The Interaction between Arbuscular Mycorrhizal Fungi (AMF) and Grass Endophyte (Epichloë) on Host Plants: A Review
Abstract
:1. Introduction
2. Effect of Grass Endophyte on Arbuscular Mycorrhiza
2.1. Effect of Grass Endophyte on Mycorrhizal Colonization
Host Plants | Grass Endophyte | AM Fungi | Study Site | Influence | Mechanism | References |
---|---|---|---|---|---|---|
Agrostis capillaris | Epichloë sp. | Live soil inoculation | Field | No impact. | / | [45] |
Bromus auleticus | Epichloë pampeana; Epichloë tembladerae | Live soil inoculation | Field | +18% at 6 months after fertilization. | Genotype of host plants, and the exudate of different profile of compounds. | [49] |
Bromus auleticus | Epichloë sp. | Living vertisol soil | Field | +21%~33%, +29% of abuscules and vesicles of the other neighbor grasses. | Grass-Epichloë association generate a soil environment through secreting root exudates. | [5] |
Bromus auleticus | Epichloë pampeana | Living field soil | Greenhouse | +19%~43%. | The soil types of (agriculture soil and non-agriculture soil). | [50] |
Elymus hystrix | Epichloë elymi | Glomus claroideum, Glomus mosseae | Greenhouse | −13%~19% when inoculated with G. claroideum but +15% with the G. mosseae. | Identity of the AMF species. | [51] |
Festuca arundinacea Schreb. | Acremonium coenophiulum (Epichloë coenophialum) | Funneliformis mosseae | Greenhouse | −41.2%. | The toxic metabolites transferred to the root. | [42] |
Hordeum comosum | Epichloë tembladerae | Living grassland soil | Field | +8%. | Differentiation of the plant niche and the external precipitation. | [52] |
Leymus chinensis | Epichloë bromicola | Living grassland soil | Field | +15%. | Endophyte affected the soil properties. | [53] |
Lolium arundinaceum | Epichloë coenophialum | Funneliformis mosseae; Claroideoglomus etunicatum | Greenhouse | −1.1% in saline-alkali stress of colonization rate of F. mosseae; +30.7%~38% colonization rate of C. etunicatum; +8%~32.2% colonization rate of the mixture of FM and CE. | Species of AMF and environmental conditions. | [54] |
Lolium perenne (Fenneama and AberDart) | Neotyphodium lolii (Epichloë festucae var. lolii) | Glomus intraradices; Glomus mosseae | Greenhouse | −72.7% of Fenneama varieties, but had no effect on AberDart. | Species and specific of AMF and host plant. | [46] |
Lolium perenne | Epichloë festucae var. lolii | Claroideoglomus etunicatum | Greenhouse | Much lower AMF colonization rate at 70% soil water contents. | Soil water contents. | [55] |
Schedonorus arundinaceus | Epichloë coenophiala | Living pasture soil | Field | −53.6%. | Competition of C of Epichloë and AMF from host plant. | [56] |
Schedonorus phoenix | Neotyphodium coenophialum (Epichloë coenophialum) | live soil inoculum | Greenhouse | −50.2%. | / | [47] |
2.2. Mechanisms Underlying the Effect of Grass Endophyte on Mycorrhizal Colonization
3. Effect of Concurrent Colonization of AMF and Grass Endophyte on Host Plant
3.1. Effect of Co-Colonization of AMF and Grass Endophyte on Host Plant Growth
Plants | Grass Endophyte | AM Fungi | Study Site | Results | References |
---|---|---|---|---|---|
Lolium perenne | Epichloë festucae var. lolii | Claroideoglomus etunicatum | Greenhouse | +44.53%, 30.27%, and 28.47% of dry weight in soil moisture conditions of 30%, 50%, and 70%. | [55] |
Leymus chinensis | Epichloë bromicola | Glomus etunicatum Glomus intraradices | Greenhouse | +73.21% P absorption. | [48] |
Lolium arundinaceum | Epichloë coenophialum | Claroideoglomus etunicatum; Funneliformis mosseae | Greenhouse | Inoculated with F. mosseae alone, −41.79% and −68.82% of shoot biomass and root biomass, had no impact in salt-alkali stress. | [54] |
Achnatherum sibiricum | Epichloë sibirica | Glomus mosseae; Glomus etunicatum | Greenhouse | Greater competitive ability. | [4] |
Achnatherum sibiricum | Epichloë sibirica | Glomus mosseae; Glomus etunicatum | Greenhouse | +12.5% and 10.55% of the total phenolic content when inoculated with GM and GE respectively. | [75] |
Lolium multiflorum | Neotyphodium occultans (Epichloë occultans) | Glomus mosseae; Glomus caledonium; Glomus fasciculatum | Greenhouse | No impact. | [74] |
Lolium perenne | Epichloë typhina; Neotyphodium lolii (Epichloë festucae var. lolii) | Sclerocystis sp. | Greenhouse | Higher shoot-root biomass ration. | [76] |
Lolium perenne | Epichloë festucae var. lolii | Claroideoglomus etunicatum | Greenhouse | Highest values of SOD, POD, the total P content, and the total dry weight. | [43] |
3.2. Effect of Simultaneous Colonization with AMF and Grass Endophyte on Biotic Resistance of Host Plant
Plants | Grass Endophyte | AM Fungi | Stress | Results | References |
---|---|---|---|---|---|
Lolium perenne | Epichloë festucae var. lolii | Claroideoglomus etunicatum | Water | Enhanced uptake of phosphorus (P), elevated photosynthetic activity, and the accumulation of osmoregulatory compounds. | [55] |
Lolium arundinaceum | Epichloëcoenophialum | Claroideoglomus etunicatum; Funneliformis mosseae | Saline-alkali | CE significantly enhanced saline-alkali resistance by increasing potassium (K+) accumulation and reducing sodium (Na+) concentration, whereas resistance was reduced following inoculation with FM. | [54] |
Leymus chinensis | Epichloë bromicola | Funneliformis mosseae | Drought | AMF enhanced the drought resistance of EF plants, yet had no significant effect on the drought resistance of EI plants. | [81] |
Lolium perenne cv. “Express” | Neotyphodium lolii (Epichloë festucae var. lolii) | Glomus mosseae | Pest | Mycorrhizal and endophyte interaction was observed in third-instar larvae regarding survivorship. | [80] |
Lolium perenne | Epichloë festucae var. lolii | Claroideoglomus etunicatum | Pathogen | Suppressed the occurrence of leaf spot by increasing the levels of chemical substances and the plant defensive enzymes. | [44] |
Lolium perenne | Epichloë festucae var. lolii | Claroideoglomus etunicatum | Pathogen | Decrease disease incidence by 10.93%, elevated plant defensive activity levels but reduced concentrations of MDA and H2O2. | [43] |
Achnatherum sibiricum | Epichloë sibirica | Glomus etunicatum | Pathogen | Increased production of total phenols of plants, and thus decreased the abundance of pathogen. | [77] |
3.3. Effects of Simultaneous Colonization of AMF and Grass Endophyte on Host Plant Resistance to Abiotic Stress
3.4. Effect of Simultaneous Colonization with AMF and Grass Endophyte on Plant Competitive Ability
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramirez, K.S.; Geisen, S.; Morrien, E.; Snoek, B.L.; van der Putten, W.H. Network Analyses Can Advance Above-Belowground Ecology. Trends Plant Sci. 2018, 23, 759–768. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setala, H.; van der Putten, W.H.; Wall, D.H. Ecological linkages between aboveground and belowground biota. Science 2004, 304, 1629–1633. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Gao, Y.; Liu, H.; Gao, Y.-B.; van der Heijden, M.G.A.; Ren, A.-Z. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition. Funct. Ecol. 2018, 32, 1168–1179. [Google Scholar] [CrossRef]
- Vignale, M.V.; Iannone, L.J.; Novas, V. Epichloë endophytes of a wild grass promote mycorrhizal colonization of neighbor grasses. Fungal Ecol. 2020, 45, 100916. [Google Scholar] [CrossRef]
- Novas, M.V.; Cabral, D.; Godeas, A.M. Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis 2005, 40, 23–30. [Google Scholar]
- Smith, S.E.; Read, D. Mycorrhizal symbiosis; Academic Press: Cambridge, UK, 2008. [Google Scholar]
- Akiyama, K.; Matsuzaki, K.; Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435, 824–827. [Google Scholar] [CrossRef]
- Bernardo, L.; Carletti, P.; Badeck, F.W.; Rizza, F.; Morcia, C.; Ghizzoni, R.; Rouphael, Y.; Colla, G.; Terzi, V.; Lucini, L. Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiol. Biochem. 2019, 137, 203–212. [Google Scholar] [CrossRef]
- Estrada, B.; Aroca, R.; Maathuis, F.J.M.; Miguel Barea, J.; Manuel Ruiz-Lozano, J. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 2013, 36, 1771–1782. [Google Scholar] [CrossRef]
- Harrison, M.J. Cellular programs for arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 2012, 15, 691–698. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Zhang, J.C.; Lu, S.C.; Li, Y.; Wang, F.Y. Arbuscular Mycorrhizal Fungi Improve the Performance of Sweet Sorghum Grown in a Mo-Contaminated Soil. J. Fungi 2020, 6, 44. [Google Scholar] [CrossRef]
- Boutasknit, A.; Baslam, M.; Ait-El-Mokhtar, M.; Anli, M.; Ben-Laouane, R.; Douira, A.; El Modafar, C.; Mitsui, T.; Wahbi, S.; Meddich, A. Arbuscular Mycorrhizal Fungi Mediate Drought Tolerance and Recovery in Two Contrasting Carob (Ceratonia siliqua L.) Ecotypes by Regulating Stomatal, Water Relations, and (In)Organic Adjustments. Plants 2020, 9, 80. [Google Scholar] [CrossRef]
- Yang, Y.R.; Song, Y.Y.; Scheller, H.V.; Ghosh, A.; Ban, Y.H.; Chen, H.; Tang, M. Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol. Biochem. 2015, 86, 146–158. [Google Scholar] [CrossRef]
- Johnson, N.C.; Graham, J.H.; Smith, F.A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 1997, 135, 575–586. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Chen, X.; Lu, J.; Jin, Z.; Li, J. Functions of arbuscular mycorrhizal fungi in regulating endangered species Heptacodium miconioides growth and drought stress tolerance. Plant Cell Rep. 2023, 42, 1967–1986. [Google Scholar] [CrossRef]
- Han, Y.; Xu, T.; Chen, H.; Tang, M. Sugar metabolism and 14-3-3 protein genes expression induced by arbuscular mycorrhizal fungi and phosphorus addition to response drought stress in Populus cathayana. J. Plant Physiol. 2023, 288, 154075. [Google Scholar] [CrossRef]
- Xing, S.; Shen, Q.; Ji, C.; You, L.; Li, J.; Wang, M.; Yang, G.; Hao, Z.; Zhang, X.; Chen, B. Arbuscular mycorrhizal symbiosis alleviates arsenic phytotoxicity in flooded Iris tectorum Maxim. dependent on arsenic exposure levels. Environ. Pollut. 2024, 340, 122841. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Wang, H.; Xing, S.; Yin, R.; Fu, W.; Rillig, M.C.; Chen, B.; Zhu, Y. Arbuscular Mycorrhizal Fungi Can Inhibit the Allocation of Microplastics from Crop Roots to Aboveground Edible Parts. J. Agric. Food Chem. 2023, 71, 18323–18332. [Google Scholar] [CrossRef]
- Israel, A.; Langrand, J.; Fontaine, J.; Sahraoui, A.L.H. Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods 2022, 11, 2591. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fang, Y.Z.; Wang, Q.Q.; Cao, H.Y.; Yang, G.L.; Deng, L.L.; Wang, Y.J.; Zhou, Y.Y.; Anastopoulos, I.; et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef]
- Doubkova, P.; Suda, J.; Sudova, R. The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biol. Biochem. 2012, 44, 56–64. [Google Scholar] [CrossRef]
- Gao, Y.Z.; Li, Q.L.; Ling, W.T.; Zhu, X.Z. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. J. Hazard. Mater. 2011, 185, 703–709. [Google Scholar] [CrossRef]
- Wang, D.; Pan, M.; Biere, A.; Ding, J. Arbuscular mycorrhizal fungi and belowground herbivores interact to determine plant productivity and performance of subsequently feeding conspecifics by changing plant metabolites. J. Pest Sci. 2023. [Google Scholar] [CrossRef]
- Liu, M.; Wang, H.; Lin, Z.; Ke, J.; Zhang, P.; Zhang, F.; Ru, D.; Zhang, L.; Xiao, Y.; Liu, X. Arbuscular mycorrhizal fungi inhibit necrotrophic, but not biotrophic, aboveground plant pathogens: A meta-analysis and experimental study. New Phytol. 2023, 241, 1308–1320. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Xie, Q.; Liu, N.; Liu, L.; Wang, D.; Zhang, X.; Yang, C.; Chen, X.; Tang, D.; et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 2017, 356, 1172–1175. [Google Scholar] [CrossRef]
- Wang, W.; Shi, J.; Xie, Q.; Jiang, Y.; Yu, N.; Wang, E. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. Mol. Plant 2017, 10, 1147–1158. [Google Scholar] [CrossRef]
- Lambers, H.; Mougel, C.; Jaillard, B.; Hinsinger, P. Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. Plant Soil 2009, 321, 83–115. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Wang, E. Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annu. Rev. Plant Biol. 2023, 74, 569–607. [Google Scholar] [CrossRef]
- Bastias, D.A.; Alejandra Martinez-Ghersa, M.; Ballare, C.L.; Gundel, P.E. Epichloë Fungal Endophytes and Plant Defenses: Not Just Alkaloids. Trends Plant Sci. 2017, 22, 939–948. [Google Scholar] [CrossRef]
- Zhang, W.; Card, S.D.; Mace, W.J.; Christensen, M.J.; McGill, C.R.; Matthew, C. Defining the pathways of symbiotic Epichloë colonization in grass embryos with confocal microscopy. Mycologia 2017, 109, 153–161. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, X.; Christensen, M.J.; Nan, Z.; Li, C. Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecol. 2015, 16, 26–33. [Google Scholar] [CrossRef]
- Song, M.; Chai, Q.; Li, X.; Yao, X.; Li, C.; Christensen, M.J.; Nan, Z. An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 2015, 387, 153–165. [Google Scholar] [CrossRef]
- Ma, M.; Christensen, M.J.; Nan, Z. Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. Eur. J. Plant Pathol. 2015, 141, 571–583. [Google Scholar] [CrossRef]
- Li, C.; Nan, Z.; Li, F. Biological and physiological characteristics of Neotyphodium gansuense symbiotic with Achnatherum inebrians. Microbiol. Res. 2008, 163, 431–440. [Google Scholar] [CrossRef]
- Geller, A.M.; Levy, A. “What I cannot create, I do not understand”: Elucidating microbe-microbe interactions to facilitate plant microbiome engineering. Curr. Opin. Microbiol. 2023, 72, 102283. [Google Scholar] [CrossRef]
- Ginnan, N.A.; De Anda, N.I.; Campos Freitas Vieira, F.; Rolshausen, P.E.; Roper, M.C. Microbial Turnover and Dispersal Events Occur in Synchrony with Plant Phenology in the Perennial Evergreen Tree Crop Citrus sinensis. MBio 2022, 13, e0034322. [Google Scholar] [CrossRef]
- Regalado, J.; Lundberg, D.S.; Deusch, O.; Kersten, S.; Karasov, T.; Poersch, K.; Shirsekar, G.; Weigel, D. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe-microbe interaction networks in plant leaves. ISME J. 2020, 14, 2116–2130. [Google Scholar] [CrossRef]
- Dastogeer, K.M.G.; Tumpa, F.H.; Sultana, A.; Akter, M.A.; Chakraborty, A. Plant microbiome-an account of the factors that shape community composition and diversity. Curr. Plant Biol. 2020, 23, 100161. [Google Scholar] [CrossRef]
- Vorholt, J.A.; Vogel, C.; Carlstrom, C.I.; Mueller, D.B. Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. Cell Host Microbe 2017, 22, 142–155. [Google Scholar] [CrossRef]
- Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Chuchou, M.; Guo, B.; An, Z.Q.; Hendrix, J.W.; Ferriss, R.S.; Siegel, M.R.; Dougherty, C.T.; Burrus, P.B. Suppression of mycprrhizal fungi in fescue by the Acremonium-Coenophialum endophyte. Soil Biol. Biochem. 1992, 24, 633–637. [Google Scholar] [CrossRef]
- Li, F.; Guo, Y.e.; Christensen, M.J.; Gao, P.; Li, Y.; Duan, T. An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza 2018, 28, 159–169. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, P.; Li, F.; Duan, T. Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients. Eur. J. Plant Pathol. 2019, 154, 659–671. [Google Scholar] [CrossRef]
- Vandegrift, R.; Roy, B.A.; Pfeifer-Meister, L.; Johnson, B.R.; Bridgham, S.D. The herbaceous landlord: Integrating the effects of symbiont consortia within a single host. PeerJ 2015, 3, e1379. [Google Scholar] [CrossRef]
- Liu, Q.; Parsons, A.J.; Xue, H.; Fraser, K.; Ryan, G.D.; Newman, J.A.; Rasmussen, S. Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct. Ecol. 2011, 25, 910–920. [Google Scholar] [CrossRef]
- Mack, K.M.L.; Rudgers, J.A. Balancing multiple mutualists: Asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 2008, 117, 310–320. [Google Scholar] [CrossRef]
- Liu, H.; Wu, M.; Liu, J.; Qu, Y.; Gao, Y.; Ren, A. Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis. Microb. Ecol. 2020, 79, 98–109. [Google Scholar] [CrossRef]
- Victoria Vignale, M.; Iannone, L.J.; Daniela Pinget, A.; De Battista, J.P.; Victoria Novas, M. Effect of epichloë endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant Soil 2016, 405, 279–287. [Google Scholar] [CrossRef]
- Arrieta, A.M.; Iannone, L.J.; Scervino, J.M.; Vignale, M.V.; Novas, M.V. A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. Fungal Ecol. 2015, 17, 146–154. [Google Scholar] [CrossRef]
- Larimer, A.L.; Bever, J.D.; Clay, K. Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 2012, 121, 2090–2096. [Google Scholar] [CrossRef]
- Casas, C.; Gundel, P.E.; Deliens, E.; Iannone, L.J.; Garcia Martinez, G.; Vignale, M.V.; Schnyder, H. Loss of fungal symbionts at the arid limit of the distribution range in a native Patagonian grass-Resource eco-physiological relations. Funct. Ecol. 2022, 36, 583–594. [Google Scholar] [CrossRef]
- Liu, H.; Wu, M.; Liu, J.; Gao, Y.; Ren, A. Endophyte infection influences arbuscular mycorrhizal fungi communities in rhizosphere soils of host as opposed to non-host grass. Eur. J. Soil Sci. 2021, 72, 995–1009. [Google Scholar] [CrossRef]
- Liu, H.; Tang, H.; Ni, X.; Zhang, Y.; Wang, Y. Interactive Effects of Epichloë Endophytes and Arbuscular Mycorrhizal Fungi on Saline-Alkali Stress Tolerance in Tall Fescue. Front. Microbiol. 2022, 13, 855890. [Google Scholar] [CrossRef]
- Li, F.; Deng, J.; Nzabanita, C.; Li, Y.; Duan, T. Growth and physiological responses of perennial ryegrass to an AMF and an Epichloë endophyte under different soil water contents. Symbiosis 2019, 79, 151–161. [Google Scholar] [CrossRef]
- Slaughter, L.C.; Nelson, J.A.; Carlisle, E.; Bourguignon, M.; Dinkins, R.D.; Phillips, T.D.; McCulley, R.L. Climate change and Epichloë coenophiala association modify belowground fungal symbioses of tall fescue host. Fungal Ecol. 2018, 31, 37–46. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, Y.H.; Song, Y.B.; Dong, M. Formation and functions of arbuscular mycorrhizae in coastal wetland ecosystems: A review. Ecosyst. Health Sustain. 2022, 8, 2144465. [Google Scholar] [CrossRef]
- Qin, M.S.; Li, L.; Miranda, J.P.; Tang, Y.; Song, B.; Oosthuizen, M.K.; Wei, W.R. Experimental duration determines the effect of arbuscular mycorrhizal fungi on plant biomass in pot experiments: A meta-analysis. Front. Plant Sci. 2022, 13, 1024874. [Google Scholar] [CrossRef]
- Jongen, M.; Albadran, B.; Beyschlag, W.; Unger, S. Can arbuscular mycorrhizal fungi mitigate drought stress in annual pasture legumes? Plant Soil 2022, 472, 295–310. [Google Scholar] [CrossRef]
- Kalosa-Kenyon, E.; Slaughter, L.C.; Rudgers, J.A.; McCulley, R.L. Asexual Epichloë Endophytes Do Not Consistently Alter Arbuscular Mycorrhizal Fungi Colonization in Three Grasses. Am. Midl. Nat. 2018, 179, 157–165. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, S.; Zhang, F.; Zhao, Z.; Christensen, M.J.J.; Nan, Z.; Zhang, X. Transcriptomic Analyses Reveals Molecular Regulation of Photosynthesis by Epichloë endophyte in Achnatherum inebrians under Blumeria graminis Infection. J. Fungi 2022, 8, 1201. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Mace, W.; Qin, J.; Liu, H.; Chen, W.; Ren, A.; Gao, Y. Endophyte species influence the biomass production of the native grass Achnatherum sibiricum (L.) Keng under high nitrogen availability. Ecol. Evol. 2016, 6, 8595–8606. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef]
- Walder, F.; Niemann, H.; Natarajan, M.; Lehmann, M.F.; Boller, T.; Wiemken, A. Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade. Plant Physiol. 2012, 159, 789–797. [Google Scholar] [CrossRef]
- Hosseini, F.; Mosaddeghi, M.R.; Hajabbasi, M.A.; Sabzalian, M.R. Influence of tall fescue endophyte infection on structural stability as quantified by high energy moisture characteristic in a range of soils. Geoderma 2015, 249, 87–99. [Google Scholar] [CrossRef]
- Zhong, R.; Zhang, L.; Zhang, X. Allelopathic Effects of Foliar Epichloë Endophytes on Belowground Arbuscular Mycorrhizal Fungi: A Meta-Analysis. Agriculture 2022, 12, 1768. [Google Scholar] [CrossRef]
- Bastias, D.A.; Alejandra Martinez-Ghersa, M.; Newman, J.A.; Card, S.D.; Mace, W.J.; Gundel, P.E. The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses. Plant Cell Environ. 2018, 41, 395–405. [Google Scholar] [CrossRef]
- Song, Q.-Y.; Li, F.; Nan, Z.-B.; Coulter, J.A.; Wei, W.J. Do Epichloë Endophytes and Their Grass Symbiosis Only Produce Toxic Alkaloids to Insects and Livestock? J. Agric. Food Chem. 2020, 68, 1169–1185. [Google Scholar] [CrossRef]
- Michael, R.; Cripps, M.G.; Patrick, S. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia 2015, 177, 487–497. [Google Scholar]
- Victoria Vignale, M.; Iannone, L.J.; Martin Scervino, J.; Victoria Novas, M. Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant Soil 2018, 422, 267–281. [Google Scholar] [CrossRef]
- Terlizzi, N.L.; Rodriguez, M.A.; Iannone, L.J.; Lanari, E.; Novas, M.V. Epichloë endophyte affects the root colonization pattern of belowground symbionts in a wild grass. Fungal Ecol. 2022, 57–58, 101143. [Google Scholar] [CrossRef]
- Liu, H.; Tang, H.; Ni, X.; Zhang, Y.; Wang, Y. Effects of the endophyte Epichloë coenophiala on the root microbial community and growth performance of tall fescue in different saline-alkali soils. Fungal Ecol. 2022, 57–58, 101159. [Google Scholar] [CrossRef]
- Wezowicz, K.; Rozpadek, P.; Turnau, K. Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste. Mycorrhiza 2017, 27, 499–511. [Google Scholar] [CrossRef]
- Omacini, M.; Eggers, T.; Bonkowski, M.; Gange, A.C.; Jones, T.H. Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct. Ecol. 2006, 20, 226–232. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Qin, J.; Liu, H.; Chen, W.; Niu, Y.; Ren, A.; Gao, Y. Effects of simultaneous infections of endophytic fungi and arbuscular mycorrhizal fungi on the growth of their shared host grass Achnatherum sibiricum under varying N and P supply. Fungal Ecol. 2016, 20, 56–65. [Google Scholar] [CrossRef]
- Muller, J. Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Funct. Plant Biol. 2003, 30, 419–424. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, Y.; Ge, X.; Shi, X.; Fan, X.; Dong, K.; Chen, L.; Zhao, N.; Gao, Y.; Ren, A. The beneficial effect of Epichloë endophytes on the growth of host grasses was affected by arbuscular mycorrhizal fungi, pathogenic fungi and nitrogen addition. Environ. Exp. Bot. 2022, 201, 104979. [Google Scholar] [CrossRef]
- Schardl, C.L.; Young, C.A.; Faulkner, J.R.; Florea, S.; Pan, J. Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol. 2012, 5, 331–344. [Google Scholar] [CrossRef]
- Li, Y.; Nan, Z.; Matthew, C.; Wang, Y.; Duan, T. Arbuscular mycorrhizal fungus changes alfalfa (Medicago sativa) metabolites in response to leaf spot (Phoma medicaginis) infection, with subsequent effects on pea aphid (Acyrthosiphon pisum) behavior. New Phytol. 2023, 239, 286–300. [Google Scholar] [CrossRef]
- Vicari, M.; Hatcher, P.E.; Ayres, P.G. Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology 2002, 83, 2452–2464. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Wu, M.; Wu, R.; Zhou, Y.; Gao, Y.; Ren, A. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis. Mycorrhiza 2017, 27, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Deng, J. Mechanisms of Effects of Arbuscular Mycorrhizal Fungus and Grass Endophyte on Leaf Spot of Perennial Ryegrass (in Chinese). Master’s Dissertation, Lanzhou University, Lanzhou, China, 2021. [Google Scholar]
- Clay, K.; Marks, S.; Cheplick, G.P. Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 1993, 74, 1767–1777. [Google Scholar] [CrossRef]
- Muller, C.B.; Krauss, J. Symbiosis between grasses and asexual fungal endophytes. Curr. Opin. Plant Biol. 2005, 8, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Averill, C.; Turner, B.L.; Finzi, A.C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 2014, 505, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Stringlis, I.A.; de Jonge, R.; Pieterse, C.M.J. The Age of Coumarins in Plant-Microbe Interactions. Plant Cell Physiol. 2019, 60, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 2015, 51, 403–415. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M. Induced Systemic Resistance by Beneficial Microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.L.; Schulze-Lefert, P. Structure and Functions of the Bacterial Microbiota of Plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Harrier, L.A.; Watson, C.A. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag. Sci. 2004, 60, 149–157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Duan, T. The Interaction between Arbuscular Mycorrhizal Fungi (AMF) and Grass Endophyte (Epichloë) on Host Plants: A Review. J. Fungi 2024, 10, 174. https://doi.org/10.3390/jof10030174
Shen Y, Duan T. The Interaction between Arbuscular Mycorrhizal Fungi (AMF) and Grass Endophyte (Epichloë) on Host Plants: A Review. Journal of Fungi. 2024; 10(3):174. https://doi.org/10.3390/jof10030174
Chicago/Turabian StyleShen, Youlei, and Tingyu Duan. 2024. "The Interaction between Arbuscular Mycorrhizal Fungi (AMF) and Grass Endophyte (Epichloë) on Host Plants: A Review" Journal of Fungi 10, no. 3: 174. https://doi.org/10.3390/jof10030174
APA StyleShen, Y., & Duan, T. (2024). The Interaction between Arbuscular Mycorrhizal Fungi (AMF) and Grass Endophyte (Epichloë) on Host Plants: A Review. Journal of Fungi, 10(3), 174. https://doi.org/10.3390/jof10030174