Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure
Abstract
:1. Introduction
2. Sporulation in S. cerevisiae Involves Meiosis and Spore Morphogenesis
3. Sporulation Is Regulated by Changes in Gene Expression
4. The Development of the Prospore Membrane Involves Initiation and Elongation
5. Removal of the Leading-Edge Protein Complex (LEP) Is Important for Prospore Membrane Closure
6. Exit from Meiosis II: Similarities and Differences with Mitotic Exit
7. Controlling the Timing of Meiotic Cytokinesis
8. Meiotic Exit Requires the Coordination of Prospore Membrane Closure and Spindle Disassembly
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neiman, A.M. Sporulation in the Budding Yeast Saccharomyces cerevisiae. Genetics 2011, 189, 737–765. [Google Scholar] [CrossRef] [PubMed]
- Börner, G.V.; Hochwagen, A.; MacQueen, A.J. Meiosis in budding yeast. Genetics 2023, 225, iyad125. [Google Scholar] [CrossRef]
- Mitchell, A.P. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 1994, 58, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Moens, P.B.; Rapport, E. Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J. Cell Biol. 1971, 50, 344–361. [Google Scholar] [CrossRef] [PubMed]
- Byers, B. Cytology of the Yeast Life Cycle; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1981; pp. 59–96. [Google Scholar]
- Neiman, A.M. Prospore Membrane Formation Defines a Developmentally Regulated Branch of the Secretory Pathway in Yeast. J. Cell Biol. 1998, 140, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Knop, M.; Strasser, K. Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. EMBO J. 2000, 19, 3657–3667. [Google Scholar] [CrossRef] [PubMed]
- Bajgier, B.K.; Malzone, M.; Nickas, M.; Neiman, A.M. SPO21 Is Required for Meiosis-specific Modification of the Spindle Pole Body in Yeast. Mol. Biol. Cell 2001, 12, 1611–1621. [Google Scholar] [CrossRef]
- Nickas, M.E.; Schwartz, C.; Neiman, A.M. Ady4p and Spo74p Are Components of the Meiotic Spindle Pole Body That Promote Growth of the Prospore Membrane in Saccharomyces cerevisiae. Eukaryot. Cell 2003, 2, 431–445. [Google Scholar] [CrossRef]
- Deng, C.; Saunders, W.S. ADY1, A Novel Gene Required for Prospore Membrane Formation at Selected Spindle Poles in Saccharomyces cerevisiae. Mol. Biol. Cell 2001, 12, 2646–2659. [Google Scholar] [CrossRef]
- Jungbluth, M.; Mösch, H.-U.; Taxis, C. Acetate Regulation of Spore Formation Is under the Control of the Ras/Cyclic AMP/Protein Kinase A Pathway and Carbon Dioxide in Saccharomyces cerevisiae. Eukaryot. Cell 2012, 11, 1021–1032. [Google Scholar] [CrossRef]
- Mathieson, E.M.; Suda, Y.; Nickas, M.; Snydsman, B.; Davis, T.N.; Muller, E.G.D.; Neiman, A.M. Vesicle Docking to the Spindle Pole Body Is Necessary to Recruit the Exocyst During Membrane Formation in Saccharomyces cerevisiae. Mol. Biol. Cell 2010, 21, 3693–3707. [Google Scholar] [CrossRef]
- Schaerer, F.; Morgan, G.; Winey, M.; Philippsen, P. Cnm67p Is a Spacer Protein of the Saccharomyces cerevisiae Spindle Pole Body Outer Plaque. Mol. Biol. Cell 2001, 12, 2519–2533. [Google Scholar] [CrossRef]
- Klapholz, S.; Esposito, R.E. Recombination and Chromosome Segregation During the Single Division Meiosis in spo12–1 and spo13–1 Diploids. Genetics 1980, 96, 589–611. [Google Scholar] [CrossRef]
- Nickas, M.E.; Diamond, A.E.; Yang, M.-J.; Neiman, A.M. Regulation of Spindle Pole Function by an Intermediary Metabolite. Mol. Biol. Cell 2004, 15, 2606–2616. [Google Scholar] [CrossRef] [PubMed]
- Taxis, C.; Keller, P.; Kavagiou, Z.; Jensen, L.J.; Colombelli, J.; Bork, P.; Stelzer, E.H.K.; Knop, M. Spore number control and breeding in Saccharomyces cerevisiae. J. Cell Biol. 2005, 171, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Renicke, C.; Allmann, A.-K.; Lutz, A.P.; Heimerl, T.; Taxis, C. The Mitotic Exit Network Regulates Spindle Pole Body Selection During Sporulation of Saccharomyces cerevisiae. Genetics 2017, 206, 919–937. [Google Scholar] [CrossRef]
- Moreno-Borchart, A.C.; Strasser, K.; Finkbeiner, M.G.; Shevchenko, A.; Shevchenko, A.; Knop, M. Prospore membrane formation linked to the leading edge protein (LEP) coat assembly. EMBO J. 2001, 20, 6946–6957. [Google Scholar] [CrossRef]
- Nickas, M.E.; Neiman, A.M. Ady3p Links Spindle Pole Body Function to Spore Wall Synthesis in Saccharomyces cerevisiae. Genetics 2002, 160, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Bardin, A.J.; Amon, A. MEN and SIN: What’s the difference? Nat. Rev. Mol. Cell Biol. 2001, 2, 815–826. [Google Scholar] [CrossRef]
- Paulissen, S.M.; Hunt, C.A.; Seitz, B.C.; Slubowski, C.J.; Yu, Y.; Mucelli, X.; Truong, D.; Wallis, Z.; Nguyen, H.T.; Newman-Toledo, S.; et al. A Noncanonical Hippo Pathway Regulates Spindle Disassembly and Cytokinesis During Meiosis in Saccharomyces cerevisiae. Genetics 2020, 216, 447–462. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Chen, R.-H.; Cheng, Y.-H.; Wang, C.-W. Lipid droplets are central organelles for meiosis II progression during yeast sporulation. Mol. Biol. Cell 2017, 28, 440–451. [Google Scholar] [CrossRef]
- Coluccio, A.; Bogengruber, E.; Conrad, M.N.; Dresser, M.E.; Briza, P.; Neiman, A.M. Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae. Eukaryot. Cell 2004, 3, 1464–1475. [Google Scholar] [CrossRef] [PubMed]
- Sing, T.L.; Brar, G.A.; Ünal, E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu. Rev. Genet. 2022, 56, 89–112. [Google Scholar] [CrossRef]
- Durant, M.; Roesner, J.M.; Mucelli, X.; Slubowski, C.J.; Klee, E.; Seitz, B.C.; Wallis, Z.; Huang, L.S. The Smk1 MAPK and Its Activator, Ssp2, Are Required for Late Prospore Membrane Development in Sporulating Saccharomyces cerevisiae. J. Fungi 2021, 7, 53. [Google Scholar] [CrossRef]
- Nakanishi, H.; de los Santos, P.; Neiman, A.M. Positive and Negative Regulation of a SNARE Protein by Control of Intracellular Localization. Mol. Biol. Cell 2004, 15, 1802–1815. [Google Scholar] [CrossRef] [PubMed]
- Parodi, E.M.; Baker, C.S.; Tetzlaff, C.; Villahermosa, S.; Huang, L.S. SPO71 Mediates Prospore Membrane Size and Maturation in Saccharomyces cerevisiae. Eukaryot. Cell 2012, 11, 1191–1200. [Google Scholar] [CrossRef]
- Lynn, R.R.; Magee, P.T. Development of the spore wall during ascospore formation in Saccharomyces cerevisiae. J. Cell Biol. 1970, 44, 688–692. [Google Scholar] [CrossRef]
- Briza, P.; Ellinger, A.; Winkler, G.; Breitenbach, M. Characterization of a DL-dityrosine-containing macromolecule from yeast ascospore walls. J. Biol. Chem. 1990, 265, 15118–15123. [Google Scholar] [CrossRef] [PubMed]
- Lesage, G.; Bussey, H. Cell Wall Assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2006, 70, 317–343. [Google Scholar] [CrossRef]
- Tachikawa, H.; Bloecher, A.; Tatchell, K.; Neiman, A.M. A Gip1p–Glc7p phosphatase complex regulates septin organization and spore wall formation. J. Cell Biol. 2001, 155, 797–808. [Google Scholar] [CrossRef]
- Huang, L.S.; Doherty, H.K.; Herskowitz, I. The Smk1p MAP kinase negatively regulates Gsc2p, a 1,3-β-glucan synthase, during spore wall morphogenesis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2005, 102, 12431–12436. [Google Scholar] [CrossRef]
- Lin, C.P.-C.; Kim, C.; Smith, S.O.; Neiman, A.M. A Highly Redundant Gene Network Controls Assembly of the Outer Spore Wall in S. cerevisiae. PLoS Genet. 2013, 9, e1003700. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R.; Grabińska, K.; Guan, Z.; Sessa, W.C.; Neiman, A.M. Long-Chain Polyprenols Promote Spore Wall Formation in Saccharomyces cerevisiae. Genetics 2017, 207, 1371–1386. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, M.D.; Cheung, S.W.T.; Lee, K.Y.; Moffat, J.; Meneghini, M.D. Developmentally Programmed Nuclear Destruction during Yeast Gametogenesis. Dev. Cell 2012, 23, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, M.D.; Meneghini, M.D. Developmental Coordination of Gamete Differentiation with Programmed Cell Death in Sporulating Yeast. Eukaryot. Cell 2015, 14, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Orlean, P. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall. Genetics 2012, 192, 775–818. [Google Scholar] [CrossRef] [PubMed]
- Rij, N.J.W.K. Ultrastructure of the ascospores of the new yeast genus Sporopachydermia Rodrigues de Miranda. Antonie Leeuwenhoek 1978, 44, 451–456. [Google Scholar] [CrossRef]
- Smits, G.J.; van den Ende, H.; Klis, F.M. Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 2001, 147, 781–794. [Google Scholar] [CrossRef]
- Coluccio, A.E.; Rodriguez, R.K.; Kernan, M.J.; Neiman, A.M. The Yeast Spore Wall Enables Spores to Survive Passage through the Digestive Tract of Drosophila. PLoS ONE 2008, 3, e2873. [Google Scholar] [CrossRef]
- Briza, P.; Ellinger, A.; Winkler, G.; Breitenbach, M. Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J. Biol. Chem. 1988, 263, 11569–11574. [Google Scholar] [CrossRef]
- Pammer, M.; Briza, P.; Ellinger, A.; Schuster, T.; Stucka, R.; Feldmann, H.; Breitenbach, M. DIT101 (CSD2, CAL1), a cell cycle-regulated yeast gene required for synthesis of chitin in cell walls and chitosan in spore walls. Yeast 1992, 8, 1089–1099. [Google Scholar] [CrossRef]
- Barve, G.; Manjithaya, R. Cross-talk between autophagy and sporulation in Saccharomyces cerevisiae. Yeast 2021, 38, 401–413. [Google Scholar] [CrossRef]
- Deutschbauer, A.M.; Williams, R.M.; Chu, A.M.; Davis, R.W. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2002, 99, 15530–15535. [Google Scholar] [CrossRef] [PubMed]
- Enyenihi, A.H.; Saunders, W.S. Large-Scale Functional Genomic Analysis of Sporulation and Meiosis in Saccharomyces cerevisiae. Genetics 2003, 163, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Piekarska, I.; Kucharczyk, R.; Mickowska, B.; Rytka, J.; Rempola, B. Mutants of the Saccharomyces cerevisiae VPS genes CCZ1 and YPT7 are blocked in different stages of sporulation. Eur. J. Cell Biol. 2010, 89, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Dalgaard, J.Z.; Millar, J.B.A.; Arumugam, P. The Rim15-Endosulfine-PP2ACdc55 Signalling Module Regulates Entry into Gametogenesis and Quiescence via Distinct Mechanisms in Budding Yeast. PLoS Genet. 2014, 10, e1004456. [Google Scholar] [CrossRef] [PubMed]
- Straub, M.; Bredschneider, M.; Thumm, M. AUT3, a serine/threonine kinase gene, is essential for autophagocytosis in Saccharomyces cerevisiae. J. Bacteriol. 1997, 179, 3875–3883. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.-P.; Guo, Y.-S.; Hu, Y.; Liu, W.-X.; Wang, Q.; Wang, Y.-T.; Yu, H.-Y.; Tang, C.-M.; Yang, J.; Zhou, T.; et al. Distinct temporal requirements for autophagy and the proteasome in yeast meiosis. Autophagy 2016, 12, 671–688. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, R.; Feng, W.; Tsuchiya, D.; Ballew, O.; Li, J.; Denic, V.; Lacefield, S. Autophagy of an Amyloid-like Translational Repressor Regulates Meiotic Exit. Dev. Cell 2020, 52, 141–151.e5. [Google Scholar] [CrossRef] [PubMed]
- Berchowitz, L.E.; Gajadhar, A.S.; van Werven, F.J.; De Rosa, A.A.; Samoylova, M.L.; Brar, G.A.; Xu, Y.; Xiao, C.; Futcher, B.; Weissman, J.S.; et al. A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern. Gene Dev. 2013, 27, 2147–2163. [Google Scholar] [CrossRef]
- Berchowitz, L.E.; Kabachinski, G.; Walker, M.R.; Carlile, T.M.; Gilbert, W.V.; Schwartz, T.U.; Amon, A. Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis. Cell 2015, 163, 406–418. [Google Scholar] [CrossRef]
- Carpenter, K.; Bell, R.B.; Yunus, J.; Amon, A.; Berchowitz, L.E. Phosphorylation-Mediated Clearance of Amyloid-like Assemblies in Meiosis. Dev. Cell 2018, 45, 392–405.e6. [Google Scholar] [CrossRef]
- Zhang, R.; Feng, W.; Qian, S.; Li, S.; Wang, F. Regulation of Rim4 distribution, function, and stability during meiosis by PKA, Cdc14, and 14-3-3 proteins. Cell Rep. 2023, 42, 113052. [Google Scholar] [CrossRef]
- Zhang, R.; Feng, W.; Qian, S.; Wang, F. Autophagy-mediated surveillance of Rim4-mRNA interaction safeguards programmed meiotic translation. Cell Rep. 2023, 42, 113051. [Google Scholar] [CrossRef]
- Feng, W.; Argüello-Miranda, O.; Qian, S.; Wang, F. Cdc14 spatiotemporally dephosphorylates Atg13 to activate autophagy during meiotic divisions. J. Cell Biol. 2022, 221, e202107151. [Google Scholar] [CrossRef]
- Kassir, Y.; Granot, D.; Simchen, G. IME1, a positive regulator gene of meiosis in S. cerevisiae. Cell 1988, 52, 853–862. [Google Scholar] [CrossRef]
- Mitchell, A.P.; Driscoll, S.E.; Smith, H.E. Positive Control of Sporulation-Specific Genes by the IME1 and IME2 Products in Saccharomyces cerevisiae. Mol. Cell. Biol. 1990, 10, 2104–2110. [Google Scholar] [CrossRef]
- Smith, H.E.; Su, S.S.Y.; Neigeborn, L.; Driscoll, S.E.; Mitchell, A.P. Role of IME1 Expression in Regulation of Meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1990, 10, 6103–6113. [Google Scholar] [CrossRef] [PubMed]
- Pak, J.; Segall, J. Regulation of the Premiddle and Middle Phases of Expression of the NDT80 Gene during Sporulation of Saccharomyces cerevisiae. Mol. Cell. Biol. 2002, 22, 6417–6429. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Herskowitz, I. Gametogenesis in Yeast Is Regulated by a Transcriptional Cascade Dependent on Ndt80. Mol. Cell 1998, 1, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ajimura, M.; Padmore, R.; Klein, C.; Kleckner, N. NDT80, a Meiosis-Specific Gene Required for Exit from Pachytene in Saccharomyces cerevisiae. Mol. Cell. Biol. 1995, 15, 6572–6581. [Google Scholar] [CrossRef]
- Winter, E. The Sum1/Ndt80 Transcriptional Switch and Commitment to Meiosis in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2012, 76, 1–15. [Google Scholar] [CrossRef]
- Xie, J.; Pierce, M.; Gailus-Durner, V.; Wagner, M.; Winter, E.; Vershon, A.K. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J. 1999, 18, 6448–6454. [Google Scholar] [CrossRef]
- Lindgren, A.; Bungard, D.; Pierce, M.; Xie, J.; Vershon, A.; Winter, E. The pachytene checkpoint in Saccharomyces cerevisiae requires the Sum1 transcriptional repressor. EMBO J. 2000, 19, 6489–6497. [Google Scholar] [CrossRef]
- Pierce, M.; Benjamin, K.R.; Montano, S.P.; Georgiadis, M.M.; Winter, E.; Vershon, A.K. Sum1 and Ndt80 Proteins Compete for Binding to Middle Sporulation Element Sequences That Control Meiotic Gene Expression. Mol. Cell. Biol. 2003, 23, 4814–4825. [Google Scholar] [CrossRef]
- Sopko, R.; Raithatha, S.; Stuart, D. Phosphorylation and Maximal Activity of Saccharomyces cerevisiae Meiosis-Specific Transcription Factor Ndt80 Is Dependent on Ime2. Mol. Cell. Biol. 2002, 22, 7024–7040. [Google Scholar] [CrossRef]
- Lo, H.-C.; Wan, L.; Rosebrock, A.; Futcher, B.; Hollingsworth, N.M. Cdc7-Dbf4 Regulates NDT80 Transcription as Well as Reductional Segregation during Budding Yeast Meiosis. Mol. Biol. Cell 2008, 19, 4956–4967. [Google Scholar] [CrossRef]
- Moore, M.; Shin, M.E.; Bruning, A.; Schindler, K.; Vershon, A.; Winter, E. Arg-Pro-X-Ser/Thr Is a Consensus Phosphoacceptor Sequence for the Meiosis-Specific Ime2 Protein Kinase in Saccharomyces cerevisiae. Biochemistry 2007, 46, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.T.; Bungard, D.; Shin, M.E.; Moore, M.; Winter, E. The Ime2 Protein Kinase Enhances the Disassociation of the Sum1 Repressor from Middle Meiotic Promoters. Mol. Cell. Biol. 2009, 29, 4352–4362. [Google Scholar] [CrossRef] [PubMed]
- Corbi, D.; Sunder, S.; Weinreich, M.; Skokotas, A.; Johnson, E.S.; Winter, E. Multisite Phosphorylation of the Sum1 Transcriptional Repressor by S-Phase Kinases Controls Exit from Meiotic Prophase in Yeast. Mol. Cell. Biol. 2014, 34, 2249–2263. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, K.R.; Zhang, C.; Shokat, K.M.; Herskowitz, I. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Gene Dev. 2003, 17, 1524–1539. [Google Scholar] [CrossRef] [PubMed]
- Brar, G.A.; Yassour, M.; Friedman, N.; Regev, A.; Ingolia, N.T.; Weissman, J.S. High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling. Science 2012, 335, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhang, K.; Sternglanz, R.; Neiman, A.M. Predicted RNA Binding Proteins Pes4 and Mip6 Regulate mRNA Levels, Translation, and Localization during Sporulation in Budding Yeast. Mol. Cell. Biol. 2017, 37, e00408-16. [Google Scholar] [CrossRef] [PubMed]
- Nunez, G.; Zhang, K.; Mogbheli, K.; Hollingsworth, N.M.; Neiman, A.M. Recruitment of the lipid kinase Mss4 to the meiotic spindle pole promotes prospore membrane formation in Saccharomyces cerevisiae. Mol. Biol. Cell 2023, 34, ar33. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Neiman, A.M. VPS13 regulates membrane morphogenesis during sporulation in Saccharomyces cerevisiae. J. Cell Sci. 2012, 125, 3004–3011. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Okumura, Y.; Tachikawa, H.; Neiman, A.M. SPO71 Encodes a Developmental Stage-Specific Partner for Vps13 in Saccharomyces cerevisiae. Eukaryot. Cell 2013, 12, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Parodi, E.M.; Roesner, J.M.; Huang, L.S. SPO73 and SPO71 Function Cooperatively in Prospore Membrane Elongation during Sporulation in Saccharomyces cerevisiae. PLoS ONE 2015, 10, e0143571. [Google Scholar] [CrossRef]
- Okumura, Y.; Nakamura, T.S.; Tanaka, T.; Inoue, I.; Suda, Y.; Takahashi, T.; Nakanishi, H.; Nakamura, S.; Gao, X.-D.; Tachikawa, H. The Dysferlin Domain-Only Protein, Spo73, Is Required for Prospore Membrane Extension in Saccharomyces cerevisiae. mSphere 2015, 1, e00038-15. [Google Scholar] [CrossRef]
- Park, J.-S.; Thorsness, M.K.; Policastro, R.; McGoldrick, L.L.; Hollingsworth, N.M.; Thorsness, P.E.; Neiman, A.M. Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites. Mol. Biol. Cell 2016, 27, 2435–2449. [Google Scholar] [CrossRef]
- Nakamura, T.S.; Suda, Y.; Muneshige, K.; Fujieda, Y.; Okumura, Y.; Inoue, I.; Tanaka, T.; Takahashi, T.; Nakanishi, H.; Gao, X.-D.; et al. Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genet. 2021, 17, e1009727. [Google Scholar] [CrossRef]
- Rabitsch, K.P.; Tóth, A.; Gálová, M.; Schleiffer, A.; Schaffner, G.; Aigner, E.; Rupp, C.; Penkner, A.M.; Moreno-Borchart, A.C.; Primig, M.; et al. A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr. Biol. 2001, 11, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.W.; Mendrola, J.M.; Audhya, A.; Singh, S.; Keleti, D.; DeWald, D.B.; Murray, D.; Emr, S.D.; Lemmon, M.A. Genome-Wide Analysis of Membrane Targeting by S. cerevisiae Pleckstrin Homology Domains. Mol. Cell 2004, 13, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Dziurdzik, S.K.; Conibear, E. The Vps13 Family of Lipid Transporters and Its Role at Membrane Contact Sites. Int. J. Mol. Sci. 2021, 22, 2905. [Google Scholar] [CrossRef] [PubMed]
- Leonzino, M.; Reinisch, K.M.; Camilli, P.D. Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2021, 1866, 159003. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.B.; Peter, A.T.J.; Walter, P.; Kornmann, B. ER–mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. J. Cell Biol. 2015, 210, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Bankaitis, V.A.; Johnson, L.M.; Emr, S.D. Isolation of yeast mutants defective in protein targeting to the vacuole. Proc. Natl. Acad. Sci. USA 1986, 83, 9075–9079. [Google Scholar] [CrossRef] [PubMed]
- De, M.; Oleskie, A.N.; Ayyash, M.; Dutta, S.; Mancour, L.; Abazeed, M.E.; Brace, E.J.; Skiniotis, G.; Fuller, R.S. The Vps13p–Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion. J. Cell Biol. 2017, 216, 425–439. [Google Scholar] [CrossRef]
- Li, P.; Lees, J.A.; Lusk, C.P.; Reinisch, K.M. Cryo-EM reconstruction of a VPS13 fragment reveals a long groove to channel lipids between membranes. J. Cell Biol. 2020, 219, e202001161. [Google Scholar] [CrossRef]
- Kumar, N.; Leonzino, M.; Hancock-Cerutti, W.; Horenkamp, F.A.; Li, P.; Lees, J.A.; Wheeler, H.; Reinisch, K.M.; Camilli, P.D. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 2018, 217, 3625–3639. [Google Scholar] [CrossRef]
- Lees, J.A.; Reinisch, K.M. Inter-organelle lipid transfer: A channel model for Vps13 and chorein-N motif proteins. Curr. Opin. Cell Biol. 2020, 65, 66–71. [Google Scholar] [CrossRef]
- Fares, H.; Goetsch, L.; Pringle, J.R. Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. J. Cell Biol. 1996, 132, 399–411. [Google Scholar] [CrossRef]
- Taxis, C.; Maeder, C.; Reber, S.; Rathfelder, N.; Miura, K.; Greger, K.; Stelzer, E.H.K.; Knop, M. Dynamic Organization of the Actin Cytoskeleton During Meiosis and Spore Formation in Budding Yeast. Traffic 2006, 7, 1628–1642. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; DeRisi, J.; Eisen, M.; Mulholland, J.; Botstein, D.; Brown, P.O.; Herskowitz, I. The Transcriptional Program of Sporulation in Budding Yeast. Science 1998, 282, 699–705. [Google Scholar] [CrossRef]
- McMurray, M.A.; Thorner, J. Septin Stability and Recycling during Dynamic Structural Transitions in Cell Division and Development. Curr. Biol. 2008, 18, 1203–1208. [Google Scholar] [CrossRef]
- Virgilio, C.D.; DeMarini, D.J.; Pringle, J.R. SPR28, a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells. Microbiology 1996, 142, 2897–2905. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Finnigan, G.C.; Heasley, L.R.; Sterling, S.M.; Aggarwal, A.; Pearson, C.G.; Nogales, E.; McMurray, M.A.; Thorner, J. Assembly, molecular organization, and membrane-binding properties of development-specific septins. J. Cell Biol. 2016, 212, 515–529. [Google Scholar] [CrossRef]
- Hussain, A.; Nguyen, V.T.; Reigan, P.; McMurray, M. Evolutionary degeneration of septins into pseudoGTPases: Impacts on a hetero-oligomeric assembly interface. Front. Cell Dev. Biol. 2023, 11, 1296657. [Google Scholar] [CrossRef] [PubMed]
- Heasley, L.R.; McMurray, M.A. Roles of septins in prospore membrane morphogenesis and spore wall assembly in Saccharomyces cerevisiae. Mol. Biol. Cell 2016, 27, 442–450. [Google Scholar] [CrossRef]
- Padmore, R.; Cao, L.; Kleckner, N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 1991, 66, 1239–1256. [Google Scholar] [CrossRef]
- Heasley, L.R.; Singer, E.; Cooperman, B.J.; McMurray, M.A. Saccharomyces spores are born prepolarized to outgrow away from spore–spore connections and penetrate the ascus wall. Yeast 2021, 38, 90–101. [Google Scholar] [CrossRef]
- Joseph-Strauss, D.; Zenvirth, D.; Simchen, G.; Barkai, N. Spore germination in Saccharomyces cerevisiae: Global gene expression patterns and cell cycle landmarks. Genome Biol. 2007, 8, R241. [Google Scholar] [CrossRef]
- Nakamura, T.S.; Numajiri, Y.; Okumura, Y.; Hidaka, J.; Tanaka, T.; Inoue, I.; Suda, Y.; Takahashi, T.; Nakanishi, H.; Gao, X.-D.; et al. Dynamic localization of a yeast development–specific PP1 complex during prospore membrane formation is dependent on multiple localization signals and complex formation. Mol. Biol. Cell 2017, 28, 3881–3895. [Google Scholar] [CrossRef]
- Suda, Y.; Tachikawa, H.; Suda, T.; Kurokawa, K.; Nakano, A.; Irie, K. Remodeling of the secretory pathway is coordinated with de novo membrane formation in budding yeast gametogenesis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Lam, C.; Santore, E.; Lavoie, E.; Needleman, L.; Fiacco, N.; Kim, C.; Neiman, A.M. A Visual Screen of Protein Localization during Sporulation Identifies New Components of Prospore Membrane-Associated Complexes in Budding Yeast. Eukaryot. Cell 2014, 13, 383–391. [Google Scholar] [CrossRef]
- Maier, P.; Rathfelder, N.; Finkbeiner, M.G.; Taxis, C.; Mazza, M.; Panse, S.L.; Haguenauer-Tsapis, R.; Knop, M. Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBO J. 2007, 26, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Maier, P.; Rathfelder, N.; Maeder, C.I.; Colombelli, J.; Stelzer, E.H.; Knop, M. The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO J. 2008, 27, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Suda, Y.; Nakanishi, H.; Mathieson, E.M.; Neiman, A.M. Alternative Modes of Organellar Segregation during Sporulation in Saccharomyces cerevisiae. Eukaryot. Cell 2007, 6, 2009–2017. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.E.; Park, J.-S.; Inoue, I.; Tachikawa, H.; Neiman, A.M. The Anaphase Promoting Complex Targeting Subunit Ama1 Links Meiotic Exit to Cytokinesis during Sporulation in Saccharomyces cerevisiae. Mol. Biol. Cell 2009, 20, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Paulissen, S.M.; Slubowski, C.J.; Roesner, J.M.; Huang, L.S. Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae. Genetics 2016, 203, 1203–1216. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Florczyk, M.; McDonough, K.; Nag, D. SSP2, a sporulation-specific gene necessary for outer spore wall assembly in the yeast Saccharomyces cerevisiae. Mol. Genet. Genom. 2002, 267, 348–358. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.M.; Wagner, M.; Dunham, M.J.; Shin, M.E.; Ahmed, N.T.; Winter, E. The Ras/cAMP Pathway and the CDK-like Kinase Ime2 Regulate the MAPK Smk1 and Spore Morphogenesis in Saccharomyces cerevisiae. Genetics 2009, 181, 511–523. [Google Scholar] [CrossRef]
- Whinston, E.; Omerza, G.; Singh, A.; Tio, C.W.; Winter, E. Activation of the Smk1 Mitogen-Activated Protein Kinase by Developmentally Regulated Autophosphorylation. Mol. Cell. Biol. 2013, 33, 688–700. [Google Scholar] [CrossRef]
- Tio, C.W.; Omerza, G.; Sunder, S.; Winter, E. Autophosphorylation of the Smk1 MAPK is spatially and temporally regulated by Ssp2 during meiotic development in yeast. Mol. Biol. Cell 2015, 26, 3546–3555. [Google Scholar] [CrossRef]
- Tio, C.W.; Omerza, G.; Phillips, T.; Lou, H.J.; Turk, B.E.; Winter, E. Ssp2 Binding Activates the Smk1 Mitogen-Activated Protein Kinase. Mol. Cell. Biol. 2017, 37, e00607-16. [Google Scholar] [CrossRef]
- Phillips, T.; Tio, C.W.; Omerza, G.; Rimal, A.; Lokareddy, R.K.; Cingolani, G.; Winter, E. RNA Recognition-like Motifs Activate a Mitogen-Activated Protein Kinase. Biochemistry 2018, 57, 6878–6887. [Google Scholar] [CrossRef] [PubMed]
- Grandin, N.; Reed, S.I. Differential Function and Expression of Saccharomyces cerevisiae B-type Cyclins in Mitosis and Meiosis. Mol. Cell. Biol. 1993, 13, 2113–2125. [Google Scholar] [CrossRef] [PubMed]
- Dahmann, C.; Futcher, B. Specialization of B-type cyclins for mitosis or meiosis in S. cerevisiae. Genetics 1995, 140, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Dirick, L.; Goetsch, L.; Ammerer, G.; Byers, B. Regulation of Meiotic S Phase by Ime2 and a Clb5,6-Associated Kinase in Saccharomyces cerevisiae. Science 1998, 281, 1854–1857. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.E.; Mitchell, A.P. A Transcriptional Cascade Governs Entry into Meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1989, 9, 2142–2152. [Google Scholar] [CrossRef] [PubMed]
- Schindler, K.; Winter, E. Phosphorylation of Ime2 Regulates Meiotic Progression in Saccharomyces cerevisiae. J. Biol. Chem. 2006, 281, 18307–18316. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, A.M.; Lacefield, S. CDK Regulation of Meiosis: Lessons from S. cerevisiae and S. pombe. Genes 2020, 11, 723. [Google Scholar] [CrossRef]
- Slubowski, C.J.; Paulissen, S.M.; Huang, L.S. The GCKIII Kinase Sps1 and the 14-3-3 Isoforms, Bmh1 and Bmh2, Cooperate to Ensure Proper Sporulation in Saccharomyces cerevisiae. PLoS ONE 2014, 9, e113528. [Google Scholar] [CrossRef]
- Weiss, E.L. Mitotic Exit and Separation of Mother and Daughter Cells. Genetics 2012, 192, 1165–1202. [Google Scholar] [CrossRef] [PubMed]
- Matellán, L.; Monje-Casas, F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons from Saccharomyces cerevisiae. Genes 2020, 11, 195. [Google Scholar] [CrossRef] [PubMed]
- Mah, A.S.; Jang, J.; Deshaies, R.J. Protein kinase Cdc15 activates the Dbf2-Mob1 kinase complex. Proc. Natl. Acad. Sci. USA 2001, 98, 7325–7330. [Google Scholar] [CrossRef] [PubMed]
- Visintin, R.; Amon, A. Regulation of the Mitotic Exit Protein Kinases Cdc15 and Dbf2. Mol. Biol. Cell 2001, 12, 2961–2974. [Google Scholar] [CrossRef]
- D’Aquino, K.E.; Monje-Casas, F.; Paulson, J.; Reiser, V.; Charles, G.M.; Lai, L.; Shokat, K.M.; Amon, A. The Protein Kinase Kin4 Inhibits Exit from Mitosis in Response to Spindle Position Defects. Mol. Cell 2005, 19, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Schiebel, E. Kin4 Kinase Delays Mitotic Exit in Response to Spindle Alignment Defects. Mol. Cell 2005, 19, 209–221. [Google Scholar] [CrossRef]
- Maekawa, H.; Priest, C.; Lechner, J.; Pereira, G.; Schiebel, E. The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal. J. Cell Biol. 2007, 179, 423–436. [Google Scholar] [CrossRef]
- Chan, L.Y.; Amon, A. Spindle Position Is Coordinated with Cell-Cycle Progression through Establishment of Mitotic Exit-Activating and -Inhibitory Zones. Mol. Cell 2010, 39, 444–454. [Google Scholar] [CrossRef]
- Bertazzi, D.T.; Kurtulmus, B.; Pereira, G. The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4. J. Cell Biol. 2011, 193, 1033–1048. [Google Scholar] [CrossRef]
- Rock, J.M.; Amon, A. Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit. Genes Dev. 2011, 25, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Falk, J.E.; Campbell, I.W.; Joyce, K.; Whalen, J.; Seshan, A.; Amon, A. LTE1 promotes exit from mitosis by multiple mechanisms. Mol. Biol. Cell 2016, 27, 3991–4001. [Google Scholar] [CrossRef] [PubMed]
- Gruneberg, U.; Campbell, K.; Simpson, C.; Grindlay, J.; Schiebel, E. Nud1p links astral microtubule organization and the control of exit from mitosis. EMBO J. 2000, 19, 6475–6488. [Google Scholar] [CrossRef] [PubMed]
- Luca, F.C.; Mody, M.; Kurischko, C.; Roof, D.M.; Giddings, T.H.; Winey, M. Saccharomyces cerevisiae Mob1p Is Required for Cytokinesis and Mitotic Exit. Mol. Cell. Biol. 2001, 21, 6972–6983. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.M.; Lim, D.; Stach, L.; Ogrodowicz, R.W.; Keck, J.M.; Jones, M.H.; Wong, C.C.L.; Yates, J.R., III; Winey, M.; Smerdon, S.J.; et al. Activation of the Yeast Hippo Pathway by Phosphorylation-Dependent Assembly of Signaling Complexes. Science 2013, 340, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Visintin, R.; Craig, K.; Hwang, E.S.; Prinz, S.; Tyers, M.; Amon, A. The Phosphatase Cdc14 Triggers Mitotic Exit by Reversal of Cdk-Dependent Phosphorylation. Mol. Cell 1998, 2, 709–718. [Google Scholar] [CrossRef]
- Shou, W.; Seol, J.H.; Shevchenko, A.; Baskerville, C.; Moazed, D.; Chen, Z.W.S.; Jang, J.; Shevchenko, A.; Charbonneau, H.; Deshaies, R.J. Exit from Mitosis Is Triggered by Tem1-Dependent Release of the Protein Phosphatase Cdc14 from Nucleolar RENT Complex. Cell 1999, 97, 233–244. [Google Scholar] [CrossRef]
- Mohl, D.A.; Huddleston, M.J.; Collingwood, T.S.; Annan, R.S.; Deshaies, R.J. Dbf2–Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. J. Cell Biol. 2009, 184, 527–539. [Google Scholar] [CrossRef]
- Manzoni, R.; Montani, F.; Visintin, C.; Caudron, F.; Ciliberto, A.; Visintin, R. Oscillations in Cdc14 release and sequestration reveal a circuit underlying mitotic exit. J. Cell Biol. 2010, 190, 209–222. [Google Scholar] [CrossRef]
- Stegmeier, F.; Amon, A. Closing mitosis: The Functions of the Cdc14 Phosphatase and Its Regulation. Annu. Rev. Genet. 2004, 38, 203–232. [Google Scholar] [CrossRef]
- Visintin, R.; Hwang, E.S.; Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 1999, 398, 818–823. [Google Scholar] [CrossRef]
- Rock, J.M.; Amon, A. The FEAR network. Curr. Biol. 2009, 19, R1063–R1068. [Google Scholar] [CrossRef]
- Marston, A.L.; Lee, B.H.; Amon, A. The Cdc14 Phosphatase and the FEAR Network Control Meiotic Spindle Disassembly and Chromosome Segregation. Dev. Cell 2003, 4, 711–726. [Google Scholar] [CrossRef]
- Azzam, R.; Chen, S.L.; Shou, W.; Mah, A.S.; Alexandru, G.; Nasmyth, K.; Annan, R.S.; Carr, S.A.; Deshaies, R.J. Phosphorylation by Cyclin B-Cdk Underlies Release of Mitotic Exit Activator Cdc14 from the Nucleolus. Science 2004, 305, 516–519. [Google Scholar] [CrossRef]
- Queralt, E.; Lehane, C.; Novak, B.; Uhlmann, F. Downregulation of PP2ACdc55 Phosphatase by Separase Initiates Mitotic Exit in Budding Yeast. Cell 2006, 125, 719–732. [Google Scholar] [CrossRef]
- D’Amours, D.; Stegmeier, F.; Amon, A. Cdc14 and Condensin Control the Dissolution of Cohesin-Independent Chromosome Linkages at Repeated DNA. Cell 2004, 117, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.; Higuchi, T.; Katis, V.L.; Uhlmann, F. Cdc14 Phosphatase Induces rDNA Condensation and Resolves Cohesin-Independent Cohesion during Budding Yeast Anaphase. Cell 2004, 117, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Torres-Rosell, J.; Machín, F.; Jarmuz, A.; Aragón, L. Nucleolar segregation lags behind the rest of the genome and requires Cdc14p activation by the FEAR network. Cell Cycle 2004, 3, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.W.; Zhou, X.; Amon, A. The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components. eLife 2019, 8, e41139. [Google Scholar] [CrossRef] [PubMed]
- Jaspersen, S.L.; Morgan, D.O. Cdc14 activates Cdc15 to promote mitotic exit in budding yeast. Curr. Biol. 2000, 10, 615–618. [Google Scholar] [CrossRef] [PubMed]
- König, C.; Maekawa, H.; Schiebel, E. Mutual regulation of cyclin-dependent kinase and the mitotic exit network. J. Cell Biol. 2010, 188, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, W.; Liu, Y.; Amon, A. Cross-compartment signal propagation in the mitotic exit network. eLife 2021, 10, e63645. [Google Scholar] [CrossRef] [PubMed]
- Ptacek, J.; Devgan, G.; Michaud, G.; Zhu, H.; Zhu, X.; Fasolo, J.; Guo, H.; Jona, G.; Breitkreutz, A.; Sopko, R.; et al. Global analysis of protein phosphorylation in yeast. Nature 2005, 438, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Gihana, G.M.; Cross-Najafi, A.A.; Lacefield, S. The mitotic exit network regulates the spatiotemporal activity of Cdc42 to maintain cell size. J. Cell Biol. 2020, 220, e202001016. [Google Scholar] [CrossRef]
- Stegmeier, F.; Visintin, R.; Amon, A. Separase, Polo Kinase, the Kinetochore Protein Slk19, and Spo12 Function in a Network that Controls Cdc14 Localization during Early Anaphase. Cell 2002, 108, 207–220. [Google Scholar] [CrossRef]
- Jaspersen, S.L.; Charles, J.F.; Morgan, D.O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 1999, 9, 227–236. [Google Scholar] [CrossRef]
- Zachariae, W.; Schwab, M.; Nasmyth, K.; Seufert, W. Control of Cyclin Ubiquitination by CDK-Regulated Binding of Hct1 to the Anaphase Promoting Complex. Science 1998, 282, 1721–1724. [Google Scholar] [CrossRef]
- Nasmyth, K. Segregating Sister Genomes: The Molecular Biology of Chromosome Separation. Science 2002, 297, 559–565. [Google Scholar] [CrossRef]
- Uhlmann, F.; Wernic, D.; Poupart, M.-A.; Koonin, E.V.; Nasmyth, K. Cleavage of Cohesin by the CD Clan Protease Separin Triggers Anaphase in Yeast. Cell 2000, 103, 375–386. [Google Scholar] [CrossRef]
- Wäsch, R.; Cross, F.R. APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 2002, 418, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Yeong, F.M.; Lim, H.H.; Padmashree, C.G.; Surana, U. Exit from Mitosis in Budding Yeast Biphasic Inactivation of the Cdc28-Clb2 Mitotic Kinase and the Role of Cdc20. Mol. Cell 2000, 5, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Pablo-Hernando, M.E.; Arnaiz-Pita, Y.; Nakanishi, H.; Dawson, D.; del Rey, F.; Neiman, A.M.; de Aldana, C.R.V. Cdc15 Is Required for Spore Morphogenesis Independently of Cdc14 in Saccharomyces cerevisiae. Genetics 2007, 177, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Attner, M.A.; Amon, A. Control of the mitotic exit network during meiosis. Mol. Biol. Cell 2012, 23, 3122–3132. [Google Scholar] [CrossRef] [PubMed]
- Gordon, O.; Taxis, C.; Keller, P.J.; Benjak, A.; Stelzer, E.H.; Simchen, G.; Knop, M. Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis. EMBO J. 2006, 25, 3856–3868. [Google Scholar] [CrossRef] [PubMed]
- Argüello-Miranda, O.; Zagoriy, I.; Mengoli, V.; Rojas, J.; Jonak, K.; Oz, T.; Graf, P.; Zachariae, W. Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II. Dev. Cell 2017, 40, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.S.; Magurno, J.; Cooper, K.F. Ama1p-activated anaphase-promoting complex regulates the destruction of Cdc20p during meiosis II. Mol. Biol. Cell 2011, 22, 315–326. [Google Scholar] [CrossRef]
- Cooper, K.F.; Mallory, M.J.; Egeland, D.B.; Jarnik, M.; Strich, R. Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. Proc. Natl. Acad. Sci. USA 2000, 97, 14548–14553. [Google Scholar] [CrossRef]
- Holt, L.J.; Hutti, J.E.; Cantley, L.C.; Morgan, D.O. Evolution of Ime2 Phosphorylation Sites on Cdk1 Substrates Provides a Mechanism to Limit the Effects of the Phosphatase Cdc14 in Meiosis. Mol. Cell 2007, 25, 689–702. [Google Scholar] [CrossRef]
- Okaz, E.; Argüello-Miranda, O.; Bogdanova, A.; Vinod, P.K.; Lipp, J.J.; Markova, Z.; Zagoriy, I.; Novak, B.; Zachariae, W. Meiotic Prophase Requires Proteolysis of M Phase Regulators Mediated by the Meiosis-Specific APC/CAma1. Cell 2012, 151, 603–618. [Google Scholar] [CrossRef]
- Oelschlaegel, T.; Schwickart, M.; Matos, J.; Bogdanova, A.; Camasses, A.; Havlis, J.; Shevchenko, A.; Zachariae, W. The Yeast APC/C Subunit Mnd2 Prevents Premature Sister Chromatid Separation Triggered by the Meiosis-Specific APC/C-Ama1. Cell 2005, 120, 773–788. [Google Scholar] [CrossRef] [PubMed]
- Penkner, A.M.; Prinz, S.; Ferscha, S.; Klein, F. Mnd2, an Essential Antagonist of the Anaphase-Promoting Complex during Meiotic Prophase. Cell 2005, 120, 789–801. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.M.; Cooper, K.F.; Winter, E. The Ama1-Directed Anaphase-Promoting Complex Regulates the Smk1 Mitogen-Activated Protein Kinase during Meiosis in Yeast. Genetics 2005, 171, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Omerza, G.; Tio, C.W.; Philips, T.; Diamond, A.; Neiman, A.M.; Winter, E. The meiosis-specific Cdc20 family-member Ama1 promotes binding of the Ssp2 activator to the Smk1 MAP kinase. Mol. Biol. Cell 2018, 29, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Rimal, A.; Kamdar, Z.P.; Tio, C.W.; Winter, E. Isc10, an Inhibitor That Links the Anaphase-Promoting Complex to a Meiosis-Specific Mitogen-Activated Protein Kinase. Mol. Cell. Biol. 2020, 40, e00097-20. [Google Scholar] [CrossRef] [PubMed]
- Seitz, B.C.; Mucelli, X.; Majano, M.; Wallis, Z.; Dodge, A.C.; Carmona, C.; Durant, M.; Maynard, S.; Huang, L.S. Meiosis II spindle disassembly requires two distinct pathways. Mol. Biol. Cell 2023, 34, ar98. [Google Scholar] [CrossRef] [PubMed]
- King, G.A.; Goodman, J.S.; Schick, J.G.; Chetlapalli, K.; Jorgens, D.M.; McDonald, K.L.; Ünal, E. Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast. eLife 2019, 8, e47156. [Google Scholar] [CrossRef]
- King, G.A.; Ünal, E. The dynamic nuclear periphery as a facilitator of gamete health and rejuvenation. Curr. Genet. 2020, 66, 487–493. [Google Scholar] [CrossRef]
- King, G.A.; Wettstein, R.; Varberg, J.M.; Chetlapalli, K.; Walsh, M.E.; Gillet, L.C.J.; Hernández-Armenta, C.; Beltrao, P.; Aebersold, R.; Jaspersen, S.L.; et al. Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization. J. Cell Biol. 2022, 222, e202204039. [Google Scholar] [CrossRef]
- Otto, G.M.; Cheunkarndee, T.; Leslie, J.M.; Brar, G.A. Programmed cortical ER collapse drives selective ER degradation and inheritance in yeast meiosis. J. Cell Biol. 2021, 220, e202108105. [Google Scholar] [CrossRef]
- Sawyer, E.M.; Joshi, P.R.; Jorgensen, V.; Yunus, J.; Berchowitz, L.E.; Ünal, E. Developmental regulation of an organelle tether coordinates mitochondrial remodeling in meiosis. J. Cell Biol. 2019, 218, 559–579. [Google Scholar] [CrossRef]
- McCartney, B.; Dudin, O. Cellularization across eukaryotes: Conserved mechanisms and novel strategies. Curr. Opin. Cell Biol. 2023, 80, 102157. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, C.S.; Wood, V.; Fantes, P.A. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System. Genetics 2015, 201, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, C. Forespore membrane assembly in yeast: Coordinating SPBs and membrane trafficking. J. Cell Sci. 2003, 117, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, H.; Imada, K.; Shimasaki, T.; Aiba, H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. MicrobiologyOpen 2022, 11, e1303. [Google Scholar] [CrossRef]
- Yan, H.; Balasubramanian, M.K. Meiotic actin rings are essential for proper sporulation in fission yeast. J. Cell Sci. 2012, 125, 1429–1439. [Google Scholar] [CrossRef]
- Sokac, A.M.; Biel, N.; Renzis, S.D. Membrane-actin interactions in morphogenesis: Lessons learned from Drosophila cellularization. Semin. Cell Dev. Biol. 2023, 133, 107–122. [Google Scholar] [CrossRef]
- Haglund, K.; Nezis, I.P.; Stenmark, H. Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Commun. Integr. Biol. 2010, 4, 1–9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durant, M.; Mucelli, X.; Huang, L.S. Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure. J. Fungi 2024, 10, 132. https://doi.org/10.3390/jof10020132
Durant M, Mucelli X, Huang LS. Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure. Journal of Fungi. 2024; 10(2):132. https://doi.org/10.3390/jof10020132
Chicago/Turabian StyleDurant, Matthew, Xheni Mucelli, and Linda S. Huang. 2024. "Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure" Journal of Fungi 10, no. 2: 132. https://doi.org/10.3390/jof10020132
APA StyleDurant, M., Mucelli, X., & Huang, L. S. (2024). Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure. Journal of Fungi, 10(2), 132. https://doi.org/10.3390/jof10020132