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Abstract: The physiological, biochemical, and morphological changes brought about by fungi in
response to fungicides can undoubtedly bring diversity to fungi. Cordyceps militaris strains TN (mating
type genes MAT1-1-1, MAT1-1-2, and MAT1-2-1) and CmFRQ-454 (mating type genes MAT1-1-1 and
MAT1-1-2) were treated with non-lethal doses of fungicides amphotericin B, L-cysteine, terbinafine,
and 5-fluorocytosine. The results showed that the treatment with amphotericin B, terbinafine, and
5-fluorocytosine promoted an increase in the relative content of clock protein CmFRQ (C. militaris
FREQUENCY) in the mycelium of strain TN, while the high concentration of L-cysteine inhibited
the expression of CmFRQ in strain TN. These four fungicides could reduce the relative contents of
CmFRQ in the mycelium of strain CmFRQ454. The relative contents of CmFRQ in the mycelium of
strain TN were increased after removing the four fungicides, but the relative contents of CmFRQ in
the mycelium of strain CmFRQ454 were decreased after removing the four fungicides. This indicates
that the effect of fungicides on CmFRQ on mycelium was still sustained after removing the stress of
fungicides, and the operation of the circadian clock was changed. The fruiting bodies of C. militaris
strain TN and CmFRQ-454 were still degenerated to varying degrees after removing amphotericin B,
L-cysteine, and terbinafine. However, the fruiting bodies of strain TN after removing 5-fluorocytosine
did not show significant degeneration; the fruiting bodies of strain CmFRQ-454 after removing
5-fluorocytosine obtained rejuvenation. These results indicate that the stress of fungicides could
lead to the degeneration of fruiting bodies as well as the rejuvenation of fruiting bodies, resulting
in the morphological diversity of C. militaris. The increase or decrease of the CmFRQ-454, the main
component of the circadian clock, caused by the stress of fungicants, might lead to the differential
degeneration of different mating-type strains of C. militaris.

Keywords: Cordyceps militaris; stress of fungicides; clock protein CmFRQ; degeneration and rejuvenation
of fruiting body

1. Introduction

The effects of fungicides on fungi are varied, especially on the diversity of fungi. The
use of fungicides creates a strong selection pressure on the fungus, which reduces the
effectiveness of the fungicide. Scanlan et al. showed that the DNA insertions into the
promoter of the erg11/CYP51 DMI target gene resulted in changes in the canola pathogen
Leptosphaeria maculans resistance to demethylation inhibitor (DMI) fungicides [1]. Some
fungicides induce a genetic change in Monilinia fructicola in the form of transposon transpo-
sition [2]. The genomic instability (single nucleotide polymorphisms, insertions/deletions,
copy number variants, and transposable element insertions) in fungal plant pathogens
caused by exposure to sublethal fungicide doses accelerates the emergence of fungicide
resistance or other adaptive traits [3]. Many studies have been reported on the genetic
diversity of fungi driven by fungicides, although there are differences in the characteristics
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that appear [4–7]. In addition, antifungal resistance caused by the use of fungicides has
also received more attention [8–10].

Circadian clock mechanisms exist in many eukaryotic cells to regulate morphology,
physiology, biochemistry, growth, and development [11–13]. The changes in the external
environment can lead to a reset of the circadian clock to maintain synchronization with
environmental conditions [14–16]. A typical circadian clock consists of three parts: environ-
mental signal input, circadian oscillator, and time information output, which regulate a
variety of different molecular and physiological processes and show circadian rhythm [17].
In Neurospora crassa, the key components of the core circadian oscillator include clock pro-
tein frequency (FRQ), blue light receptor white collar-1 (WC-1) and white collar-2 (WC-2),
etc., and participate in the transcription-/translation-based negative feedback loop [18,19].
WC-1 and WC-2 can form a dimer (WCC) that acts as a photoreceptor, as well as a tran-
scription factor or a positive element promoting frq transcription in the dark [20–24]. FRQ
and FRH (FRQ-interacting RNA helicase) form an FRQ-FRH complex (FFC) functioning as
the negative limb in the negative feedback loop [25–27]. After phosphorylation of FRQ by
several kinases (CKI and CKII), the FRQ ubiquitination leads to its degradation, releasing
WCC dimers, reactivating FRQ expression, and restarting the circadian cycle [14,28–37].

As a powerful external factor that interferes with fungi, fungicides undoubtedly bring
about genetic diversity in fungi, and thus affect the physiological and biochemical char-
acteristics of fungi, thereby affecting their morphology. In this study, we selected four
fungal inhibitors: amphotericin B, L-cysteine, terbinafine, and 5-fluorocytosine. Ampho-
tericin B is a polyene antifungal drug whose main mechanism of action is to damage the
permeability of the cell membrane by combining with steroids on the cell membrane of
sensitive fungi, causing the leakage of important substances in the cell, thus destroying
the normal metabolism of the cell and inhibiting the growth of the fungus. Amphotericin
B has the advantages of high antifungal activity, a broad antifungal spectrum, and low
drug resistance [38]. Amino acids are important components of proteins, but a certain
concentration of amino acids has an inhibitory effect on fungi [39–41]. Previous stud-
ies have shown that a certain concentration of L-cysteine can inhibit the growth of the
mycelium of Villosiclava virens and inhibit the growth of the mycelium, spore germination,
and germ tube elongation of Alternaria alternata [42,43]. Obviously, amino acid antifungal
agents have good safety in food applications. Terbinafine is an allylamine broad-spectrum
antifungal agent that inhibits squalene cyclooxygenase during the synthesis of ergosterol
in fungal cells and accumulates squalene in cells, thus exerting a fungicidal effect. Previous
studies have shown that terbinafine has antifungal effects on various fungi [44]. Under
the action of fungal cytosine deaminase, 5-fluorocytosine enters fungal cells and is con-
verted into fluorouracil, replacing uracil in RNA, thereby interfering with the synthesis
of normal fungal proteins and achieving antifungal effects [45,46]. It can act on yeast
(Saccharomyces cerevisiae), Aspergillus, dematiaceous fungi, Candida albicans, and Cryptococcus
neoformans [47–49].

Cordyceps militaris is an economically important edible and medicinal fungus in China.
With the increase in the number of subcultures, the fungal fruiting body is prone to de-
generation, which affects its economic value [50]. Many causes of C. militaris degeneration
have been analyzed, including environmental causes [50]. Circadian clocks can be directly
influenced by the environment, and the FRQ of fungal circadian clocks is a centric compo-
nent [17,51]. Therefore, C. militaris frequency (CmFRQ) was selected as the research object
in this study.

2. Materials and Methods
2.1. C. Militaris Strains

C. militaris strain TN had mating-type genes MAT1-1-1, MAT1-1-2, and MAT1-2-1.
C. militaris strain CmFRQ454 had mating-type genes MAT1-1-1 and MAT1-1-2, but no
MAT1-2-1. Strain CmFRQ-454 had been degenerated in the process of subculture.
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2.2. Strain Activation

The C. militaris strains were activated before use. The strains were inoculated on potato
dextrose agar (PDA; 200 g potatoes, 1 g KH2PO4, 1 g MgSO4·7H20, 10 mg vitamin B1, 20 g
glucose, 20 g agar powder, the fixed volume of 1000 mL after preparation) medium and
cultured under constant temperature and darkness at 25 ◦C for 6 d. The obtained strains
can be used in subsequent experiments.

2.3. Culture of Mycelium with the Treatment of Fungicides

C. militaris mycelium was cultured in PDA medium at 25 ◦C under dark conditions.
When inoculating, 4-point holes were drilled on the plate of the PDA medium with a
hole puncher (diameter 6 mm), and then the strain obtained in the same way was filled
into the holes of the PDA medium. If the treatment of fungicides was required in the
mycelium growth process, fungicides should be added to the cooled but unsolidified PDA
medium according to the required concentration when preparing the PDA medium. The
final concentrations of the fungicides added were 2 µg/mL for amphotericin B, 125 µg/mL
for L-cysteine, 0.5 µg/mL for terbinafine, and 4.65 × 10−6 nmol/L for 5-fluorocytosine. At
the same time, a blank control was set. The subculture mycelium of C. militaris obtained by
the treatment of fungicides was S0. The S0 colony morphology was observed on the 5th and
10th days of culture. All S0 samples, together with Petri dishes, were wrapped in aluminum
foil and placed in a –55 ◦C refrigerator to facilitate simultaneous protein extraction.

2.4. Transfer Culture of C. Militaris Mycelium after the Treatment of Fungicides

After the subculture S0 samples were treated with fungicides, the S0 mycelium of C.
militaris was transferred onto the PDA without fungicides and then cultured at 25 ◦C under
dark conditions to obtain the subculture S1. All S1 samples, together with Petri dishes, were
wrapped in aluminum foil and placed in a –55 ◦C refrigerator to facilitate simultaneous
protein extraction.

2.5. Culture of Fruiting Bodies for S1

C. militaris subculture S1 was inoculated into 100 mL potato dextrose broth medium
(PDB; 200 g potatoes, 1 g KH2PO4, 1 g MgSO4·7H20, 10 mg vitamin B1, and 20 g glucose,
with a fixed volume of 1000 mL after preparation), shaking the fungus to form spherical
mycelium with a diameter of about 4.0 mm at 25 ◦C at 200 rpm, in order to obtain a liquid
strain. Then, 5 mL of the liquid strain were inoculated into the rice culture medium (30 g
high-quality rice and 35 mL PDB medium were added to a 350 mL culture flask), cultured
for 5 d at 25 ◦C under dark conditions, and then exposed to light at 20 ◦C for 2 days.
The mycelium surface was scratched with inoculation rings to induce fruiting body buds.
When the orange primordium was formed, the cap was replaced with a breathable cap
to facilitate the development of fruiting bodies. During the continuous culture of fruiting
bodies, two 4-W fluorescent lamps for continuous light were placed in the incubator with an
illumination intensity of 450–600 Lux. The morphology of the fruiting body was observed
and recorded.

2.6. Sample Treatment and Western Blot Analysis

Mycelium samples stored at –55 ◦C were ground into a powder in a mortar, frozen at
–55 ◦C, and then added to a 2 mL centrifuge tube. In the centrifuge tube, 300 µL phosphate-
buffered saline (PBS) (0.1 mol/L, pH 7.2, containing protease inhibitors for fungi and
yeast) were pre-added, immediately shaken, and mixed, and the biomass concentration
of the samples was adjusted to 1.0 g/mL. Samples were extracted overnight at 4 ◦C. After
overnight extraction, centrifugation was performed at 12,000 rpm, and the supernatant
was collected. If there was still suspended matter, it would be centrifuged again. After
adding 5× denatured protein loading buffer and bathing at 100 ◦C for 5 min, the protein
samples were loaded successively with a loading volume of 40 µL for each sample (32 µL
sample protein + 8 µL loading buffer). The protein samples were subjected to SDS-PAGE
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(concentration gel 5%, separation gel 12%) at 120 V for 2.5 h, then electrotransferred to a
PVDF membrane. The PVDF membrane was incubated in a closed solution (5% skim milk
powder) for 2 h and then washed with PBST (pH 7.4 PBS added 0.1% Tween-20) 3 times,
10 min each time. The membrane was incubated in anti-CmFRQ2 at 4 ◦C overnight, washed
with PBST 3 times, then incubated with sheep anti-rabbit IgG-HRP for 1 h, washed with
PBST 3 times, and then a DAB staining kit was used for color development. The grayscale
value of the protein bands was determined by the software ImageJ (version ImageJ 1.x,
https://imagej.net/software/imagej/, accessed on 1 April 2023).

3. Results
3.1. Morphology of C. militaris Strain TN Colony Treated with Fungicides

C. militaris strain TN was inoculated onto PDA medium containing a certain concentra-
tion of fungicides, and colony morphology was observed on the 5th and 10th days (Figure 1).
The results showed that the colonies treated with amphotericin B were the smallest on the
5th day of growth (Figure 1B). L-cysteine-treated colonies (Figure 1C), terbinafine-treated
colonies (Figure 1D), and 5-fluorocytosine-treated colonies (Figure 1E) grew similarly to
control colonies (Figure 1A). On the 10th day of growth, amphotericin B-treated colonies
were also the smallest (Figure 1G), followed by terbinafine-treated colonies (Figure 1I).
L-cysteine-treated colonies (Figure 1H) and 5-fluorocytosine-treated colonies (Figure 1J)
were similar to the control colonies (Figure 1F), and both were in contact with the Petri
plate wall. The mycelium in the colonies treated by the four fungicides was relatively tight
(Figure 1B–E,G–J). These results indicate that amphotericin B inhibited the growth of the C.
militaris strain TN mycelium more obviously, followed by terbinafine.
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Figure 1. The colonies of C. militaris strain TN treated with amphotericin B (B), L-cysteine (C), 
terbinafine (D), and 5-fluorocytosine (E) were cultured for 5 days, and the colonies of strain TN Figure 1. The colonies of C. militaris strain TN treated with amphotericin B (B), L-cysteine (C),

terbinafine (D), and 5-fluorocytosine (E) were cultured for 5 days, and the colonies of strain TN
treated with amphotericin B (G), L-cysteine (H), terbinafine (I), and 5-fluorocytosine (J) were cultured
for 10 days. At the same time, the control colonies of C. militaris TN were also cultured for 5 days (A)
and 10 days (F), respectively.

3.2. Morphology of C. militaris Strain CmFRQ454 Colony Treated with Fungicides

C. militaris strain CmFRQ454 was inoculated onto PDA medium containing a certain
concentration of fungicides, and colony morphology was observed on the 5th and 10th
days (Figure 2). The results showed that the colonies treated with terbinafine were the
smallest on the 5th day of growth (Figure 2D). Amphotericin B-treated colonies (Figure 2B),
L-cysteine-treated colonies (Figure 2C), and 5-fluorocytosine-treated colonies (Figure 2E)
grew faster than control colonies (Figure 2A). On the 10th day of growth, terbinafine-treated
colonies were also the smallest (Figure 2I), amphotericin B-treated colonies (Figure 2G),

https://imagej.net/software/imagej/
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L-cysteine-treated colonies (Figure 2H), and 5-fluorocytosine-treated colonies (Figure 2J)
were similar to the control colonies (Figure 2F). The mycelium in the colony treated with
5-fluorocytosine was more loose, which is beneficial for ventilation in the mycelium
(Figure 2E,J). However, the mycelia in the colonies treated with other fungicides were
relatively tight (Figure 2B–D,G–I). These results indicate that terbinafine inhibited the
growth of C. militaris strain CmFRQ454 mycelium more obviously. In the early stage of
colony culture, amphotericin B, L-cysteine, and 5-fluorocytosine could promote the C.
militaris strain CmFRQ454 colony growth to some extent.
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Figure 2. The colonies of C. militaris strain CmFRQ454 treated with amphotericin B (B), L-cysteine (C),
terbinafine (D), and 5-fluorocytosine (E) were cultured for 5 days, and the colonies of strain Cm-
FRQ454 treated with amphotericin B (G), L-cysteine (H), terbinafine (I), and 5-fluorocytosine (J) were
cultured for 10 days. At the same time, the control colonies of C. militaris CmFRQ454 were also
cultured for 5 days (A) and 10 days (F), respectively.

3.3. Analysis of CmFRQ in the Subculture S0 Mycelium of C. militaris Strain TN Treated
with Fungicides

Previous studies had shown that the CmFRQ antibody Anti-FRQ2 prepared by us
could detect the CmFRQ degradation forms of 50 kD and 33 kD proteins (to be published
separately). When extracting mycelium protein, the content of mycelium was always fixed,
and the total protein in 1 g of mycelium sample was extracted with 1 mL of PBS. Therefore,
the relative content of CmFRQ in the mycelium was compared under the same biomass, as
was the case in subsequent studies.

Western blot analysis was performed on the proteins extracted from the C. militaris
strain TN mycelium treated with fungicides for 5 and 10 days. The detection of the antibody
Anti-FRQ2 showed that the relative content of CmFRQ in S0-amphotericin B mycelium
(mycelium of C. militaris strain TN treated with amphotericin B) (Figure 3A: 5-1) showed
no significant change compared to the control group (Figure 3A: 5-CK) on the 5th day, and
there was a significant increase compared to the control group (Figure 3A: 10-CK) on the
10th day (Figure 3A: 10-1). The relative content of CmFRQ in the C. militaris strain TN
treated with L-cysteine was lower compared to that of the control group on the 5th day
(Figure 3A: 5-CK and 5-2), and there was no significant change compared to the control
group on the 10th day (Figure 3A: 10-CK and 10-2). On the 5th day of treatment with
terbinafine, the relative content of CmFRQ in the C. militaris strain TN showed a certain
increase compared to the control group (Figure 3B: 5-CK and 5-3), and on the 10th day,
there was a sharp increase compared to the control group (Figure 3B: 10-CK and 10-3).
On the 5th day, the relative content of CmFRQ in the C. militaris strain TN treated with
5-fluorocytosine showed a certain increase compared to the control group (Figure 3B: 5-CK
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and 5-4), and on the 10th day, there was a sharp increase compared to the control group
(Figure 3B: 10-CK and 10-4). These results indicate that the treatment of amphotericin B,
terbinafine, and 5-fluorocytosin could all increase the relative content of CmFRQ in the
mycelium of C. militaris strain TN to a certain extent, especially in the late stage of culture
close to the aging stage of the mycelium. L-cysteine had little effect on CmFRQ expression.
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was analyzed by Western blotting. (A) The Western blotting analysis of CmFRQ in C. militaris strain
TN treated with amphotericin B (A: 5-1 and 10-1) and L-cysteine (A: 5-2 and 10-2) was implemented
(p < 0.05); (B) The Western blotting analysis of CmFRQ in C. militaris strain TN treated with terbinafine
(B: 5-3 and 10-3) and 5-fluorocytosine (B: 5-4 and 10-4) was implemented (p < 0.05). Note: Total protein
was extracted from 0.1 g mycelium samples with 0.1 mL PBS, i.e., 1.0 g fresh weight/1 mL PBS.

3.4. Analysis of CmFRQ in Subculture S0 Mycelium of C. militaris Strain CmFRQ454 Treated
with Fungicides

The mycelium of C. militaris strain CmFRQ454 treated with amphotericin B showed no
significant changes in the relative content of CmFRQ on the 5th day compared to the control
group (Figure 4A: 5-CK and 5-1) but significantly decreased on the 10th day compared
to the control group (Figure 4A: 10-CK and 10-1). The relative content of CmFRQ in the
mycelium of C. militaris strain CmFRQ454 treated with L-cysteine decreased compared
to the control group on the 5th and 10th days (Figure 4A: 5-CK, 5-2, 10-CK, and 10-2).
The amount of CmFRQ in the mycelium of C. militaris strain CmFRQ454 treated with
terbinafine decreased significantly compared to the control group on the 5th and 10th days
(Figure 4B: 5-CK, 5-3, 10-CK, and 10-3). The mycelium of C. militaris strain CmFRQ454 was
treated with 5-fluorocytosine, and the amount of CmFRQ significantly decreased on the
5th and 10th days (Figure 4B: 5-CK, 5-4, 10-CK, and 10-4). These results indicate that none
of these four fungicides significantly increased the amount of CmFRQ in the C. militaris
strain CmFRQ454 and even had a certain inhibitory effect.

3.5. Analysis of CmFRQ in Subculture S1 Mycelium of C. militaris Strain TN after Removal
of Fungicide

The subculture S0 mycelium of the C. militaris strain TN treated with fungicides was
transferred to the PDA medium without fungicides to obtain the subculture S1 mycelium
without fungicide treatment. When the subculture S1 mycelium was cultured for 5 days,
the relative content of CmFRQ in the S1-amphotericin B mycelium (Figure 5A: 5-1), S1-L-
cysteine mycelium (Figure 5A: 5-2), S1-terbinafine mycelium (Figure 5A: 5-3), and S1-5-
fluorocytosine mycelium (Figure 5A: 5-4) compared to that in the control group (Figure 5A:
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5-CK) showed no significant changes. However, when the subculture S1 mycelia was
cultured for 10 days, the relative content of CmFRQ in the S1-amphotericin B mycelium
(Figure 5A: 10-1), S1-L-cysteine (Figure 5A: 10-2), S1-terbinafine (Figure 5A: 10-3), and
S1-5-fluorocytosine (Figure 5A: 10-4) compared to that in the control group (Figure 5A:
10-CK) increased significantly. This indicates that in subculture S1 mycelium treated with
the removal of these four fungicides, the early circadian clock in the C. militaris strain TN
mycelium did not change much, but the late circadian clock changed greatly.
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Figure 4. The relative content of CmFRQ in C. militaris strain CmFRQ454 treated with different
fungicides was analyzed by Western blotting. (A) The Western blotting analysis of CmFRQ in C.
militaris strain CmFRQ454 mycelium treated with amphotericin B (A: 5-1 and A: 10-1) and L-cysteine
(A: 5-2 and A: 10-2) was implemented (p < 0.05); (B) The Western blotting analysis of CmFRQ in C.
militaris strain CmFRQ454 mycelium treated with terbinafine (B: 5-3 and B: 10-3) and 5-fluorocytosine
(B: 5-4 and B: 10-4) was implemented (p < 0.05). Note: Total protein was extracted from 0.1 g mycelium
samples with 0.1 mL PBS, i.e., 1.0 g fresh weight/1 mL PBS.

3.6. Analysis of CmFRQ in Subculture S1 Mycelium of C. militaris Strain CmFRQ454 after
Removal of Fungicide

Subculture S0 mycelium of C. militaris strain CmFRQ454 treated with fungicides was
transferred to the culture medium without fungicide to obtain subculture S1 mycelium
without fungicide treatment. When subculture S1 mycelium was cultured for 5 days, the
relative content of CmFRQ in S1-amphotericin B (Figure 6A: 5-1), S1-L-cysteine (Figure 6A:
5-2), S1-Terbinefin (Figure 6A: 5-3) and S1-5-fluorocytosine (Figure 6A: 5-4) mycelium com-
pared with the control (Figure 6A: 5-CK) was decreased, and that in the S1-L-cysteine was
more decreased (Figure 6A: 5-2). When subculture S1 mycelia was cultured for 10 days, the
relative content of CmFRQ in S1-amphotericin B mycelium (Figure 6A: 10-1), S1-L-cysteine
(Figure 6A: 10-2), S1-terbinafine (Figure 6A: 10-3) and S1-5-fluorocytosine (Figure 6A: 10-4)
mycelium compared with the control group (Figure 6A: 10-CK) was decreased significantly.
These results indicated that the expression of CmFRQ in subculture S1 mycelium after
removal of these four fungicides is down-regulated, and the operation of the circadian
clock may be weakened.
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Figure 6. The relative content of CmFRQ in S1 mycelium of C. militaris strain CmFRQ454 was
analyzed by Western blotting. (A) The Western blotting analysis of CmFRQ in the S1-amphotericin B
(from S0 with amphotericin B treatment) (A: 5-1 and 10-1) and S1-L-cysteine (from S0 with L-cysteine
treatment) (A: 5-2 and 10-2) was implemented (p < 0.05); (B) The Western blotting analysis of CmFRQ
in the S1- terbinafine (from S0 with terbinafine treatment) (A: 5-3 and 10-3) and S1-5-fluorocytosine
(from S0 with 5-fluorocytosine treatment) (A: 5-4 and 10-4) mycelium was implemented (p < 0.05).
Note: Total protein was extracted from 0.1 g mycelium samples with 0.1 mL PBS, i.e., 1.0 g fresh
weight/1 mL PBS.



J. Fungi 2024, 10, 150 9 of 14

3.7. Morphological Analysis of Subculture S1 Fruiting Bodies of C. militaris Strain TN after
Removal of Fungicides

The subculture S1 mycelium of C. militaris strain TN was inoculated in a culture bottle
for fruiting body culture, and the fruiting body morphology was observed after 40 days of
culture (Figure 7). Compared with the control group (Figure 7A), the differences appeared
in the fruiting bodies of subculture S1 despite the absence of fungicide effect. The results of
S1-amphotericin B (Figure 7B), S1-L-cysteine (Figure 7C) and S1- terbinafine (Figure 7D)
cultures showed certain degenerated, shorter, and more deformed fruiting body than the
control group (Figure 7A). The appearance of albino mycelium on the stroma obtained
from S1-L-cysteine (Figure 7C) and S1-terbinafine (Figure 7D) cultures affected the normal
growth of the fruiting body. The fruiting bodies obtained by S1-5-fluorocytosine culture
were thinner than those in the control group, but no malformed fruiting body and albino
mycelium was present on the stroma (Figure 7E). These results indicated that the effect of
fungicide on C. militaris strain TN could continue to the next generation subculture without
fungicide treatment, resulting in worse fruiting body growth. However, the fruiting body
obtained after 5-fluorocytosine treatment showed relatively good performance, with almost
no degeneration.
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Figure 7. The fruiting body of subculture S1 of C. militaris strain TN after removal of fungicide. The
fruiting bodies obtained by S1-amphotericin B, S1-L-cysteine, S1-terbinafine and S1-5-fluorocytosine
culture, respectively, are shown in (B–E). The control fruiting body was shown in (A).

3.8. Morphological Analysis of Subculture S1 Fruiting Bodies of C. militaris Strain CmFRQ454
after Removal of Fungicide

The C. militaris strain CmFRQ454 was once a rejuvenated strain, and after multiple gen-
erations of asexual transfer culture, the fruiting body showed degeneration (Figure 8A). The
subculture S1 mycelium of C. militaris strain CmFRQ454 was inoculated in a culture bottle
for fruiting body culture, and the morphology of fruiting body was observed after 40 days
of culture (Figure 8). Compared with the control group (Figure 8A), the fruiting bodies
obtained from S1 amphotericin B (Figure 8B), S1-L-cysteine (Figure 8C), and S1-terbinafine
(Figure 8D) cultures were still degenerated, similar to the control group (Figure 8A), show-
ing deformed enlargement of fruiting bodies, bifurcation, shorter than normal fruiting
bodies, and albino mycelium on the stroma. Among them, the degeneration of fruiting
bodies obtained from S1- terbinafine culture was more obvious (Figure 8D), and the number
of fruiting bodies decreased and were shorter than that of the control group (Figure 8A).
However, the fruiting body obtained by S1-5-fluorocytosine culture showed rejuvenation,
normal growth, few deformities, and longer than control fruiting body (Figure 8E). These
results indicated that the treatment of C. militaris strain CmFRQ454 with fungicides had
different effects on fruiting bodies, which could lead to further degeneration of fruiting
bodies, and also lead to the rejuvenation of the fruiting body.
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Figure 8. The fruiting body of subculture S1 of C. militaris strain CmFRQ454 after removal of
fungicide. The fruiting bodies obtained by S1-amphotericin B, S1-L-cysteine, S1-terbinafine and
S1-5-fluorocytosine culture, respectively, are shown in (B–E). The control fruiting body is shown
in (A).

4. Discussion

At present, research on the relationship between fungicides and fungal diversity
mainly focuses on the relationship between the resistance of fungicides and the genetic
diversity of fungi [1,4–6,52]. The main idea of our research was to investigate the changes
in the circadian clock and fruiting body of C. militaris under the influence of fungicides.
After treating the mycelium of C. militaris with four fungicides at a certain concentration,
the mycelium was not completely killed, but a certain non-lethal selection pressure was
given. Under the action of four fungicides, the clock protein CmFRQ, mycelial growth,
and fruiting body development of C. militaris were all affected; in particular, the impact on
fruiting bodies was bidirectional, which can lead to the degeneration of fruiting bodies and
also promote their rejuvenation.

In this study, two strains of C. militaris with different mating types, TN and CmFRQ454,
were used. Obviously, the genetic characteristics of these two strains were different. There-
fore, the expression of CmFRQ in subculture S0 mycelium treated with four fungicides was
different between the two strains. Three fungicides, namely amphotericin B, terbinafine,
and 5-flucytocytosin, could promote an increase in the relative content of CmFRQ in the
mycelium of C. militaris strain TN, and this promotion effect could increase with time. How-
ever, high concentrations of L-cysteine inhibited the expression of CmFRQ in C. militaris
strain TN mycelium. These four fungicides could reduce the relative content of CmFRQ
in strain CmFRQ454 mycelium, and 5-fluorocytosin promoted the highest degree of Cm-
FRQ reduction. These results indicate that the circadian clock of C. militaris with different
mating types was disturbed differently during the stress of fungicides on the mycelium of
C. militaris.

After the stress of the fungicide was removed, the effect of the fungicide on the clock
protein CmFRQ in mycelium was still retained in the subculture S1 obtained from the
S0 transferring culture. The results showed that the relative expression of CmFRQ was
increased in the mycelium of subculture S1 of strain TN treated with amphotericin B, L-
cysteine, terbinafine, and 5-fluorocytosine. However, in the mycelium of subculture S1 of C.
militaris strain CmFRQ454, the situation was exactly the opposite, with a relative decrease
in CmFRQ expression. After removing the stress of fungicides, the effect of the stress will
continue, and the response to different mating types of C. militaris is exactly the opposite.

After treating the C. militaris strains TN and CmFRQ454 with these four fungicides,
the mycelium in the colonies was relatively tight, but only the mycelium in the colonies of
strain CmFRQ454 treated with 5-fluorocytosine was relatively loose, which was conducive
to the formation of fruiting bodies. Most of the fruiting bodies obtained from subculture
S1 after removing the fungicides showed the morphological degeneration. However, 5-
fluorocytosine led to the revival of the degenerated C. militaris strain CmFRQ454. It is
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known that 5-fluorocytosine interferes with RNA transcription, thereby affecting protein
synthesis [45,46]. However, from the performance of these two strains, 5-fluorocytosine
promotes the synthesis of CmFRQ in C. militaris strain TN while inhibiting it in C. militaris
strain CmFRQ454. Therefore, the expression of circadian clock proteins could correspond
to the degeneration or rejuvenation of the fruiting body. There are few studies on the
bidirectional effects of fungicides on fungal growth and reproduction. Some studies have
shown that DMI fungicides could promote the spore production of Colletotrichum spp.
at low concentrations [53]. Obviously, the bidirectional action of fungicides brings more
diversity to fungal physiology and morphology.

C. militaris is a fungus prone to degeneration, especially during subculture [50]. Some
researchers have regarded the degeneration of fungi as an aging problem and determined
that the mechanism of degeneration is the same as that of aging, and high levels of reactive
oxygen species (ROS) lead to molecular damage and degeneration [54–57]. Studies have
shown that ROS can regulate the important components of the circadian oscillator in
N. crassa, and it has also been determined that ROS homeostasis is controlled by the
circadian clock, and ROS levels exhibit a circadian rhythm [58–62]. The mycelium of the
degenerated C. militaris strain was also found to contain more ROS and higher levels of
oxidative stress, with a significant negative correlation between its oxidative stress and
strain degeneration [63]. Therefore, we speculate that the effect of fungicides on C. militaris
could affect the balance of ROS in C. militaris cells, thereby affecting the degeneration of C.
militaris, which is closely related to its circadian clock.

5. Conclusions

Four fungicides, amphotericin B, L-cysteine, terbinafine, and 5-fluorocytosine, were
used to treat two C. militaris strains, strain TN and strain CmFRQ454. Treatment with the
four fungicides resulted in changes in the expression of the clock protein CmFRQ and the
fruiting body morphology of the two strains.

Amphotericin B, terbinafine, and 5-fluorocytosine could increase the relative content of
CmFRQ in the subculture S0 mycelium of C. militaris strain TN, while high concentrations
of L-cysteine reduced the relative content of CmFRQ in the subculture S0 mycelium of C.
militaris strain TN. These four fungicides could reduce the relative content of CmFRQ in
the subculture S0 mycelium of C. militaris strain CmFRQ454. After removing the stress of
fungicides, the effect of the stress of fungicides would continue. The relative content of
CmFRQ was increased in the subculture S1 mycelium of strain TN treated with ampho-
tericin B, L-cysteine, terbinafine, and 5-fluorocytosine, but the opposite result appeared in
the subculture S1 mycelium of C. militaris strain CmFRQ454.

The fruiting bodies of subculture S1 of strain TN or strain CmFRQ454 still showed de-
generation after removing the treatment of four fungicides, but rejuvenation was provided
to the fruiting bodies of subculture S1 of strain CmFRQ454 after removing the treatment of
5-fluorocytosine.
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