Specifically Targeting Metacaspases of Candida: A New Therapeutic Opportunity
Abstract
:1. Introduction
2. Evidence for Candida Cell Death
3. Description of Candida Metacaspases
4. Specifically Activating Candida Metacaspases: A New Therapeutic Opportunity?
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO Releases First-Ever List of Health-Threatening Fungi. Available online: https://www.who.int/news/item/25-10-2022-who-releases-first-ever-list-of-health-threatening-fungi (accessed on 18 September 2023).
- WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://www.who.int/publications-detail-redirect/9789240060241 (accessed on 22 November 2023).
- Paiva, J.-A.; Pereira, J.M. Treatment of Invasive Candidiasis in the Era of Candida Resistance. Curr. Opin. Crit. Care 2023, 29, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Chowdhary, A.; Gold, J.A.W. The Rapid Emergence of Antifungal-Resistant Human-Pathogenic Fungi. Nat. Rev. Microbiol. 2023, 21, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Shastri, P.S.; Shankarnarayan, S.A.; Oberoi, J.; Rudramurthy, S.M.; Wattal, C.; Chakrabarti, A. Candida Auris Candidaemia in an Intensive Care Unit—Prospective Observational Study to Evaluate Epidemiology, Risk Factors, and Outcome. J. Crit. Care 2020, 57, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to Azoles and Echinocandins Worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Neoh, C.F.; Jeong, W.; Kong, D.C.; Slavin, M.A. The Antifungal Pipeline for Invasive Fungal Diseases: What does the Future Hold? Expert. Rev. Anti. Infect. Ther. 2023, 21, 577–594. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Tang, R.; Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Targeting Cell Death Pathways for Cancer Therapy: Recent Developments in Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis Research. J. Hematol. Oncol. 2022, 15, 174. [Google Scholar] [CrossRef]
- Martin, S.J.; Green, D.R. Protease Activation during Apoptosis: Death by a Thousand Cuts? Cell 1995, 82, 349–352. [Google Scholar] [CrossRef]
- Michie, J.; Kearney, C.J.; Hawkins, E.D.; Silke, J.; Oliaro, J. The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells 2020, 9, 207. [Google Scholar] [CrossRef]
- Morrish, E.; Brumatti, G.; Silke, J. Future Therapeutic Directions for Smac-Mimetics. Cells 2020, 9, 406. [Google Scholar] [CrossRef]
- Walczak: Tumoricidal Activity of Tumor Necrosis Factor. Available online: https://scholar.google.com/scholar_lookup?title=Tumoricidal%20activity%20of%20tumor%20necrosis%20factor-related%20apoptosis-inducing%20ligand%20in%20vivo&publication_year=1999&author=H.%20Walczak&author=R.E.%20Miller&author=K.%20Ariail&author=B.%20Gliniak&author=T.S.%20Griffith&author=M.%20Kubin&author=W.%20Chin&author=J.%20Jones&author=A.%20Woodward&author=T.%20Le&author=C.%20Smith&author=P.%20Smolak&author=R.G.%20Goodwin&author=C.T.%20Rauch&author=J.C.%20Schuh&author=D.H.%20Lynch (accessed on 29 November 2023).
- Getting TRAIL Back on Track for Cancer Therapy|Cell Death & Differentiation. Available online: https://www.nature.com/articles/cdd201481 (accessed on 29 November 2023).
- Madeo, F.; Herker, E.; Maldener, C.; Wissing, S.; Lächelt, S.; Herlan, M.; Fehr, M.; Lauber, K.; Sigrist, S.J.; Wesselborg, S.; et al. A Caspase-Related Protease Regulates Apoptosis in Yeast. Mol. Cell 2002, 9, 911–917. [Google Scholar] [CrossRef]
- Sharon, A.; Finkelstein, A.; Shlezinger, N.; Hatam, I. Fungal Apoptosis: Function, Genes and Gene Function. FEMS Microbiol. Rev. 2009, 33, 833–854. [Google Scholar] [CrossRef] [PubMed]
- Conchou, L.; Doumèche, B.; Galisson, F.; Violot, S.; Dugelay, C.; Diesis, E.; Page, A.; Bienvenu, A.-L.; Picot, S.; Aghajari, N.; et al. Structural and Molecular Determinants of Candida glabrata Metacaspase Maturation and Activation by Calcium. Commun. Biol. 2022, 5, 1158. [Google Scholar] [CrossRef] [PubMed]
- La, S.R.; Ndhlovu, A.; Durand, P.M. The Ancient Origins of Death Domains Support the “Original Sin” Hypothesis for the Evolution of Programmed Cell Death. J. Mol. Evol. 2022, 90, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Wloch-Salamon, D.M.; Bem, A.E. Types of Cell Death and Methods of Their Detection in Yeast Saccharomyces cerevisiae. J. Appl. Microbiol. 2013, 114, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Gutierrez, D.; Bauer, M.A.; Zimmermann, A.; Aguilera, A.; Austriaco, N.; Ayscough, K.; Balzan, R.; Bar-Nun, S.; Barrientos, A.; Belenky, P.; et al. Guidelines and Recommendations on Yeast Cell Death Nomenclature. Microb. Cell 2018, 5, 4–31. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.M.; Nyström, T. The Dual Role of a Yeast Metacaspase: What Doesn’t Kill You Makes You Stronger. Bioessays 2015, 37, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Herker, E.; Jungwirth, H.; Lehmann, K.A.; Maldener, C.; Fröhlich, K.-U.; Wissing, S.; Büttner, S.; Fehr, M.; Sigrist, S.; Madeo, F. Chronological Aging Leads to Apoptosis in Yeast. J. Cell Biol. 2004, 164, 501. [Google Scholar] [CrossRef]
- Büttner, S.; Eisenberg, T.; Herker, E.; Carmona-Gutierrez, D.; Kroemer, G.; Madeo, F. Why Yeast Cells can Undergo Apoptosis: Death in Times of Peace, Love, and War. J. Cell Biol. 2006, 175, 521–525. [Google Scholar] [CrossRef]
- Garcia, N.; Kalicharan, R.E.; Kinch, L.; Fernandez, J. Regulating Death and Disease: Exploring the Roles of Metacaspases in Plants and Fungi. Int. J. Mol. Sci. 2022, 24, 312. [Google Scholar] [CrossRef]
- Hwang, I.-S.; Lee, J.; Jin, H.-G.; Woo, E.-R.; Lee, D.G. Amentoflavone Stimulates Mitochondrial Dysfunction and Induces Apoptotic Cell Death in Candida albicans. Mycopathologia 2012, 173, 207–218. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, J.; Yu, L.; Wang, C.; Yang, Y.; Rong, X.; Xu, K.; Chu, M. Antifungal Activity of Coumarin against Candida albicans Is Related to Apoptosis. Front. Cell Infect. Microbiol. 2018, 8, 445. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Wang, C.; Yang, Y.; Chen, R.; Zhang, J.; Chen, H.; Zhuge, Y.; Li, J.; Cheng, J.; Xu, K.; et al. Carvacrol Induces Candida albicans Apoptosis Associated with Ca(2+)/Calcineurin Pathway. Front. Cell Infect. Microbiol. 2020, 10, 192. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Z.; Liu, L.; Qu, S.; Mao, Y.; Peng, X.; Li, Y.-X.; Tian, J. Cinnamaldehyde Inhibits Candida albicans Growth by Causing Apoptosis and Its Treatment on Vulvovaginal Candidiasis and Oropharyngeal Candidiasis. Appl. Microbiol. Biotechnol. 2019, 103, 9037–9055. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zeng, H.; Tian, J.; Ban, X.; Ma, B.; Wang, Y. Dill (Anethum graveolens L.) Seed Essential Oil Induces Candida albicans Apoptosis in a Metacaspase-Dependent Manner. Fungal Biol. 2014, 118, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Zhou, Y.; Wei, X. Farnesol Induces Apoptosis-like Cell Death in the Pathogenic Fungus Aspergillus flavus. Mycologia 2014, 106, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Choi, H.; Kim, A.R.; Yun, J.W.; Yu, R.; Woo, E.-R.; Lee, D.G. Hibicuslide C-Induced Cell Death in Candida albicans Involves Apoptosis Mechanism. J. Appl. Microbiol. 2014, 117, 1400–1411. [Google Scholar] [CrossRef]
- Kim, S.; Woo, E.-R.; Lee, D.G. Synergistic Antifungal Activity of Isoquercitrin: Apoptosis and Membrane Permeabilization Related to Reactive Oxygen Species in Candida albicans. IUBMB Life 2019, 71, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Thakre, A.; Zore, G.; Kodgire, S.; Kazi, R.; Mulange, S.; Patil, R.; Shelar, A.; Santhakumari, B.; Kulkarni, M.; Kharat, K.; et al. Limonene Inhibits Candida albicans Growth by Inducing Apoptosis. Med. Mycol. 2018, 56, 565–578. [Google Scholar] [CrossRef]
- Kim, H.; Lee, D.G. Naringin-Generated ROS Promotes Mitochondria-Mediated Apoptosis in Candida albicans. IUBMB Life 2021, 73, 953–967. [Google Scholar] [CrossRef]
- Tian, J.; Lu, Z.; Wang, Y.; Zhang, M.; Wang, X.; Tang, X.; Peng, X.; Zeng, H. Nerol Triggers Mitochondrial Dysfunction and Disruption via Elevation of Ca(2+) and ROS in Candida albicans. Int. J. Biochem. Cell Biol. 2017, 85, 114–122. [Google Scholar] [CrossRef]
- Kim, S.; Lee, D.G. Oxyresveratrol-Induced DNA Cleavage Triggers Apoptotic Response in Candida albicans. Microbiology 2018, 164, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-Z.; Chang, W.-Q.; Cheng, A.-X.; Sun, L.-M.; Lou, H.-X. Plagiochin E, an Antifungal Active Macrocyclic Bis(Bibenzyl), Induced Apoptosis in Candida albicans through a Metacaspase-Dependent Apoptotic Pathway. Biochim. Biophys. Acta 2010, 1800, 439–447. [Google Scholar] [CrossRef] [PubMed]
- de Castro, P.A.; Bom, V.L.P.; Brown, N.A.; de Almeida, R.S.C.; Ramalho, L.N.Z.; Savoldi, M.; Goldman, M.H.S.; Berretta, A.A.; Goldman, G.H. Identification of the Cell Targets Important for Propolis-Induced Cell Death in Candida albicans. Fungal Genet. Biol. 2013, 60, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Tsang, P.W.-K.; Wong, A.P.-K.; Yang, H.-P.; Li, N.-F. Purpurin Triggers Caspase-Independent Apoptosis in Candida Dubliniensis Biofilms. PLoS ONE 2013, 8, e86032. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, D.G. Novel Antifungal Mechanism of Resveratrol: Apoptosis Inducer in Candida albicans. Curr. Microbiol. 2015, 70, 383–389. [Google Scholar] [CrossRef]
- Cho, J.; Lee, D.G. The Antimicrobial Peptide Arenicin-1 Promotes Generation of Reactive Oxygen Species and Induction of Apoptosis. Biochim. Biophys. Acta 2011, 1810, 1246–1251. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, J.-S.; Hwang, I.-S.; Cho, J.; Lee, E.; Kim, Y.; Lee, D.G. Coprisin-Induced Antifungal Effects in Candida albicans Correlate with Apoptotic Mechanisms. Free Radic. Biol. Med. 2012, 52, 2302–2311. [Google Scholar] [CrossRef]
- Hwang, B.; Hwang, J.-S.; Lee, J.; Kim, J.-K.; Kim, S.R.; Kim, Y.; Lee, D.G. Induction of Yeast Apoptosis by an Antimicrobial Peptide, Papiliocin. Biochem. Biophys. Res. Commun. 2011, 408, 89–93. [Google Scholar] [CrossRef]
- Cho, J.; Lee, D.G. Oxidative Stress by Antimicrobial Peptide Pleurocidin Triggers Apoptosis in Candida albicans. Biochimie 2011, 93, 1873–1879. [Google Scholar] [CrossRef]
- Hwang, B.; Hwang, J.-S.; Lee, J.; Lee, D.G. The Antimicrobial Peptide, Psacotheasin Induces Reactive Oxygen Species and Triggers Apoptosis in Candida albicans. Biochem. Biophys. Res. Commun. 2011, 405, 267–271. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, J.-S.; Lee, D.G. Scolopendin, an Antimicrobial Peptide from Centipede, Attenuates Mitochondrial Functions and Triggers Apoptosis in Candida albicans. Biochem. J. 2017, 474, 635–645. [Google Scholar] [CrossRef]
- Hwang, I.; Lee, J.; Hwang, J.H.; Kim, K.-J.; Lee, D.G. Silver Nanoparticles Induce Apoptotic Cell Death in Candida albicans through the Increase of Hydroxyl Radicals. FEBS J. 2012, 279, 1327–1338. [Google Scholar] [CrossRef] [PubMed]
- Seong, M.; Lee, D.G. Reactive Oxygen Species-Independent Apoptotic Pathway by Gold Nanoparticles in Candida albicans. Microbiol. Res. 2018, 207, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Minina, E.A.; Staal, J.; Alvarez, V.E.; Berges, J.A.; Berman-Frank, I.; Beyaert, R.; Bidle, K.D.; Bornancin, F.; Casanova, M.; Cazzulo, J.J.; et al. Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Mol. Cell 2020, 77, 927–929. [Google Scholar] [CrossRef] [PubMed]
- Uren, A.G.; O’Rourke, K.; Aravind, L.A.; Pisabarro, M.T.; Seshagiri, S.; Koonin, E.V.; Dixit, V.M. Identification of Paracaspases and Metacaspases: Two Ancient Families of Caspase-like Proteins, One of Which Plays a Key Role in MALT Lymphoma. Mol. Cell 2000, 6, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Meslin, B.; Zalila, H.; Fasel, N.; Picot, S.; Bienvenu, A.-L. Are Protozoan Metacaspases Potential Parasite Killers? Parasit. Vectors 2011, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-H.; Lee, S.-E.; Kim, J. Mutational Analysis of Metacaspase CaMca1 and Decapping Activator Edc3 in the Pathogenicity of Candida albicans. Fungal Genet. Biol. 2016, 97, 18–23. [Google Scholar] [CrossRef]
- Shirazi, F.; Kontoyiannis, D.P. Micafungin Triggers Caspase-Dependent Apoptosis in Candida albicans Candida parapsilosis Biofilms, Including Caspofungin Non-Susceptible Isolates. Virulence 2015, 6, 385–394. [Google Scholar] [CrossRef]
- da Silva, C.R.; de Andrade Neto, J.B.; de Sousa Campos, R.; Figueiredo, N.S.; Sampaio, L.S.; Magalhães, H.I.F.; Cavalcanti, B.C.; Gaspar, D.M.; de Andrade, G.M.; Lima, I.S.P.; et al. Synergistic Effect of the Flavonoid Catechin, Quercetin, or Epigallocatechin Gallate with Fluconazole Induces Apoptosis in Candida Tropicalis Resistant to Fluconazole. Antimicrob. Agents Chemother. 2014, 58, 1468–1478. [Google Scholar] [CrossRef]
- Almshawit, H.; Pouniotis, D.; Macreadie, I. Cell Density Impacts on Candida glabrata Survival in Hypo-Osmotic Stress. FEMS Yeast Res. 2014, 14, 508–516. [Google Scholar] [CrossRef]
- McLuskey, K.; Rudolf, J.; Proto, W.R.; Isaacs, N.W.; Coombs, G.H.; Moss, C.X.; Mottram, J.C. Crystal Structure of a Trypanosoma brucei Metacaspase. Proc. Natl. Acad. Sci. USA 2012, 109, 7469–7474. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.H.-H.; Yan, C.; Shi, Y. Crystal Structure of the Yeast Metacaspase Yca1. J. Biol. Chem. 2012, 287, 29251–29259. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Yu, X.-H.; Wang, C.; Zhang, Q.; Liu, W.; McSweeney, S.; Shanklin, J.; Lam, E.; Liu, Q. Structural Basis for Ca2+-Dependent Activation of a Plant Metacaspase. Nat. Commun. 2020, 11, 2249. [Google Scholar] [CrossRef] [PubMed]
- Lam, D.K.; Sherlock, G. Yca1 Metacaspase: Diverse Functions Determine How Yeast Live and Let Die. FEMS Yeast Res. 2023, 23, foad022. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.; Kim, S.H.; Jeong, J.-H.; Kim, S.; Kim, J. Roles of the Pro-Apoptotic Factors CaNma111 and CaYbh3 in Apoptosis and Virulence of Candida albicans. Sci. Rep. 2022, 12, 7574. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, M.; Parker, R. Identification of Edc3p as an Enhancer of mRNA Decapping in Saccharomyces cerevisiae. Genetics 2004, 166, 729–739. [Google Scholar] [CrossRef]
- Arastehfar, A.; Lass-Flörl, C.; Garcia-Rubio, R.; Daneshnia, F.; Ilkit, M.; Boekhout, T.; Gabaldon, T.; Perlin, D.S. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J. Fungi 2020, 6, 138. [Google Scholar] [CrossRef]
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R.; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef]
- Miyazaki, M.; Horii, T.; Hata, K.; Watanabe, N.; Nakamoto, K.; Tanaka, K.; Shirotori, S.; Murai, N.; Inoue, S.; Matsukura, M.; et al. In Vitro Activity of E1210, a Novel Antifungal, against Clinically Important Yeasts and Molds. Antimicrob. Agents Chemother. 2011, 55, 4652–4658. [Google Scholar] [CrossRef]
- Oliver, J.D.; Sibley, G.E.M.; Beckmann, N.; Dobb, K.S.; Slater, M.J.; McEntee, L.; Du Pré, S.; Livermore, J.; Bromley, M.J.; Wiederhold, N.P.; et al. F901318 Represents a Novel Class of Antifungal Drug that Inhibits Dihydroorotate Dehydrogenase. Proc. Natl. Acad. Sci. USA 2016, 113, 12809–12814. [Google Scholar] [CrossRef]
- Ong, V.; Hough, G.; Schlosser, M.; Bartizal, K.; Balkovec, J.M.; James, K.D.; Krishnan, B.R. Preclinical Evaluation of the Stability, Safety, and Efficacy of CD101, a Novel Echinocandin. Antimicrob. Agents Chemother. 2016, 60, 6872–6879. [Google Scholar] [CrossRef] [PubMed]
- Cass, L.; Murray, A.; Davis, A.; Woodward, K.; Albayaty, M.; Ito, K.; Strong, P.; Ayrton, J.; Brindley, C.; Prosser, J.; et al. Safety and Nonclinical and Clinical Pharmacokinetics of PC945, a Novel Inhaled Triazole Antifungal Agent. Pharmacol. Res. Perspect. 2020, 9, e00690. [Google Scholar] [CrossRef] [PubMed]
- Hao, B.; Cheng, S.; Clancy, C.J.; Nguyen, M.H. Caspofungin Kills Candida Albicans by Causing Both Cellular Apoptosis and Necrosis. Antimicrob. Agents Chemother. 2013, 57, 326–332. [Google Scholar] [CrossRef]
- Laprade, D.J.; Brown, M.S.; McCarthy, M.L.; Ritch, J.J.; Austriaco, N. Filamentation Protects Candida albicans from Amphotericin B-Induced Programmed Cell Death via a Mechanism Involving the Yeast Meta caspase, MCA1. Microb. Cell 2016, 3, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, D.G. A Novel Mechanism of Fluconazole: Fungicidal Activity through Dose-Dependent Apoptotic Responses in Candida albicans. Microbiology 2018, 164, 194–204. [Google Scholar] [CrossRef]
- Lee, W.; Lee, D.G. Reactive Oxygen Species Modulate Itraconazole-Induced Apoptosis via Mitochondrial Disruption in Candida albicans. Free Radic. Res. 2018, 52, 39–50. [Google Scholar] [CrossRef]
- Bienvenu, A.L.; Bonnot, G.; Picot, S. Restoration of C. Glabrata Growth by the Pan-Caspase Inhibitor Z-VAD-FMK in the Presence of Caspofungin. 2018; Unpublished Work. [Google Scholar]
- Eucast: AST of Yeasts. Available online: https://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts (accessed on 4 December 2023).
- Al-Dhaheri, R.S.; Douglas, L.J. Apoptosis in Candida Biofilms Exposed to Amphotericin B. J. Med. Microbiol. 2010, 59, 149–157. [Google Scholar] [CrossRef]
- Richie, D.L.; Miley, M.D.; Bhabhra, R.; Robson, G.D.; Rhodes, J.C.; Askew, D.S. The Aspergillus fumigatus Metacaspases CasA and CasB Facilitate Growth under Conditions of Endoplasmic Reticulum Stress. Mol. Microbiol. 2007, 63, 591–604. [Google Scholar] [CrossRef]
- Liang, C.; Xu, X.; Sun, Y.; Xin, Q.; Lv, Y.; Hu, Y.; Bian, K. Surfactin Inhibits Fusarium graminearum by Accumulating Intracellular ROS and Inducing Apoptosis Mechanisms. World J. Microbiol. Biotechnol. 2023, 39, 340. [Google Scholar] [CrossRef]
- Shirazi, F.; Kontoyiannis, D.P.; Ibrahim, A.S. Iron Starvation Induces Apoptosis in Rhizopus Oryzae in Vitro. Virulence 2015, 6, 121–126. [Google Scholar] [CrossRef]
- Kulkarni, M.; Stolp, Z.D.; Hardwick, J.M. Targeting Intrinsic Cell Death Pathways to Control Fungal Pathogens. Biochem. Pharmacol. 2019, 162, 71–78. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bienvenu, A.-L.; Ballut, L.; Picot, S. Specifically Targeting Metacaspases of Candida: A New Therapeutic Opportunity. J. Fungi 2024, 10, 90. https://doi.org/10.3390/jof10020090
Bienvenu A-L, Ballut L, Picot S. Specifically Targeting Metacaspases of Candida: A New Therapeutic Opportunity. Journal of Fungi. 2024; 10(2):90. https://doi.org/10.3390/jof10020090
Chicago/Turabian StyleBienvenu, Anne-Lise, Lionel Ballut, and Stephane Picot. 2024. "Specifically Targeting Metacaspases of Candida: A New Therapeutic Opportunity" Journal of Fungi 10, no. 2: 90. https://doi.org/10.3390/jof10020090
APA StyleBienvenu, A. -L., Ballut, L., & Picot, S. (2024). Specifically Targeting Metacaspases of Candida: A New Therapeutic Opportunity. Journal of Fungi, 10(2), 90. https://doi.org/10.3390/jof10020090