Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from Xenorhabdus nematophila against Sclerotinia sclerotiorum
Abstract
:1. Introduction
2. Results
2.1. Structure Elucidation and Antifungal Activity Assay of Xcn1
2.2. Effects of Xcn1 on the Disease Development In Vivo
2.3. Effects of Xcn1 on the Hyphal Morphology and Ultrastructure of S. sclerotiorum
2.4. Effects of Xcn1 on the Cell Membrane Permeability and Exopolysaccharide Secretion of S. sclerotiorum
2.5. Effects of Xcn1 on the Oxalic Acid Biosynthesis of S. sclerotiorum
2.6. Effects of Xcn1 on the Activities of Polygalacturonase and Cellulase in S. sclerotiorum
3. Discussion
3.1. Xcn1 Has the Potential to Be Developed as a Pesticide for the Control of S. sclerotiorum
3.2. Xcn1 Exerted Its Antifungal Activity against S. sclerotiorum through Disturbing Mycelial Growth and Infection
3.3. Xcn1 May Inhibit Protein Translation
3.4. Combined Utilization of Xcn1 and Oxalate Synthesis Inhibitors Will Be a High Effective Strategy in S. sclerotiorum Control
4. Material and Methods
4.1. Strains and Growth Conditions
4.2. Microbial Fermentation
4.3. Assessment of Antifungal Activity of Xcn1 In Vitro
4.4. Assessment of Antifungal Activity of Xcn1 In Vivo
4.5. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Observations
4.6. Determination of Oxalic Acid (OA) Production of S. sclerotiorum
4.7. Measurement of the Cell Membrane Permeability of S. sclerotiorum
4.8. Determination of the Exopolysaccharides of S. sclerotiorum
4.9. Measurement of Activities of Polygalacturonase (PG) and Cellulase (Cx) of S. sclerotiorum
4.10. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Y.; Li, T.; Xiao, X.; Wu, J.; Li, S.; Wang, J.; Zhou, M. Pharmacological characteristics of the novel fungicide pyrisoxazole against Sclerotinia sclerotiorum. Pestic. Biochem. Physiol. 2018, 149, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Vagelas, I. Diagnosis and management of Sclerotinia stem rot (white mould) of lentils in Greece. Arch. Phytopathol. Plant Prot. 2014, 47, 1209–1217. [Google Scholar] [CrossRef]
- Huang, H.; Dueck, J. Wilt of sunflower from infection by mycelial-germinating sclerotia of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 1980, 2, 47–52. [Google Scholar] [CrossRef]
- Wegulo, S.N.; Yang, X.B.; Martinson, C.A. Soybean Cultivar Responses to Sclerotinia sclerotiorum in Field and Controlled Environment Studies. Plant Dis. 1998, 82, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Sarma, B.; Basha, S.A.; Singh, D.; Singh, U. Use of non-conventional chemicals as an alternative approach to protect chickpea (Cicer arietinum) from Sclerotinia stem rot. Crop Prot. 2007, 26, 1042–1048. [Google Scholar] [CrossRef]
- Ahmed, A.; Akhond, M. First report of Sclerotinia rot caused by Sclerotinia sclerotiorum on Lens culinaris in Bangladesh. New Dis. Rep. 2015, 31, 23. [Google Scholar] [CrossRef]
- Jones, E.E.; Mead, A.; Whipps, J.M. Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: Control of Sclerotinia disease in glasshouse lettuce. Plant Pathol. 2004, 53, 611–620. [Google Scholar] [CrossRef]
- Purdy, L.H. Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 1979, 69, 875–880. [Google Scholar] [CrossRef]
- Amselem, J.; Cuomo, C.A.; van Kan, J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger, S.; et al. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011, 7, e1002230. [Google Scholar] [CrossRef]
- Williams, B.; Kabbage, M.; Kim, H.J.; Britt, R.; Dickman, M.B. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog. 2011, 7, e1002107. [Google Scholar] [CrossRef]
- Massawe, V.C.; Hanif, A.; Farzand, A.; Mburu, D.K.; Ochola, S.O.; Wu, L.; Tahir, H.A.S.; Gu, Q.; Wu, H.; Gao, X. Volatile Compounds of Endophytic Bacillus spp. have Biocontrol Activity Against Sclerotinia sclerotiorum. Phytopathology 2018, 108, 1373–1385. [Google Scholar] [CrossRef]
- Budge, S.P.; Whipps, J.M.; Chitrampalam, P.; Wu, B.M.; Koike, S.T.; Subbarao, K.V.; Turini, T.A.; Matheron, M.E.; Pryor, B.M.; Figuli, P.J.; et al. Potential for Integrated Control of Sclerotinia sclerotiorum in Glasshouse Lettuce Using Coniothyrium minitans and Reduced Fungicide Application. Phytopathology 2001, 91, 221–227. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, O.P.; Bhagat, S.; Pandey, N. Effect of systemic fungicides, culture media, temperature and pH on growth of Sclerotinia sclerotiorum (Lib.) de Bary causing White mold of Chick pea. Ann. Plant Prot. Sci. 2013, 21, 136–139. [Google Scholar]
- Wang, Y.; Hou, Y.-P.; Chen, C.-J.; Zhou, M.-G. Detection of resistance in Sclerotinia sclerotiorum to carbendazim and dimethachlon in Jiangsu Province of China. Australas. Plant Pathol. 2014, 43, 307–312. [Google Scholar] [CrossRef]
- Chen, X.; Pizzatti, C.; Bonaldi, M.; Saracchi, M.; Erlacher, A.; Kunova, A.; Berg, G.; Cortesi, P. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes. Front. Microbiol. 2016, 7, 714. [Google Scholar] [CrossRef] [PubMed]
- Koehler, H.R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef]
- Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Current challenges and trends in the discovery of agrochemicals. Science 2013, 341, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Herbert, E.E.; Goodrich-Blair, H. Friend and foe: The two faces of Xenorhabdus nematophila. Nat. Rev. Microbiol. 2007, 5, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Dunphy, G.; Webster, J. Antifungal activity of Two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biol. Control 1994, 4, 157–162. [Google Scholar] [CrossRef]
- McInerney, B.V.; Taylor, W.C.; Lacey, M.J.; Akhurst, R.J.; Gregson, R.P. Biologically active metabolites from Xenorhabdus spp., Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J. Nat. Prod. 1991, 54, 785–795. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, D.; Yang, H.; Liu, Z.; Zeng, H.; Yuan, J. Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans. World J. Microbiol. Biotechnol. 2011, 27, 523–528. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, X.; Qiu, D.; Zeng, H. Inhibitory effects of xenocoumacin 1 on the different stages of Phytophthora capsici and its control effect on Phytophthora blight of pepper. BioControl 2017, 62, 151–160. [Google Scholar] [CrossRef]
- Zhou, T.; Zeng, H.; Qiu, D.; Yang, X.; Wang, B.; Chen, M.; Guo, L.; Wang, S. Global transcriptional responses of Bacillus subtilis to xenocoumacin 1. J. Appl. Microbiol. 2011, 111, 652–662. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, S.; Fang, X.; Liu, Q.; Gao, J.; Bilal, M.; Wang, Y.; Zhang, X. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila. Microb. Cell Factories 2017, 16, 203. [Google Scholar] [CrossRef]
- Zhang, S.; Fang, X.; Tang, Q.; Ge, J.; Wang, Y.; Zhang, X. CpxR negatively regulates the production of xenocoumacin 1, a dihydroisocoumarin derivative produced by Xenorhabdus nematophila. MicrobiologyOpen 2018, 8, e00674. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Han, Y.; Han, J.; Yan, Z.; Wang, Y.; Zhang, X. Nematophin, an antimicrobial dipeptide compound from Xenorhabdus nematophila YL001 as a potent biopesticide for Rhizoctonia solani control. Front. Microbiol. 2019, 10, 1765. [Google Scholar] [CrossRef]
- Flores, R. A rapid and reproducible assay for quantitative estimation of proteins using bromophenol blue. Anal. Biochem. 1978, 88, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xiang, M.; White, D.; Chen, W. pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum. Environ. Microbiol. 2015, 17, 2896–2909. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, S.; I Kado, C. A plant-inducible gene of Xanthomonas campestris pv. campestris encodes an exocellular component required for growth in the host and hypersensitivity on nonhosts. J. Bacteriol. 1990, 172, 5165–5172. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Hwang, H.J.; Xu, C.P.; Choi, J.W.; Yun, J.W. Effect of aeration and agitation on the production of mycelial biomass and exopolysaccharides in an enthomopathogenic fungus Paecilomyces sinclairii. Lett. Appl. Microbiol. 2003, 36, 321–326. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.; Zhou, M. Molecular and biochemical characterization of boscalid resistance in laboratory mutants of Sclerotinia sclerotiorum. Plant Pathol. 2015, 64, 101–108. [Google Scholar] [CrossRef]
- Baker, C.J.; Whalen, C.H.; Korman, R.Z.; Bateman, D.F. α-l-Arabinofuranosidase from Sclerotinia sclerotiorum: Purification, Characterization, and Effects on Plant Cell Walls and Tissue. Phytopathology 1979, 69, 789–793. [Google Scholar] [CrossRef]
- Bauer, W.D.; Bateman, D.F.; Whalen, C.H. Purification of an Endo-β-1,4 Galactanase Produced by Sclerotinia sclerotiorum: Effects on Isolated Plant Cell Walls and Potato Tissue. Phytopathology 1977, 77, 862–868. [Google Scholar] [CrossRef]
- Favaron, F.; Alghisi, P.; Marciano, P.; Magro, P. Polygalacturonase isoenzymes and oxalic acid produced by Sclerotinia sclerotiorum in soybean hypocotyls as elicitors of glyceollin. Physiol. Mol. Plant Pathol. 1988, 33, 385–395. [Google Scholar] [CrossRef]
- Polikanov, Y.S.; Osterman, I.A.; Szal, T.; Tashlitsky, V.N.; Serebryakova, M.V.; Kusochek, P.; Bulkley, D.; Malanicheva, I.A.; Efimenko, T.A.; Efremenkova, O.V.; et al. Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome. Mol. Cell 2014, 56, 531–540. [Google Scholar] [CrossRef]
- Zumbrunn, C.; Krüsi, D.; Stamm, C.; Caspers, P.; Ritz, D.; Rueedi, G. Synthesis and structure-activity relationship of Xenocoumacin 1 and analogues as inhibitors of ribosomal protein synthesis. ChemMedChem 2021, 16, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Svidritskiy, E.; Ling, C.; Ermolenko, D.N.; Korostelev, A.A. Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome. Proc. Natl. Acad. Sci. USA 2013, 110, 12283–12288. [Google Scholar] [CrossRef]
- Svidritskiy, E.; Korostelev, A.A. Mechanism of inhibition of translation termination by Blasticidin S. J. Mol. Biol. 2018, 430, 591–593. [Google Scholar] [CrossRef]
- Marciano, P.; Di Lenna, P.; Magro, P. Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol. Plant Pathol. 1983, 22, 339–345. [Google Scholar] [CrossRef]
- Heller, A.; Witt-Geiges, T. Oxalic Acid Has an Additional, Detoxifying Function in Sclerotinia sclerotiorum Pathogenesis. PLoS ONE 2013, 8, e72292. [Google Scholar] [CrossRef]
- Hou, Y.-P.; Mao, X.-W.; Lin, S.-P.; Song, X.-S.; Duan, Y.-B.; Wang, J.-X.; Zhou, M.-G. Activity of a novel succinate dehydrogenase inhibitor fungicide pyraziflumid against Sclerotinia sclerotiorum. Pestic. Biochem. Physiol. 2018, 145, 22–28. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Wang, J.; Zhou, M.; Wang, M.; Feng, J. Antifungal activity and action mechanism of the natural product cinnamic acid against Sclerotinia sclerotiorum. Plant Dis. 2019, 103, 944–950. [Google Scholar] [CrossRef]
- Yan, H.; Xiong, Z.; Xie, N.; Liu, S.; Zhang, L.; Xu, F.; Guo, W.; Feng, J. Bioassay-guided isolation of antifungal amides against Sclerotinia sclerotiorum from the seeds of Clausena lansium. Ind. Crop Prod. 2018, 121, 352–359. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X. Isolation and identification of symbiotic bacteria associated with entomopathogenic nematodes. J. Northwest AF Univ. (Nat. Sci. Ed.) 2006, 34, 174–180. [Google Scholar]
- Huang, W.R.; Zhu, C.X.; Yang, X.F.; Yang, H.W.; Xu, H.Z.; Xie, Y.Y.; Jian, H. Isolation and structural identification of main component CB6-1 produced by Xenorhabdus nematophilus var. pekingensis. Chin. J. Antibiot. 2005, 30, 513–515. [Google Scholar]
- Yang, D.; Wang, B.; Wang, J.; Chen, Y.; Zhou, M. Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biol. Control 2009, 51, 61–65. [Google Scholar] [CrossRef]
- Soylu, E.M.; Kurt, S.; Soylu, S. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 2010, 143, 183–189. [Google Scholar] [CrossRef]
- Duan, Y.; Ge, C.; Liu, S.; Chen, C.; Zhou, M. Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pestic. Biochem. Physiol. 2013, 106, 61–67. [Google Scholar] [CrossRef]
- Rao, P.; Pattabiraman, T.N. Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Anal. Biochem. 1989, 181, 18–22. [Google Scholar] [CrossRef]
- Riou, C.; Freyssinet, G.; Fevre, M. Production of Cell Wall-Degrading Enzymes by the Phytopathogenic Fungus Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 1991, 57, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
Tested Fungi | Inhibition Rate (%) | |
---|---|---|
Xcn1 a | MBC b | |
Sclerotinia sclerotiorum | 89.30 ± 2.30 | 95.17 ± 4.05 |
Rhizoctonia solani | 88.50 ± 3.10 | 67.70 ± 3.15 |
Botrytis cinerea | 86.70 ± 3.20 | 13.88 ± 2.28 |
Exserohilum turcicum | 83.20 ± 2.20 | - |
Alternaria alternata | 75.00 ± 1.80 | - |
Fusarium graminearum | 50.60 ± 1.29 | 89.78 ± 3.08 |
Alternaria solani | 67.50 ± 2.10 | 65.58 ± 3.52 |
Colletotrichum gloeosporioides | 47.01 ± 3.10 | 56.80 ± 2.24 |
Gaeumannomyces graminis | 38.11 ± 3.40 | 44.05 ± 2.12 |
Fusarium oxysporum | 11.80 ± 2.20 | 34.54 ± 3.87 |
Strain | Regression Curve | EC50 a (CI95 b) (μg/mL) | EC95 c (CI95 b) (μg/mL) | Chi d |
---|---|---|---|---|
S. sclerotiorum | y = 2.01x − 0.92 | 2.86 (2.38–3.32) | 18.71 (14.49–26.65) | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Han, Y.; Wang, L.; Han, J.; Yan, Z.; Wang, Y.; Wang, Y. Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from Xenorhabdus nematophila against Sclerotinia sclerotiorum. J. Fungi 2024, 10, 175. https://doi.org/10.3390/jof10030175
Zhang S, Han Y, Wang L, Han J, Yan Z, Wang Y, Wang Y. Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from Xenorhabdus nematophila against Sclerotinia sclerotiorum. Journal of Fungi. 2024; 10(3):175. https://doi.org/10.3390/jof10030175
Chicago/Turabian StyleZhang, Shujing, Yunfei Han, Lanying Wang, Jinhua Han, Zhiqiang Yan, Yong Wang, and Yonghong Wang. 2024. "Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from Xenorhabdus nematophila against Sclerotinia sclerotiorum" Journal of Fungi 10, no. 3: 175. https://doi.org/10.3390/jof10030175
APA StyleZhang, S., Han, Y., Wang, L., Han, J., Yan, Z., Wang, Y., & Wang, Y. (2024). Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from Xenorhabdus nematophila against Sclerotinia sclerotiorum. Journal of Fungi, 10(3), 175. https://doi.org/10.3390/jof10030175