A Phylogenetic and Taxonomic Revision of Discula theae-sinensis, the Causal Agents of Anthracnose on Camellia sinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Collection and Isolation
2.2. Morphological Studies
2.3. DNA Extraction, PCR Amplification, and Sequencing
2.4. Phylogenetic Analyses
2.5. Pathogenicity Tests
3. Results
3.1. Molecular Phylogeny
3.2. Taxonomy
3.3. Pathogenicity Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oh, J.K.; Sandin, S.; Ström, P.; Löf, M.; Adami, H.O.; Weiderpass, E. Prospective study of breast cancer in relation to coffee, tea and caffeine in Sweden. Int. J. Cancer 2015, 137, 1979–1989. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.H.; Aly, S.M.; Allemailem, K.S.; Khan, M.A. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. BioMed Res. Int. 2015, 2015, 925640. [Google Scholar] [CrossRef] [PubMed]
- Saito, E.; Inoue, M.; Sawada, N.; Shimazu, T.; Yamaji, T.; Iwasaki, M.; Sasazuki, S.; Noda, M.; Iso, H.; Tsugane, S. Association of green tea consumption with mortality due to all causes and major causes of death in a Japanese population: The Japan Public Health Center-based Prospective Study (JPHC Study). Ann. Epidemiol. 2015, 25, 512–518. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, M.C.; Yu, X.M.; Wang, L.S.; Guo, C.F.; Ming, R.; Zhang, J.S. Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress. Tree Genet. Genomes 2017, 13, 78. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Chen, Z.J.; Jiang, Z.L.; Huang, X.Q.; Zhang, L.X.; Zhang, Z.Q.; Sun, P. Effects of Plant Growth Regulators on Flower Abscission and Growth of Tea Plant Camellia sinensis (L.) O. Kuntze. J. Plant Growth Regul. 2022, 41, 1161–1173. [Google Scholar] [CrossRef]
- Pan, S.Y.; Nie, Q.; Tai, H.C.; Song, X.L.; Tong, Y.F.; Zhang, L.J.F.; Wu, X.W.; Lin, Z.H.; Zhang, Y.Y.; Ye, D.Y.; et al. Tea and tea drinking: China’s outstanding contributions to the mankind. Chin. Med. 2022, 17, 27. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, S. Analysis of China’s Tea Production and Domestic Sales in 2022. China Tea 2023, 45, 25–30. [Google Scholar]
- Zheng, S.Z.; Zhou, Z.W.; Chen, X.H.; Cai, L.W.; Jiang, S.T.; Liu, S.R. Screening, Identification and Culture Condition Optimization of Antagonistic Endophytic Bacteria Against Gloeosporium theae-sinensis Miyake. J. Tea Sci. 2023, 43, 205–215. [Google Scholar]
- Moriwaki, J.; Sato, T. A new combination for the causal agent of tea anthracnose: Discula theae-sinensis (I. Miyake) Moriwaki & Toy. Sato, comb. nov. J. Gen. Plant Pathol. 2009, 75, 359–361. [Google Scholar]
- Zhao, X.; Zhang, J.; Tang, A.; Yu, Y.; Yan, L.; Chen, D.; Yuan, L. The Stress Detection and Segmentation Strategy in Tea Plant at Canopy Level. Front. Plant Sci. 2022, 13, 949054. [Google Scholar] [CrossRef]
- Tan, J.C. Tea Tree Diseases and Pest Control; China Agricultural Publishing House: Beijing, China, 2002. [Google Scholar]
- Tang, M.J. Identification and Control of Tea Anthracnose. Chin. Tea 2019, 41, 10–12. [Google Scholar]
- Miyake, I. Ueber einige Pilz-Krankheiten unserer Nutzpflanzen. Shokubutsugaku Zasshi 1907, 21, 39–44. (In German) [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, W. A revision of the genus and species names of anthracnose fungi in Japan. Plant Prot. 1960, 14, 49–52. (In Japanese) [Google Scholar]
- Castlebury, L.A.; Rossman, A.Y.; Jaklitsch, W.J.; Vasilyeva, L.N. A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 2002, 94, 1017–1031. [Google Scholar] [CrossRef] [PubMed]
- Green, S.; Castlebury, L.A. Connection of Gnomonia intermedia to Discula betulina and its relationship to other taxa in Gnomoniaceae. Mycol. Res. 2007, 111, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.C. Handbook of Fungal Identification; Shanghai Science and Technology Press: Shanghai, China, 1979. [Google Scholar]
- Li, Q.; Zhu, J.; Ren, N.; Li, D.; Jin, Y.; Lu, W.; Lu, Q. Characteristics and Pathogenicity of Discula theae-sinensis Isolated from Tea Plant (Camellia sinensis) and Interaction with Colletotrichum spp. Plants 2023, 12, 3427. [Google Scholar] [CrossRef]
- Cai, L.; Hyde, K.D.; Taylor, P.; Weir, B.S.; Waller, J.M.; Abang, M.M.; Zhang, J.Z.; Yang, Y.L.; Phoulivong, S.; Liu, Z.Y. A polyphasic approach for studying Colletotrichum. Fungal Divers. 2009, 39, 183–204. [Google Scholar]
- Liu, R.; Yao, Y.X.; Zhou, S.S.; Li, Y.B. Identification and control of Gloeosporium theae-sinensis Miyake. Tea Fujian 2022, 44, 24–26. [Google Scholar]
- Rayner, R.W. A Mycological Colour Chart; Cmi & British Mycological Society Kew: London, UK, 1970. [Google Scholar]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4239–4246. [Google Scholar] [CrossRef]
- Rehner, S.A.; Samuels, G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol. Res. 1994, 98, 625–634. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Liu, Y.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in flamentous ascomycetes. Mycologia 1999, 3, 553–556. [Google Scholar] [CrossRef]
- Rehner, S.A. Primers for Elongation Factor 1-α (EF1-α); Insect Biocontrol Laboratory, USDA: Columbia, MO, USA, 2001. [Google Scholar]
- Phillips, A.J.L.; Alves, A.; Pennycook, S.R.; Johnston, P.R.; Ramaley, A.; Akulov, A.; Crous, P.W. Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia 2008, 21, 29–55. [Google Scholar] [CrossRef] [PubMed]
- Glass, N.L.; Donaldson, G. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- MAFFT. Job Dispatcher. EMBL’s European Bioinformatics Institute. Available online: https://www.ebi.ac.uk/Tools/msa/mafft/ (accessed on 10 November 2023).
- Rambaut, A. Estimating the rate of molecular evolution: Incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 2000, 16, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2003. [Google Scholar]
- Huelsenbeck, J.P.; Ronquist, F.; Nielsen, R.; Bollback, J.P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 2001, 294, 2310–2314. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, Y.H.; Zhuo, L.; Wang, Y.; Zhou, H.; Hou, C.L. Neopestalotiopsis longiappendiculata as the agent of grey blight disease of Camellia spp. J. Phytopathol. 2022, 170, 770–777. [Google Scholar] [CrossRef]
- Fan, X.; Yang, Q.; Bezerra, J.D.; Alvarez, L.V.; Tian, C. Diaporthe from walnut tree (Juglans regia) in China, with insight of the Diaporthe eres complex. Mycol. Prog. 2018, 17, 841–853. [Google Scholar] [CrossRef]
- Yang, Q.; Fan, X.L.; Du, Z.; Tian, C.M. Diaporthosporellaceae, a novel family of Diaporthales (Sordariomycetes, Ascomycota). Mycoscience 2018, 59, 229–235. [Google Scholar] [CrossRef]
- Senanayake, I.C.; Crous, P.W.; Groenewald, J.Z.; Maharachchikumbura, S.S.; Jeewon, R.; Phillips, A.J.; Bhat, J.D.; Perera, R.H.; Li, Q.R.; Li, W.J.; et al. Families of Diaporthales based on morphological and phylogenetic evidence. Stud. Mycol. 2017, 86, 217–296. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, I.C.; Maharachchikumbura, S.S.N.; Jeewon, R.; Promputtha, I.; Al-Sadi, A.M.; Camporesi, E.; Hyde, K.D. Morphophylogenetic study of Sydowiellaceae reveals several new genera. Mycosphere 2017, 8, 172–217. [Google Scholar] [CrossRef]
- Du, Z.; Fan, X.L.; Yang, Q.; Tian, C.M. Host and geographic range extensions of Melanconiella, with a new species M. cornuta in China. Phytotaxa 2017, 327, 252–260. [Google Scholar] [CrossRef]
- Guterres, D.C.; Galvão-Elias, S.; dos Santos, M.D.D.M.; de Souza, B.C.P.; de Almeida, C.P.; Pinho, D.B.; Miller, R.N.G.; Dianese, J.C. Phylogenetic relationships of Phaeochorella parinarii and recognition of a new family, Phaeochorellaceae (Diaporthales). Mycologia 2019, 111, 660–675. [Google Scholar] [CrossRef] [PubMed]
- Xavier, K.V.; KC, A.N.; Crous, P.W.; Groenewald, J.Z.; Vallad, G.E. Dwiroopa punicae sp. nov. (Dwiroopaceae fam. nov., Diaporthales), associated with leaf spot and fruit rot of pomegranate (Punica granatum). Fungal Syst. Evol. 2019, 4, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Braun, U.; Nakashima, C.; Crous, P.W.; Groenewald, J.Z.; Moreno-Rico, O.; Rooney-Latham, S.; Blomquist, C.L.; Haas, J.; Marmolejo, J. Phylogeny and taxonomy of the genus Tubakia s. lat. Fungal Syst Evol. 2018, 1, 41–99. [Google Scholar] [CrossRef]
- Udayanga, D.; Miriyagalla, S.D.; Manamgoda, D.S.; Lewers, K.S.; Gardiennet, A.; Castlebury, L.A. Molecular reassessment of diaporthalean fungi associated with strawberry, including the leaf blight fungus, Paraphomopsis obscurans gen. et comb. nov. (Melanconiellaceae). IMA Fungus 2021, 12, 15. [Google Scholar] [CrossRef]
- Voglmayr, H.; Rossman, A.Y.; Castlebury, L.A.; Jaklitsch, W.M. Multigene phylogeny and taxonomy of the genus Melanconiella (Diaporthales). Fungal Divers. 2012, 57, 1–44. [Google Scholar] [CrossRef]
- Farr, D.F.; Castlebury, L.A.; Rossman, A.Y.; Erincik, O. Greeneria uvicola, cause of bitter rot of grapes, belongs in the Diaporthales. Sydowia 2001, 53, 185–199. [Google Scholar]
- Phookamsak, R.; Hyde, K.D.; Jeewon, R.; Bhat, D.J.; Jones, E.B.G.; Maharachchikumbura, S.S.N.; Raspé, O.; Karunarathna, S.C.; Wanasinghe, D.N.; Hongsanan, S.; et al. Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers. 2019, 95, 1–273. [Google Scholar] [CrossRef]
- Moriwaki, J.; Tsukiboshi, T. Colletotrichum echinochloae, a new species on Japanese barnyard millet (Echinochloa utilis). Mycoscience 2009, 50, 273–280. [Google Scholar] [CrossRef]
- Sutton, B.C. The Coelomycetes. Fungi Imperfecti with Pycnidia, Acervuli and Stromata; Commonwealth Mycological Institute: Kew, UK, 1980; p. 696. [Google Scholar]
- Sogonov, M.V.; Castlebury, L.A.; Rossman, A.Y.; White, J.F. The type species of Apiognomonia, A. veneta, with its Discula anamorph is distinct from A. errabunda. Mycol. Res. 2007, 111, 693–709. [Google Scholar] [CrossRef]
- Yamada, K.; Sonoda, R. A Fluorescence Microscopic Study of the Infection Process of Discula theae-sinensis in Tea. Jpn. Agric. Res. Q. 2014, 48, 399–402. [Google Scholar] [CrossRef]
- Yoshida, K.; Takeda, Y. Evaluation of Anthracnose Resistance among Tea Genetic Resources by Wound-Inoculation Assay. Jpn. Agric. Res. Q. JARQ 2006, 40, 379–386. [Google Scholar] [CrossRef]
- Yuan, L.; Yan, P.; Han, W.Y.; Huang, Y.B.; Wang, B.; Zhang, J.C.; Zhang, H.B.; Bao, Z.Y. Detection of anthracnose in tea plants based on hyperspectral imaging. Comput. Electron. Agric. 2019, 167, 105039. [Google Scholar] [CrossRef]
- Gong, C.Y.; Liu, J.J.; Deng, Q.; Zhang, L.X. Identification and pathogenicity of Colletotrichum species causing anthracnose on Camellia sinensis. Acta Hortic. Sin. 2022, 49, 1092–1101. [Google Scholar]
- Liu, F.; Weir, B.S.; Damm, U.; Crous, P.W.; Wang, Y.; Liu, B.; Wang, M.; Zhang, M.; Cai, L. Unravelling Colletotrichum species associated with Camellia: Employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 2015, 35, 63–86. [Google Scholar] [CrossRef]
- Wang, Y.C.; Hao, X.Y.; Wang, L.; Xiao, B.; Wang, X.C.; Yang, Y.J. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China. Sci. Rep. 2016, 6, 35287. [Google Scholar] [CrossRef]
- Shi, Y.L.; Sheng, Y.Y.; Cai, Z.Y.; Yang, R.; Li, Q.S.; Li, X.M.; Li, D.; Guo, X.Y.; Lu, J.L.; Ye, J.H.; et al. Involvement of Salicylic Acid in Anthracnose Infection in Tea Plants Revealed by Transcriptome Profiling. Int. J. Mol. Sci. 2019, 20, 2439. [Google Scholar] [CrossRef]
- Tan, S.; Chen, Y.; Zhou, G.; Liu, J. Transcriptome Analysis of Colletotrichum fructicola Infecting Camellia oleifera Indicates That Two Distinct Geographical Fungi Groups Have Different Destructive Proliferation Capacities Related to Purine Metabolism. Plants 2021, 10, 2672. [Google Scholar] [CrossRef]
- Zhang, M.T.; Li, X.H.; Chen, H.Y.; Tao, Z.J.; Zu, Z.Q.; Wu, H.; Jiang, H. A preliminary study on fast screening of different tea tree varieties for resistance to anthracnose of tea tree. J. Tea Bus. 2022, 44, 076–080. [Google Scholar]
- Sun, D.Z.; Liu, H.; Liu, J.Y.; Ding, Z.; Xie, J.X.; Wang, W.X. Recognition of tea diseases based on improved YOLOv4 model. J. Northwest AF Univ. 2023, 9, 16. [Google Scholar]
- Zhang, Y.L. Identification and Biological Characteristics of Tea Leaf Diseases in Shandong Province; Shandong Agricultural University: Shandong, China, 2023. [Google Scholar]
- Moriwaki, J.; Tsukiboshi, T.; Sato, T. Grouping of Colletotrichum species in Japan based on rDNA sequences. J. Gen. Plant Pathol. 2002, 68, 307–320. [Google Scholar] [CrossRef]
Gene a | Primer | Sequence (5′–3′) | Expected Amplicon Size (bp) |
---|---|---|---|
ITS | ITS1f | CTTGGTCATTTAGAGGAAGTAA | 600 |
ITS4 | TCCTCCGCTTATTGATATGC | ||
nrLSU | LR5 | TCCTGAGGGAAAGTTCG | 1200 |
LR0R | ACCCGCTGAACTTAAGC | ||
rpb2 | 5f | GAYGAYMGWGATCAYTTYGG | 1200 |
7cR | CCCATRGCTTGYTTRCCCAT | ||
tef1 | 728f | CATCGAGAAGTTCGAGAAGG | 600 |
EF2 | GGARGTACCAGTSATCATGTT |
Species | Culture Collection/Isolate | ITS | nrLSU | rpb2 | tef1 |
---|---|---|---|---|---|
Apiognomonia veneta | CBS 897.79 | - | EU255195 | EU219259 | EU221910 |
Apiosporopsis carpinea | CBS 771.79 | AF277130 | - | - | - |
Apoharknessia insueta | CBS 111377 | AY720814 | JQ706083 | - | MN271820 |
Apoharknessia insueta | CBS 114575 | MN172370 | MN172402 | - | MN271821 |
Asterosporium asterospoermum | MFLU 15–3555 | MF190062 | - | - | - |
Auratiopycnidiella tristaniopsis | CBS 132180 | JQ685522 | JQ685516 | - | MN271825 |
Auratiopycnidiella tristaniopsis | CPC 16371 | MN172374 | MN172405 | - | MN271826 |
Ceratosphaeria aquatica | MFLU 18–2323 | MK835812 | MK828612 | MN156509 | MN194065 |
Chapeckia nigrospora | AR 3809 | EU683068 | - | - | - |
Chrysoporthe australafricana | CBS 112916 | AY194097 | AF292041 | - | MN271832 |
Chrysoporthe cubensis | CBS 118654 | MN172378 | DQ368773 | - | MN271834 |
Coneilla peruensis | CBS 110394 | KJ710441 | KJ710463 | KX833499 | KX833695 |
Coniella eucalyptorum | CBS 112640 | AY339290 | AY339338 | KX833452 | KX833637 |
Coryneum gigasporum | CFCC 52319 | MH683557 | MH683565 | - | - |
Coryneum umbonatum | D201 | MH674329 | MH674329 | MH674333 | MH674337 |
Cryphonectria parasitica | ATCC 38755 | NG_027589 | AY141856 | DQ862017 | EU222014 |
Cryphonectria parasitica | ATCC 48198 | JN940858 | JN942325 | - | - |
Cryphonectria parasitica | CFCC 52150 | MH514021 | MG866018 | - | MN271848 |
Cytospora chrysosperma | CFCC 89982 | KP310805 | KP281261 | KU710952 | KP310848 |
Cytospora eleagni | CFCC 89633 | KF765693 | KF765677 | KU710956 | KU710919 |
Cytospora viridistroma | CBS 202.36 | MN172388 | MN172408 | - | MN271853 |
Dendrostoma osmanthi | CFCC 52106 | MG682013 | MG682073 | MG682033 | MG682053 |
Diaporthe citri | AR 3405 | MT378365 | KC843311 | MT383081 | KC843071 |
Diaporthe eres | CBS 138594 | MT378367 | KJ210529 | MT383083 | KJ210550 |
Diaporthe helianthi | CBS 592.81 | MT378370 | NR_103698 | - | KC343841 |
Diaporthe novem | AR 4855 | MT378366 | MT378351 | MT383082 | MT383100 |
Diaporthella cryptica | CBS 140348 | MN172390 | MN172409 | MN271800 | MN271854 |
Diaporthosporella cercidicola | CFCC 51994 | KY852515 | KY852492 | - | MN271855 |
Diaporthostoma machili | CFCC 52101 | MG682021 | MG682081 | MG682041 | MG682061 |
Diaporthostoma machili | CFCC 52100 | MG682020 | MG682080 | MG682040 | MG682060 |
Dicarpella sp. | NY7452a | HM855225 | - | - | - |
Discula betulina | AR 4173 | EU254757 | - | - | - |
Discula campestris | CBS 32875 | EU199185 | MH872664 | EU199143 | - |
Discula destructiva | CBS 109771 | - | - | EU199144 | JQ414137 |
Discula quercina | CBS 115013 | AY853196 | - | - | - |
Dwiroopa lythri | CBS 109755 | MN172389 | MN172410 | MN271801 | MN271859 |
Dwiroopa punicae | CBS 143163 | MK510686 | MK510676 | MK510692 | - |
Erythrogloeum hymenaeae | CBS 132185 | JQ685525 | JQ685519 | - | - |
Gnomoniopsis comari | CBS 806.79 | EU255114 | EU254821 | - | GU320810 |
Gnomoniopsis fragariae | CBS 121226 | EU255115 | EU254824 | EU219250 | EU221961 |
Gnomoniopsis fragariae | DMW 63 | MT378357 | MT378343 | MT383072 | MT383089 |
Gnomoniopsis fragariae | DMW 61 | MT378358 | MT378344 | MT383073 | MT383090 |
Gnomoniopsis fragariae | VPRI 15547 | MT378359 | MT378345 | MT383087 | MT383091 |
Gnomoniopsis fragariae | CBS 275.51 | MH868373 | EU254829 | MT383088 | MT383092 |
Gnomoniopsis fragariae | CBS 208.34 | EU255116 | EU254826 | EU219284 | EU221968 |
Gnomoniopsis tormentillae | CBS 904.79 | EU255133 | EU254856 | - | GU320795 |
Greeneria uvicola | AU01 | JN547720 | - | - | - |
Greeneria uvicola | OH35 | AF362570 | - | - | - |
Harknessia gibbosa | CBS 120033 | EF110615 | EF110615 | - | MN271868 |
Harknessia ipereniae | CBS 120030 | EF110614 | EF110614 | - | MN271870 |
Involutiscutellula rubra | MUCC 2304 | MG591995 | MG591901 | MG976478 | MG592088 |
Involutiscutellula rubra | CBS 192.71 | MG591993 | MG591899 | MG976476 | MG592086 |
Juglanconis juglandina | CBS 121083 | KY427148 | KY427148 | KY427198 | KY427217 |
Juglanconis oblonga | MAFF 410216 | KY427153 | KY427153 | KY427203 | KY427222 |
Juglanconis pterocaryae | MAFF 410079 | KY427155 | KY427155 | KY427205 | KY427224 |
Lamproconium desmazieri | MFLUCC 15–0870 | KX430135 | KX430134 | MF377605 | MF377591 |
Lamproconium desmazieri | MFLUCC 15–0872 | KX430139 | KX430138 | - | MF377593 |
Macrohilum eucalypti | CBS 140063 | NG_058183 | NR_154184 | MN271810 | - |
Macrohilum eucalypti | CPC 10945 | DQ195793 | DQ195781 | - | - |
Mastigosporella anisophylleae | CBS 136421 | KF777221 | KF779492 | - | MN271892 |
Mastigosporella pigmentata | VIC44383 | MG587928 | MG587929 | - | - |
Mazzantia galii | CBS 125529 | MH875041 | MH863563 | - | MT383101 |
Melanconiella chrysodiscosporina | CBS 125597 | MH875191 | MH863730 | - | - |
Melanconiella cornuta | CFCC 51990 | MF360006 | MF360008 | MF360002 | MF360004 |
Melanconiella cornuta | CFCC 51991 | MF360007 | MF360009 | MF360003 | MF360005 |
Melanconiella elegans | AR 3830 | JQ926264 | JQ926264 | JQ926335 | JQ926401 |
Melanconiella ellisii | BPI 878343 | JQ926271 | JQ926271 | JQ926339 | JQ926406 |
Melanconiella spodiaea | AR 3457 | AF408369 | MT378352 | MT383074 | MT383093 |
Melanconiella spodiaea | AR 3462 | AF408370 | MT378353 | MT383075 | MT383094 |
Melanconis betulae | CFCC 50471 | KT732971 | KT732952 | KT732984 | KT733001 |
Melanconis itoana | CFCC 50474 | KT732974 | KT732955 | KT732987 | KT733004 |
Melanconis stilbostoma | CFCC 50475 | KT732975 | KT732956 | KT732988 | KT733005 |
Microascospora rubi | MFLU 15–1112 | MF190099 | MF190154 | MF377611 | MF377582 |
Microascospora rubi | MFLU 17–0883 | MF190098 | MF190153 | - | MF377581 |
Neocryphonectria carpini | CFCC 53027 | MN172396 | MN172413 | - | - |
Neocryphonectria chinensis | CFCC 53025 | MN172397 | MN172414 | MN271812 | MN271893 |
Neopseudomelanconis castaneae | CFCC 52787 | MH469164 | MH469162 | - | - |
Oblongisporothyrium castanopsidis | CBS 189.71 | MG591943 | MG591850 | - | MG592038 |
Oblongisporothyrium castanopsidis | CBS 124732 | MG591942 | MG591849 | MG976453 | MG592037 |
Ophiognomonia rosae | DMW 108 | MT378355 | JF514851 | MT383086 | JF514824 |
Ophiognomonia rosae | CBS 851.79 | MT378356 | EU254930 | MT383071 | JQ414153 |
Paragnomonia fragariae | F129 | MK524447 | MK524430 | - | MK524466 |
Paragnomonia fragariae | GF300 | MT378368 | - | MT383084 | MT383102 |
Paragnomonia fragariae | GF301 | MT378369 | - | MT383085 | MT383103 |
Paraphomopsis obscurans | M1261 | MT378360 | MT378346 | MT383076 | MT383095 |
Paraphomopsis obscurans | CBS 143829 | MT378361 | MT378347 | MT383077 | MT383096 |
Paraphomopsis obscurans | M1259 | MT378362 | MT378348 | MT383078 | MT383097 |
Paraphomopsis obscurans | M1333 | MT378363 | MT378349 | MT383079 | MT383098 |
Paraphomopsis obscurans | M1278/DS055 | MT378364 | MT378350 | MT383080 | MT383099 |
Paraphomopsis obscurans | strain 1–1 | - | HM854850 | - | - |
Paraphomopsis obscurans | strain 1–3 | - | HM854852 | - | - |
Paraphomopsis obscurans | strain 12 | - | HM854849 | - | - |
Paratubakia subglobosa | CBS 193.71 | MG592009 | MG591914 | MG976490 | MG592103 |
Paratubakia subglobosoides | MUCC 2293 | MG592010 | MG591915 | MG976491 | MG592104 |
Phaeoappendicospora thailandensis | MFLUCC 13–0161 | MF190102 | MF190157 | - | - |
Prosopidicola mexicana | CBS 113529 | KX228354 | AY720709 | - | - |
Prosopidicola albizziae | CBS 141298 | KX228325 | KX228274 | - | - |
Pseudomelanconis caryae | CFCC 52110 | MG682022 | MG682082 | MG682042 | MG682062 |
Pseudoplagiostoma eucalypti | CPC 14161 | GU973604 | GU973510 | - | GU973540 |
Pseudoplagiostoma oldii | CBS 115722 | GU973610 | GU973535 | - | GU973565 |
Pyricularia grisea | CG-4 | JX134683 | JX134671 | - | JX134697 |
Racheliella wingfieldiana | CPC 13806 | MG592006 | MG591911 | MG976487 | MG592100 |
Septomelanconiella thailandica | MFLUCC 18-0518 | MH727706 | MH727705 | MH752072 | - |
Sillia karstenii | MFLU 16–2864 | KY523500 | KY523482 | KY501636 | - |
Sinodiscula camellicola | CNUCC 106-1-2 | PP150390 | PP149025 | PP174323 | PP156920 |
Sinodiscula camellicola | CNUCC 106-2-1 | PP150391 | PP149026 | PP174324 | PP156921 |
Sinodiscula camellicola | CNUCC 106-3-3 | PP150392 | PP149027 | PP174325 | PP156922 |
Sinodiscula camellicola | CNUCC 107-3-2 | PP150393 | PP149028 | PP174326 | PP156923 |
Sinodiscula camellicola | CNUCC 107-4-1 | PP150394 | PP149029 | PP174327 | PP156924 |
Sinodiscula camellicola | CNUCC 108-2-1 | PP150395 | PP149030 | PP174328 | PP156925 |
Sinodiscula camellicola | CNUCC 110-2-3 | PP150396 | PP149031 | PP174329 | PP156926 |
Sinodiscula camellicola | CNUCC 111-1-3 | PP150397 | PP149032 | PP174330 | PP156927 |
Sinodiscula camellicola | CNUCC 112-2-1 | PP150398 | PP149033 | PP174331 | PP156928 |
Sinodiscula camellicola | CNUCC 112-2-4 | PP150399 | PP149034 | PP174332 | PP156929 |
Sinodiscula camellicola | CNUCC 112-3-3 | PP150400 | PP149035 | PP174333 | PP156930 |
Sinodiscula camellicola | CNUCC 114-2-3 | PP150401 | PP149036 | PP174334 | PP156931 |
Sinodiscula camellicola | CNUCC 117-1-3 | PP150402 | PP149037 | PP174335 | PP156932 |
Sinodiscula camellicola | CNUCC 117-4-4 | PP150403 | PP149038 | PP174336 | PP156933 |
Sinodiscula camellicola | CNUCC 345-2-3 | PP150404 | PP149039 | PP174337 | PP156934 |
Sinodiscula camellicola | CNUCC 1297-2-1 | PP150405 | PP149040 | PP174338 | PP156935 |
Sinodiscula theae-sinensis | MAFF 238240 | AB511919 | - | - | - |
Sinodiscula theae-sinensis | MAFF 238241 | AB511920 | - | - | - |
Sinodiscula theae-sinensis | MAFF 238242 | AB511921 | - | - | - |
Sinodiscula theae-sinensis | MAFF 238243 | AB511922 | - | - | - |
Sinodiscula theae-sinensis | MAFF 238244 | AB511923 | - | - | - |
Sinodiscula theae-sinensis | MAFF 752003 | PP150406 | PP149041 | PP174339 | PP156936 |
Sinodiscula theae-sinensis | CNUCC 98B-1-2 | PP150407 | PP149042 | PP174340 | PP156937 |
Sinodiscula theae-sinensis | CNUCC 98B-2-2 | PP150408 | PP149043 | PP174341 | PP156938 |
Sinodiscula theae-sinensis | CNUCC 100B-1-3 | PP150409 | PP149044 | PP174342 | PP156939 |
Sinodiscula theae-sinensis | CNUCC 100B-3-1 | PP150410 | PP149045 | PP174343 | PP156940 |
Sinodiscula theae-sinensis | CNUCC 110-4-2 | PP150411 | PP149046 | PP174344 | PP156941 |
Sinodiscula theae-sinensis | CNUCC 111-2-3 | PP150412 | PP149047 | PP174345 | PP156942 |
Sinodiscula theae-sinensis | CNUCC 269B-1-1 | PP150413 | PP149048 | PP174346 | PP156943 |
Sinodiscula theae-sinensis | CNUCC 1297-2-2 | PP150414 | PP149049 | PP174347 | PP156944 |
Sinodiscula theae-sinensis | CNUCC 1297-3-1 | PP150415 | PP149050 | PP174348 | PP156945 |
Sinodiscula theae-sinensis | CNUCC 1297-4-1 | PP150416 | PP149051 | PP174349 | PP156946 |
Sinodiscula theae-sinensis | CNUCC 1297-4-4 | PP150417 | PP149052 | PP174350 | PP156947 |
Sinodiscula theae-sinensis | CNUCC 1887-3-1 | PP150418 | PP149053 | PP174351 | PP156948 |
Sinodiscula theae-sinensis | CNUCC 1900-4-3 | PP150419 | PP149054 | PP174352 | PP156949 |
Sinodiscula theae-sinensis | CNUCC 1900-7-3 | PP150420 | PP149055 | PP174353 | PP156950 |
Sinodiscula theae-sinensis | CNUCC 1914-2-2 | PP150421 | PP149056 | PP174354 | PP156951 |
Sinodiscula theae-sinensis | CNUCC 1914-3-3 | PP150422 | PP149057 | - | PP156952 |
Sphaerosporithyrium mexicanum | CPC 31361 | MG591988 | MG591894 | - | MG592081 |
Sphaerosporithyrium mexicanum | CPC 33021 | MG591990 | MG591896 | MG976473 | MG592083 |
Stegonsporium acerophilum | CBS 117025 | EU039993 | EU039982 | KF570173 | EU040027 |
Stilbospora longicornuta | CBS 122529 | KF570164 | KF570164 | KF570194 | KF570232 |
Synnemasporella aculeans | CFCC 52094 | MG682026 | MG682086 | MG682046 | MG682066 |
Synnemasporella toxicodendri | CFCC 52097 | MG682029 | MG682089 | MG682049 | MG682069 |
Thailandiomyces bisetulosus | BCC 00018 | EF622230 | - | - | - |
Tirisporella beccariana | BCC 38312 | JQ655449 | - | - | - |
Tubakia dryina | CBS 114386 | JF704188 | MG591852 | - | MG592040 |
Tubakia iowensis | CBS 129012 | MG591971 | JF704194 | - | MG603576 |
Tubakia seoraksanensis | CBS 127490 | KP260499 | MG591907 | - | MG592094 |
Species | The Mean Spot Size (av. ± SD/mm) | Incidence |
---|---|---|
Sinodiscula theae-sinensis (CNUCC 1914-2-2) | 1.52 ± 0.18 | 100% |
Sinodiscula camellicola (CNUCC 107-4-1) | 1.21 ± 0.09 | 88.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Zhao, S.; Gao, Y.; Shen, X.; Hou, C. A Phylogenetic and Taxonomic Revision of Discula theae-sinensis, the Causal Agents of Anthracnose on Camellia sinensis. J. Fungi 2024, 10, 141. https://doi.org/10.3390/jof10020141
Guo M, Zhao S, Gao Y, Shen X, Hou C. A Phylogenetic and Taxonomic Revision of Discula theae-sinensis, the Causal Agents of Anthracnose on Camellia sinensis. Journal of Fungi. 2024; 10(2):141. https://doi.org/10.3390/jof10020141
Chicago/Turabian StyleGuo, Meijun, Shiyi Zhao, Yue Gao, Xiaoye Shen, and Chenglin Hou. 2024. "A Phylogenetic and Taxonomic Revision of Discula theae-sinensis, the Causal Agents of Anthracnose on Camellia sinensis" Journal of Fungi 10, no. 2: 141. https://doi.org/10.3390/jof10020141
APA StyleGuo, M., Zhao, S., Gao, Y., Shen, X., & Hou, C. (2024). A Phylogenetic and Taxonomic Revision of Discula theae-sinensis, the Causal Agents of Anthracnose on Camellia sinensis. Journal of Fungi, 10(2), 141. https://doi.org/10.3390/jof10020141