Antigenic Relatedness between Mannans from Coccidioides immitis and Coccidioides posadasii Spherules and Mycelia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Cultures
2.2. Mannan Extraction, Purification and Analysis
2.3. Immunization of Rabbits
2.4. ELISA for the Determination of Antibody Levels
2.5. Calculation of Antigenic Relatedness
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacquinot, P.M.; Plancke, Y.; Sendid, B.; Strecker, G.; Poulain, D. Nature of Candida albicans-derived carbohydrate antigen recognized by a monoclonal antibody in patient sera and distribution over Candida species. FEMS Microbiol. Lett. 1998, 169, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Sendid, B.; Tabouret, M.; Poirot, J.L.; Mathieu, D.; Fruit, J.; Poulain, D. New enzyme immunoassays for sensitive detection of circulating Candida albicans mannan and antimannan antibodies: Useful combined test for diagnosis of systemic candidiasis. J. Clin. Microbiol. 1999, 37, 1510–1517. [Google Scholar] [CrossRef]
- Sendid, B.; Poirot, J.L.; Tabouret, M.; Bonnin, A.; Caillot, D.; Camus, D.; Poulain, D. Combined detection of mannanaemia and antimannan antibodies as a strategy for the diagnosis of systemic infection caused by pathogenic Candida species. J. Med. Microbiol. 2002, 51, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Reiss, E.; Lehmann, P.F. Galactomannan antigenemia in invasive aspergillosis. Infect. Immun. 1979, 25, 357–365. [Google Scholar] [CrossRef]
- Stynen, D.; Goris, A.; Sarfati, J.; Latgé, J.P. A new sensitive sandwich enzyme-linked immunosorbent assay to detect galactofuran in patients with invasive aspergillosis. J. Clin. Microbiol. 1995, 33, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Connolly, P.; Hage, C.A.; Bariola, J.R.; Bensadoun, E.; Rodgers, M.; Bradsher, R.W.; Wheat, L.J. Blastomyces dermatitidis antigen detection by quantitative enzyme immunoassay. Clin. Vaccine Immunol. 2012, 19, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, M.; Furfaro, E.; Del Bono, V.; Gualandi, F.; Raiola, A.M.; Molinari, M.P.; Gritti, P.; Sanguinetti, M.; Posteraro, B.; Bacigalupo, A.; et al. Galactomannan testing might be useful for early diagnosis of fusariosis. Diagn. Microbiol. Infect. Dis. 2012, 72, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Tortorano, A.M.; Esposto, M.C.; Prigitano, A.; Grancini, A.; Ossi, C.; Cavanna, C.; Cascio, G.L. Cross-reactivity of Fusarium spp. in the Aspergillus galactomannan enzyme-linked immunosorbent assay. J. Clin. Microbiol. 2012, 50, 1051–1053. [Google Scholar] [CrossRef]
- Wheat, L.J.; Kohler, R.B.; Tewari, R.P. Diagnosis of disseminated histoplasmosis by detection of Histoplasma capsulatum antigen in serum and urine specimens. N. Engl. J. Med. 1986, 314, 88. [Google Scholar] [CrossRef]
- Connolly, P.A.; Durkin, M.M.; Lemonte, A.M.; Hackett, E.J.; Wheat, L.J. Detection of histoplasma antigen by a quantitative enzyme immunoassay. Clin. Vaccine Immunol. 2007, 14, 1587–1591. [Google Scholar] [CrossRef]
- Durkin, M.; Connolly, P.; Kuberski, T.; Myers, R.; Kubak, B.M.; Bruckner, D.; Pegues, D.; Wheat, L.J. Diagnosis of coccidioidomycosis with use of the Coccidioides antigen enzyme immunoassay. Clin. Infect. Dis. 2008, 47, e69–e73. [Google Scholar] [CrossRef] [PubMed]
- Kuberski, T.; Myers, R.; Wheat, L.J.; Durkin, M.; Connolly, P.; Kubak, B.M.; Bruckner, D.; Pegues, D. Diagnosis of coccidioidomycosis by antigen detection using cross-reaction with a Histoplasma antigen. Clin. Infect. Dis. 2007, 44, e50–e54. [Google Scholar] [CrossRef] [PubMed]
- Durkin, M.; Estok, L.; Hospenthal, D.; Crum-Cianflone, N.; Swartzentruber, S.; Hackett, E.; Wheat, L.J. Detection of Coccidioides antigenemia following dissociation of immune complexes. Clin. Vaccine Immunol. 2009, 16, 1453–1456. [Google Scholar] [CrossRef] [PubMed]
- Kassis, C.; Durkin, M.; Holbrook, E.; Myers, R.; Wheat, L. Advances in diagnosis of progressive pulmonary and disseminated coccidioidomycosis. Clin. Infect. Dis. 2021, 72, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Peat, S.; Whelan, W.J.; Edwards, T.E. Polysaccharides of baker’s yeast. IV. Mannan. J. Chem. Soc. 1961, 1, 29–34. [Google Scholar] [CrossRef]
- Evans, E.E. The antigenic composition of Cryptococcus neoformans. I. A serologic classification by means of the capsular and agglutination reactions. J. Immunol. 1950, 64, 423–430. [Google Scholar] [CrossRef]
- Wilson, D.E.; Bennett, J.E.; Bailey, J.W. Serologic grouping of Cryptococcus neoformans. Proc. Soc. Exper. Biol. Med. 1968, 127, 820–823. [Google Scholar] [CrossRef]
- Osterland, C.K.; Miller, E.J.; Karakawa, W.W.; Krause, R.M. Characteristics of streptococcal group-specific antibody isolated from hyperimmune rabbits. J. Exp. Med. 1966, 123, 599–614. [Google Scholar] [CrossRef]
- Wheat, R.W.; Woodruff, W.W., III; Haltiwagner, R.S. Occurrence of antigenic (species-specific?) partially 3-O-methylated heteromannans in cell wall and soluble cellular (nonwall) components of Coccidioides immitis mycelia. Infect. Immun. 1983, 41, 728–734. [Google Scholar] [CrossRef]
- Cole, G.T.; Kruse, D.; Seshan, K.R. Antigen complex of Coccidioides immitis which elicits a precipitin antibody response in patients. Infect. Immun. 1991, 59, 2434–2446. [Google Scholar] [CrossRef]
- Archetti, I.; Horsfall, F.L., Jr. Persistent antigenic variation of influenzae A viruses after incomplete neutralization in ovo with heterologous immune serum. J. Exp. Med. 1950, 92, 441–462. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, L.; Nix, D.; Wright, M.; Lindberg, E.; Fagan, T.; Lieberman, D.; Stoffer, T.; Ampel, N.M.; Galgiani, J.N. Coccidioidomycosis as a common cause of community-acquired pneumonia. Emerg. Infect. Dis. 2006, 12, 958–962. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Impact and control of valley fever. In Proceedings of a Workshop in Brief; The National Academies Press: Washington, DC, USA, 2023. [CrossRef]
- Gorris, M.E.; Treseder, K.K.; Zender, C.S.; Randerson, J.T. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. Geohealth 2019, 3, 308–327. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.L.; Chiller, T. Update on the epidemiology, diagnosis, and treatment of coccidioidomycosis. J. Fungi 2022, 8, 666. [Google Scholar] [CrossRef] [PubMed]
- Donovan, F.M.; Zangeneh, T.T.; Malo, J.; Galgiani, J.N. Top questions in the diagnosis and treatment of coccidioidomycosis. Open Forum Infect. Dis. 2017, 4, ofx197. [Google Scholar] [CrossRef] [PubMed]
- Galgiani, J.N.; Ampel, N.M.; Blair, J.E.; Catanzaro, A.; Geertsma, F.; Hoover, S.E.; Johnson, R.H.; Kusne, S.; Lisse, J.; MacDonald, J.D.; et al. 2016 Infectious Diseases Society of America (IDSA) Clinical practice guideline for the treatment of coccidioidomycosis. Clin. Infect. Dis. 2016, 63, e112–e146. [Google Scholar] [CrossRef] [PubMed]
- Wieden, M.A.; Lundergan, L.L.; Blum, J.; Delgado, K.L.; Coolbaugh, R.; Howard, R.; Peng, T.; Pugh, E.; Reis, N.; Theis, J.; et al. Detection of coccidioidal antibodies by 33-kDa spherule antigen, Coccidioides EIA, and standard serologic tests in sera from patients evaluated for coccidioidomycosis. J. Infect. Dis. 1996, 173, 1273–1277. [Google Scholar] [CrossRef] [PubMed]
- Donovan, F.M.; Ramadan, F.A.; Khan, S.A.; Bhaskara, A.; Lainhart, W.D.; Narang, A.T.; Mosier, J.M.; Ellingson, K.D.; Bedrick, E.J.; Saubolle, M.A.; et al. Comparison of a novel rapid lateral flow assay to enzyme immunoassay results for early diagnosis of coccidioidomycosis. Clin. Infect. Dis. 2021, 73, e2746–e2753. [Google Scholar] [CrossRef]
- Grill, F.J.; Svarovsky, S.; Gonzalez-Moa, M.; Kaleta, E.; Blair, J.E.; Lovato, L.; Grant, R.; Ross, K.; Linnehan, B.K.; Meegan, J.; et al. Development of a rapid lateral flow assay for detection of anti-coccidioidal antibodies. J. Clin. Microbiol. 2023, 61, e0063123. [Google Scholar] [CrossRef]
- Wheat, R.W.; Tritschler, C.; Conant, N.F.; Lowe, E.P. Comparison of Coccidioides immitis arthrospore, mycelium, and spherule cell walls, and influence of growth medium on mycelial cell wall composition. Infect. Immun. 1977, 17, 91–97. [Google Scholar] [CrossRef]
- Maitra, S.K.; Ballou, C.E. Heterogeneity and refined structtures of 3-O-methyl-D-mannose polysaccharides from Mycobacterium smegmatis. J. Biol. Chem. 1977, 252, 2459–2469. [Google Scholar] [CrossRef] [PubMed]
- Gray, G.R.; Ballou, C.E. Isolation and characterization of a polysaccharide containing 3-O-methyl-D-mannose from Mycobacterium phlei. J. Biol. Chem. 1971, 246, 6835–6842. [Google Scholar] [CrossRef] [PubMed]
- Cole, G.T.; Kruse, D.; Zhu, S.; Seshan, K.R.; Wheat, R.W. Composition, serologic reactivity, and immunolocalization of a 120-kilodalton tube precipitin antigen of Coccidioides immitis. Infect. Immun. 1990, 58, 179–188. [Google Scholar] [CrossRef]
- Gao, J.; Couzens, L.; Burke, D.F.; Wan, H.; Wilson, P.; Memoli, M.J.; Xu, X.; Harvey, R.; Wrammert, J.; Ahmed, R.; et al. Antigenic drift of the influenza A(H1N1)pdm09 virus neuraminidase results in reduced effectiveness of A/California/7/2009 (H1N1pdm09)-specific antibodies. mBio 2019, 10, e00307-19. [Google Scholar] [CrossRef] [PubMed]
- Schloer, G. Antigenic relationships among Newcastle disease virus mutants obtained from laboratory strains and from recent California isolates. Infect. Immun. 1974, 10, 724–732. [Google Scholar] [CrossRef]
- Ndifon, W.; Dushoff, J.; Levin, S.A. On the use of hemagglutination-inhibition for influenza surveillance: Surveillance data are predictive of influenza vaccine effectiveness. Vaccine 2009, 27, 2447–2452. [Google Scholar] [CrossRef]
- Kinjo, T.; Yanagawa, R. Antigenic relationship among strains of infectious canine hepatitis virus. Jpn. J. Vet. Res. 1968, 16, 128–136. [Google Scholar]
- Yassine, H.M.; Lee, C.W.; Suarez, D.L.; Saif, Y.M. Genetic and antigenic relatedness of H3 subtype influenza A viruses isolated from avian and mammalian species. Vaccine 2008, 26, 966–977. [Google Scholar] [CrossRef]
Coccidioides Species and Growth Form | Glycosyl Composition (%) a | Protein a (%) | ||||
---|---|---|---|---|---|---|
Arabinose | Galactose | Mannose | Glucose | 3-O-Me-Mannose | ||
C. posadasii mycelia | 0.3 | 63 | 3.3 | 15 | 17 | 8.6 |
C. posadasii spherules | - | 49 | 1.9 | 5.2 | 44 | 11 |
C. immitis mycelia | 1.8 | 73 | 8.1 | 6.6 | 9.9 | 4.4 |
C. immitis spherules | 1.2 | 65 | 2.2 | 3.7 | 28 | 7.5 |
Antiserum a | Rabbit Number | Mannan b | |||
---|---|---|---|---|---|
Cp Mycelia | Cp Spherules | Ci Mycelia | Ci Spherules | ||
C. posadasii mycelia | Ra1 | 7850 | 5220 | 18,200 | 6460 |
Ra2 | 5590 | 13,900 | 14,100 | 16,800 | |
C. posadasii spherules | Ra3 | 3100 | 2600 | 3430 | 3030 |
Ra4 | 7560 | 5970 | 9110 | 6770 | |
C. immitis mycelia | Ra5 | 13,200 | 9920 | 20,200 | 11,100 |
Ra6 | 10,600 | 8810 | 13,400 | 9690 | |
C. immitis spherules | Ra 7 | 13,400 | 11,600 | 23,100 | 12,400 |
Ra 8 | 12,000 | 6770 | 9790 | 6560 |
Antiserum | Mannan | |||
---|---|---|---|---|
Cp Mycelia | Cp Spherules | Ci Mycelia | Ci Spherules | |
C. posadasii mycelia | 1.0 | 1.3 | 2.4 | 1.6 |
C. posadasii spherules | 1.2 | 1.0 | 1.4 | 1.1 |
C. immitis mycelia | 0.7 | 0.6 | 1.0 | 0.6 |
C. immitis spherules | 1.4 | 1.0 | 1.7 | 1.0 |
Antiserum | Mannan | |||
---|---|---|---|---|
Cp Mycelia | Cp Spherules | Ci Mycelia | Ci Spherules | |
C. posadasii mycelia | 1.0 | |||
C. posadasii spherules | 1.2 | 1.0 | ||
C. immitis mycelia | 1.3 | 0.9 | 1.0 | |
C. immitis spherules | 1.5 | 1.0 | 1.0 | 1.0 |
Cross-reactivity between cryptococcal isolates by tube agglutination titers | |||
Antiserum | Cells used for agglutination | ||
Type A | Type B | Type C | |
Type A (RE) | 320 | 40 | 10 |
Type B (1523) | 320 | 320 | 10 |
Type C (LE) | 40 | 40 | 320 |
Titer ratios showing cross-reactivity between cryptococcal serotypes | |||
Antiserum | Cells used for agglutination titers | ||
Type A | Type B | Type C | |
Type A | 1.0 | 0.125 | 0.03 |
Type B | 1.0 | 1.0 | 0.03 |
Type C | 0.125 | 0.125 | 1.0 |
Antigenic relationship between cryptococcal serotypes | |||
Type A | Type B | Type C | |
Type A | 1.0 | ||
Type B | 0.35 | 1.0 | |
Type C | 0.06 | 0.06 | 1.0 |
Cross-reactivity between cryptococcal isolates obtained by slide agglutination titers | ||||
Antiserum | Cells used for agglutination titers | |||
Type A | Type B | Type C | Type D | |
Type A (68) | 1024 | 8 | 4 | 128 |
Type B (112) | 1024 | 2048 | 256 | 512 |
Type C (18) | 128 | 64 | 128 | 16 |
Type D (52) | 256 | 256 | 32 | 256 |
Titer ratios showing cross-reactivity between cryptococcal serotypes | ||||
Antiserum | Cells used for agglutination titers | |||
Type A | Type B | Type C | Type D | |
Type A | 1.0 | 0.008 | 0.004 | 0.125 |
Type B | 0.5 | 1.0 | 0.125 | 0.25 |
Type C | 1.0 | 0.5 | 1.0 | 0.125 |
Type D | 1.0 | 1.0 | 0.125 | 1.0 |
Antigenic relationship between cryptococcal isolates | ||||
Type A | Type B | Type C | Type D | |
Type A | 1.0 | |||
Type B | 0.06 | 1.0 | ||
Type C | 0.06 | 0.25 | 1.0 | |
Type D | 0.35 | 0.5 | 0.125 | 1.0 |
Antiserum b | Mannan Reactivity by ELISA (Reciprocal Titers × 10−3) a | |||||||
---|---|---|---|---|---|---|---|---|
Homologous Cp or Ci Mannan c | Af 4609 | Fs 95-2478 | Ca 2876 | Ro 99-892 | Ro 46599 | Mc 8542 | Mc 8097 | |
C. posadasii mycelia | 6630 | 432 | 1750 | 80 | 51 | 827 | 1150 | 52 |
C. posadasii spherules | 3940 | 36 | 135 | 20 | 10 | 77 | 121 | 8 |
C. immitis mycelia | 16,400 | 396 | 1640 | 47 | 30 | 425 | 742 | 115 |
C. immitis spherules | 9020 | 133 | 503 | 10 | 23 | 156 | 177 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burnham-Marusich, A.R.; Zayac, K.R.; Galgiani, J.N.; Lewis, L.; Kozel, T.R. Antigenic Relatedness between Mannans from Coccidioides immitis and Coccidioides posadasii Spherules and Mycelia. J. Fungi 2024, 10, 89. https://doi.org/10.3390/jof10020089
Burnham-Marusich AR, Zayac KR, Galgiani JN, Lewis L, Kozel TR. Antigenic Relatedness between Mannans from Coccidioides immitis and Coccidioides posadasii Spherules and Mycelia. Journal of Fungi. 2024; 10(2):89. https://doi.org/10.3390/jof10020089
Chicago/Turabian StyleBurnham-Marusich, Amanda R., Kathleen R. Zayac, John N. Galgiani, Lourdes Lewis, and Thomas R. Kozel. 2024. "Antigenic Relatedness between Mannans from Coccidioides immitis and Coccidioides posadasii Spherules and Mycelia" Journal of Fungi 10, no. 2: 89. https://doi.org/10.3390/jof10020089
APA StyleBurnham-Marusich, A. R., Zayac, K. R., Galgiani, J. N., Lewis, L., & Kozel, T. R. (2024). Antigenic Relatedness between Mannans from Coccidioides immitis and Coccidioides posadasii Spherules and Mycelia. Journal of Fungi, 10(2), 89. https://doi.org/10.3390/jof10020089