Cu 32.16600 11.80400 43.97000 16.0414737 8.30874606 69.035

Ni 8.36500 5.09900 13.46400 8.9914211 2.53208599 6.411

Pb 9.74700 8.35500 18.10200 10.4321579 2.32516232 5.406

For cadmium, the identified concentrations vary between a minimum value of 2.324
and a maximum value of 6.416, which correspond to a variation interval of 4.092 in the
case of the studied samples. In contrast, copper concentrations highlight a considerably
larger variation interval, of approximately 32.166, determined by the difference between the
minimum value recorded (11.804) and the maximum value (43.970). This high variability
can be mainly attributed to the heterogeneous location of the soil samples, which indicates
a significant degree of heterogeneity of environmental factors and pollution sources in the
investigated areas.

Following the data obtained on mushroom samples the relevant variables are pre-
sented in Table 16.
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Table 16. Descriptive statistics for mushroom samples.

Elements Range Minimum Maximum Mean Standard
Deviation Variance

Cd 1.607 0.178 1.785 0.716 0.541 0.293

Cr 1.727 0.178 1.905 0.899 0.446 0.199

Cu 3.929 1.121 5.050 3.043 0.892 0.797

Ni 2.314 0.178 2.49200 1.268 0.528 0.279

Pb 3.027 0.178 3.20500 1.396 0.759 0.577

A notable aspect is the increased homogeneity of these samples. The analysis revealed
that the variation ranges for the five elements analyzed are significantly lower in mushroom
samples than in soil. Thus, the variation ranges identified are 1.607 for cadmium, 1.727
for chromium, 2.314 for nickel, 3.027 for lead, and 3.929 for copper. This relatively high
homogeneity can be explained by the influence of the collected species and by the fact that
the variability of the analyzed locations affects the soil to a greater extent than the biological
matrix of the mushrooms. This finding emphasizes the moderating role of local conditions
on the chemical composition of the final product.

The interpretation of the Pearson correlations (Table 17) is based on the analysis of the
significance and the values of the correlation coefficient (r). In the context of the information
presented above, the values indicate the strength and direction of the linear relationships
between the different metals (Cd, Cr, Cu, Ni, and Pb) determined in the fungal and soil
samples. Significant relationships exist between most elements, but the variability suggests
differences in the sources or accumulation mechanisms in the studied samples. Pb shows
strongly significant correlations with Cd (r = 0.864, p < 0.01), Cr (r = 0.820, p < 0.01),
Cu (r = 0.854, p < 0.01), and Ni (r = 0.918, p < 0.01).

Table 17. Pearson correlation between analyzed HMs in all samples.

Cd Cr Cu Ni Pb

Cd
Pearson Correlation 1 0.760 ** 0.795 ** 0.849 ** 0.864 **

Sig. (2-tailed) 0.000 0.000 0.000 0.000

Cr
Pearson Correlation 1 0.662 ** 0.777 ** 0.820 **

Sig. (2-tailed) 0.000 0.000 0.000

Cu
Pearson Correlation 1 0.799 ** 0.854 **

Sig. (2-tailed) 0.000 0.000

Ni
Pearson Correlation 1 0.918 **

Sig. (2-tailed) 0.000

Pb
Pearson Correlation 1

Sig. (2-tailed)

** Correlation is significant at the 0.01 level (2-tailed).

The Pearson correlations between samples (made separately for each sample) com-
bined with hierarchical cluster analysis are presented in Figures 5–7. This type of graph is
very useful to identify the similarities between samples and to determine how closely two
or more variables are related.



J. Fungi 2024, 10, 844 26 of 35

J. Fungi 2024, 10, x FOR PEER REVIEW  23  of  32 
 

 

Table 17. Pearson correlation between analyzed HMs in all samples. 

  Cd  Cr  Cu  Ni  Pb 

Cd 
Pearson Correlation  1  0.760 **  0.795 **  0.849 **  0.864 ** 

Sig. (2-tailed)    0.000  0.000  0.000  0.000 

Cr 
Pearson Correlation    1  0.662 **  0.777 **  0.820 ** 

Sig. (2-tailed)      0.000  0.000  0.000 

Cu 
Pearson Correlation      1  0.799 **  0.854 ** 

Sig. (2-tailed)        0.000  0.000 

Ni 
Pearson Correlation        1  0.918 ** 

Sig. (2-tailed)          0.000 

Pb 
Pearson Correlation          1 

Sig. (2-tailed)           

** Correlation is significant at the 0.01 level (2-tailed). 

The Pearson correlations between samples (made separately for each sample) com-

bined with hierarchical cluster analysis are presented in Figures 5–7. This type of graph is 

very useful  to  identify  the  similarities between  samples and  to determine how closely 

two or more variables are related. 

 

Figure 5. Pearson correlations between the soil samples  in terms of HMs content combined with 

hierarchical cluster analysis. 

The results of the interdependence between the analyzed soil samples, as reflected 

by the Pearson correlations and the hierarchical clusters presented graphically in Figure 

5, show the formation of three sample groups with similar characteristics. Among these, 

the majority cluster characterized by positive correlations with r ranging  from 0.776  to 

0.993 was observed, formed by samples Ss1, Ss2, Ss5, Ss6, Ss8, Ss9, Ss12, Ss13, and Ss16–

Ss18. Moreover, two other minor clusters formed by samples Ss3 and Ss11 (r = 0.982), and 

by Ss 7 and Ss10 (r = 0.993), respectively, are distinguished. At the same time, minor sim-

Figure 5. Pearson correlations between the soil samples in terms of HMs content combined with
hierarchical cluster analysis.

J. Fungi 2024, 10, x FOR PEER REVIEW  24  of  32 
 

 

ilarities were observed  in  the case of  the cluster  formed by Ss4-Ss14-Ss15 samples  (r = 

0.904 ÷ 0.926). 

 

Figure 6. Pearson correlations between  the mushroom cap subsamples  in  terms of HMs content 

combined with hierarchical cluster analysis. 

 

Figure 7. Pearson correlations between the mushroom stipe subsamples in terms of HMs content 

combined with hierarchical cluster analysis. 

Figure 6. Pearson correlations between the mushroom cap subsamples in terms of HMs content
combined with hierarchical cluster analysis.



J. Fungi 2024, 10, 844 27 of 35

J. Fungi 2024, 10, x FOR PEER REVIEW  24  of  32 
 

 

ilarities were observed  in  the case of  the cluster  formed by Ss4-Ss14-Ss15 samples  (r = 

0.904 ÷ 0.926). 

 

Figure 6. Pearson correlations between  the mushroom cap subsamples  in  terms of HMs content 

combined with hierarchical cluster analysis. 

 

Figure 7. Pearson correlations between the mushroom stipe subsamples in terms of HMs content 

combined with hierarchical cluster analysis. 

Figure 7. Pearson correlations between the mushroom stipe subsamples in terms of HMs content
combined with hierarchical cluster analysis.

The results of the interdependence between the analyzed soil samples, as reflected
by the Pearson correlations and the hierarchical clusters presented graphically in Figure 5,
show the formation of three sample groups with similar characteristics. Among these, the
majority cluster characterized by positive correlations with r ranging from 0.776 to 0.993
was observed, formed by samples Ss1, Ss2, Ss5, Ss6, Ss8, Ss9, Ss12, Ss13, and Ss16–Ss18.
Moreover, two other minor clusters formed by samples Ss3 and Ss11 (r = 0.982), and by Ss 7
and Ss10 (r = 0.993), respectively, are distinguished. At the same time, minor similarities were
observed in the case of the cluster formed by Ss4-Ss14-Ss15 samples (r = 0.904 ÷ 0.926).

Regarding the studied mushroom cap subsamples, the graph obtained based on
Pearson correlations and cluster analysis (Figure 6) shows the formation of two major and
three minor clusters, as follows: C4-C5-C9-C13-C15-C16-C17 (r = 0.900 ÷ 0.995), C1-C2-
C3-C10-C14 (r = 0.886 ÷ 0.996), C7-C8 (r = 0.995), C18-C19 (r = 0.935), and C6-C11-C12
(r = 0.889÷0.923), respectively.

In the case of the studied mushroom stipe subsamples, the Pearson correlations com-
bined with cluster analysis (Figure 7) highlight the formation of two major and four minor
clusters, as follows: S4-S9-S14-S15-S16 (r = 0.909÷0.987), S1-S5-S13-S17 (r = 0.902÷0.953),
S2-S6-S19 (r = 0.684÷0.955), S3-S12 (r = 0.959), S8-S10-S18 (r = 0.971÷0.983), and S7-S11
(r = 0.988), respectively.

4. Conclusions

Currently, soil pollution has become one of the most important and debated issues. The
presence of heavy metals in the soil is closely related to the deterioration of its quality and,
implicitly, of the quality of life, thus justifying concerns in the direction of reducing their
impact. This study revealed that the bioaccumulation of heavy metals in mushrooms and
the human body as well, over time, can lead to an increase in their concentration, compared
to the metal concentration in the soil (i.e., habitat of plants). This aspect is explained
by the fact that heavy metal compounds accumulate in living organisms (i.e., fungi and
humans) when they are assimilated and stored at a higher rate than are metabolized or



J. Fungi 2024, 10, 844 28 of 35

eliminated. The toxicity of a heavy metal clearly depends on its oxidation state, which
involves higher mobility in soil under acidic conditions, facilitating their transport and
spread in the environment and living organisms. In conclusion, the issue of the essentiality
and/or toxicity of metals become more complex when their applied/predominant levels
are considered, together with different soil conditions and fungal species. Therefore, the
elucidation of the biochemical behavior of the metals studied in the soil–mushroom–human
systems is extremely important, especially in the case of the two categories, children and the
elderly, due to severe disorders ranging from anemia to liver illness, digestive, neurological,
Alzheimer’s, or tumor diseases.

Taking into account the tendency of heavy metals to bioaccumulate in the soil and
implicitly in mushrooms with direct transfer into the human body (by ingestion, inhalation,
or dermal exposure), and the serious consequences on the health of all age groups, this
comprehensive study is the first scientific incursion with a direct alert on the population of
areas with touristic potential raised from the protected natural area according to national
and European legislation. On the other hand, these findings are useful for policymakers,
contributing to increasing public awareness about the risk of consumption of mushrooms
collected from different protected areas, even though these can be considered safe. Lastly,
the findings of this study will provide useful directions for future studies in terms of the
nutritional benefits of mushrooms related to health.

The analytical technique (ICP-MS) and tools used to assess the health effects of soil
and wild edible mushrooms are presented in this study. These include determination
of HMs (i.e., Cd, Cr, Cu, Ni, and Pb) in soil samples, index of geo-accumulation (Igeo),
contamination factor (CF), pollution loading index (PLI), chronic daily dose calculated for
three exposure pathways (ingestion, dermal, and inhalation) as well as hazard quotient of
non-cancer risks (HQ and HQtotal) and the carcinogenic risks (CR and HItotal). In terms of
mushroom samples, HMs content was determined by the same analytical method (ICP-MS)
and the calculations were made for the phytoremediation capacity (transfer factor (TF)
for cap and stipe subsamples) and health risk assessment: estimated daily intake (EDI),
carcinogenic risk induced by the lead content (CRPb), daily intake metals (DIM), and health
risk index (HRI). The exposure assessment was calculated for adults and children in the
case of both sample categories (i.e., soil and mushroom). This study implies, also, the mean
values in terms of species and collecting sites for all data.

The obtained results for HMs in soil samples were compared with recommended
values and European average values, highlighting Cd values that exceed the maximum
threshold established by the Romanian Order no. 756/1997 [63] and are 40 times higher
than the European average value [61]. In the case of Cu, the results exceed the European
average value in five collection sites, while for the other HMs (i.e., Cr, Ni, and Pb) the
values are under the normal threshold established by the Romanian Order no. 756/1997
and the European average value. The high values of Cd induced high values of Igeo
(i.e., >6.0), which include these soils in the extremely polluted class, and high values of CF
(i.e., >3.0), which indicate a moderate to considerable contamination. In terms of exposure
assessment, the chronic daily dose was found in order of ingestion > dermal > inhalation
exposure. The values for children were 10 times higher than for adults, demonstrating
that children are more exposed than adults. The same ratio between children and adults
was maintained in the case of hazard quotient of non-cancer risks and hazard index of
cancer risks.

The obtained results for HMs in mushroom samples (including cap and stipe sub-
samples) were compared with the maximum admitted limits established by the Romanian
Order no. 975/1998 (i.e., fresh vegetable category), the Commission Regulation (EC)
no. 2023/915 (i.e., Brassicaceae vegetables and wild mushrooms categories), and Codex
Alimentarius CODEX-STAN 193-1995 (i.e., Brassicaceae vegetables). Based on these values,
the phytoremediation capacity of mushrooms was determined using the transfer factor
for both subsamples (i.e., cap and stipe); the highest values were recorded in cap subsam-
ples of M. procera for Cr (115.648%) and stipe subsamples of S14 of B. edulis also for Cr
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(69.880%). The estimated daily intake values highlight that three of the analyzed species (i.e.,
A. campestris, A. mellea, and M. procera) induce high cadmium daily intake for children, but
for the adult category, all analyzed species induce high cadmium daily intake. In the case of
daily intake metals, M. procera recorded the maximum values for cadmium and chromium
and A. mellea recorded the maximum values for copper and lead, while for nickel, B. edulis
recorded the maximum value for both age categories. The worrying results of this study
are related to cadmium, because in all species (except A. bisporus), the HRI exceeded the
recommended level 1 for the children’s category; for the adult category, just A. campestris,
A. mellea, and M. procera exceeded this level.

The statistical processing of the obtained data is characterized by a high degree of
novelty due to the Pearson correlations between the samples/subsamples in terms of HMs
content combined with hierarchical cluster analysis. This type of analysis is very useful in
identifying the similarities between samples and in determining how closely two or more
variables (in this case samples) are related.

In Romania, wild mushrooms are considered as delicacies and people consume mush-
rooms from the analyzed species more often than they consume mushrooms grown in
controlled environments. More than that, if the mushrooms are harvested from forests
that are in or near the areas protected by law (i.e., natural parks, reservations, etc.), people
consider those mushrooms safer for consumption than those sold in markets. The authors
present these results as an alarm signal for citizens and authorities in order to prevent
people from harvesting and consuming those types of mushrooms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof10120844/s1. This manuscript is sustained by additional
useful information presented in the Supplementary Material S1—Soil samples and Supplementary
Material S2—Mushroom samples.
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