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Abstract: Viticulture worldwide is challenged by grapevine trunk diseases (GTDs). Involvement
of arthropods in the dissemination process of GTD pathogens, notably esca pathogens, is indicated
after detection of associated pathogens on arthropod exoskeletons, and demonstration of transmis-
sion under artificial conditions. The present study is the first to quantify spore loads via qPCR of
the esca-relevant pathogen Phaeomoniella chlamydospora on arthropods collected in German vine-
yards, i.e., European earwigs (Forficula auricularia), ants (Formicidae), and two species of jumping
spiders (Marpissa muscosa and Synageles venator). Quantification of spore loads showed acquisition on
exoskeletons, but most arthropods carried only low amounts. The mycobiome on earwig exoskele-
tons was described for the first time to reveal involvement of earwigs in the dispersal of GTDs in
general. Metabarcoding data support the potential risk of earwigs as vectors for predominantly
Pa. chlamydospora and possibly Eutypa lata (causative agent of Eutypa dieback), as respective opera-
tional taxonomical unit (OTU) assigned genera had relative abundances of 6.6% and 2.8% in total
reads, even though with great variation between samples. Seven further GTD-related genera were
present at a very low level. As various factors influence the successful transmission of GTD pathogens,
we hypothesize that arthropods might irregularly act as direct vectors. Our results highlight the
importance of minimizing and protecting pruning wounds in the field.

Keywords: grapevine trunk diseases; esca; arthropods; vectors; dispersal; spore loads; earwigs;
mycobiome

1. Introduction

Various fungal diseases constitute an important threat for viticulture worldwide. The
impact of grapevine trunk diseases (GTDs) significantly increased in recent decades [1].
The esca disease complex as well as Botryosphaeria and Eutypa dieback are the three
main GTDs in established vineyards [2–5]. Causal agents are phytopathogenic fungi that
internally colonize grapevine wood, deteriorating the vascular tissue, and eventually
decreasing the vitality and productivity of infested vines [3,6–8].

Eutypa dieback, also known as eutypiosis, appears as cankers on trunks and vine
arms, discolorations and v-shaped necrosis in the vascular tissue, stunted shoots, necrotic
or short leaves, wilted flowers, and malformed berries. Causal agents belong to the family
Diatrypaceae, with Eutypa lata being prevalent and most crucial [9–11].

Vines affected by Botryosphaeria dieback, also referred to as “black dead arm” (BDA),
show discolorations of the vascular tissue, premature leaf fall, dieback of shoots, and
withering of fruits and flowers [12,13]. Responsible pathogens are members of the fungal
family Botryosphaeriaceae, such as the genera Botryosphaeria, Diplodia, or Dothiorella [14].
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Characteristic inner symptoms of the esca disease complex are discolorations of the
vine’s vascular system, such as formation of gummosis and necrosis, known as “brown
wood streaking” or Petri disease. External symptoms are stunted growth, the characteristic
“tiger-stripe” leaf patterns called “Grapevine Leaf Stripe Disease” (GLSD), shrinking of
berries, and the sudden withering of parts of or the whole vine (apoplexy) [3,4,15–17]. White
rot frequently co-occurs with GLSD in old vines [17] and is called “esca proper”. Esca’s main
causal agents are the vascular pathogenic ascomycetes Phaeomoniella chlamydospora [18],
members of the genera Phaeoacremonium [19–21], and Cadophora [22–24], as well as wood-
decaying basidiomycetes (white rot fungi) belonging to the genus Fomitiporia, mainly
F. mediterranea [25–27].

Symptoms of different GTDs can overlap due to the possibility of co-occurrence of
involved fungal pathogens [1].

Propagules of GTD pathogens are considered as being mainly dispersed by wind or
rain splash [28,29], and enter the vines through wounds in the grapevine wood, caused
by winter pruning or management practices during the vegetative season [30–34]. Sus-
ceptibility of pruning wounds to pathogen infection can remain for several weeks, and is
influenced by various factors, such as the fungal pathogen invading, grapevine variety, and
pruning season [34].

As is known from other plant diseases, arthropods can play a role as vectors of
phytopathogenic fungi by transporting fungal spores externally or internally to potential
infection sites [35–40]. Involvement of arthropods in the dissemination process of GTDs,
primarily esca, has been previously described. Besides the spatial distribution of propagules
on and between grapevines, direct transmission of pathogen inoculum to susceptible
wounds by arthropod vectors is possible [41–43]. The potential of arthropod-mediated
transmission of esca-associated pathogens was, however, only evaluated under artificial
conditions [43,44]. In order to evaluate the importance of spore loads in the field, the
actual quantity of GTD-associated fungal material on arthropod exoskeletons ought to
be determined.

The European earwig Forficula auricularia (Dermaptera: Forficulidae), one predomi-
nant arthropod species in German vineyards [42,45], has been shown to potentially vector
esca pathogens, provided that the susceptibility of grapevine wounds is given [42,43].
Earwigs collected from vineyards frequently carried esca-associated pathogens on their
exoskeletons, and the simultaneous detection of different esca pathogens was also evi-
dent [42]. Furthermore, earwig-mediated transmission of esca-associated pathogens was
successful under artificial conditions leading to the infection of healthy vines [43]. In
addition, the detection of fungi associated with Botryosphaeria and Eutypa dieback from
earwig exoskeletons underline the possible involvement of earwigs in the dissemination
process of GTDs [41]. In the present study, next-generation sequencing (NGS) is used
as a culture-independent method to elucidate earwigs’ involvement at dispersing fungal
diseases of grapevines by displaying the mycobiome present on their exoskeletons.

The aims of the present study were as follows: (i) quantifying Pa. chlamydospora on the
selected arthropod species collected in German vineyards using qPCR, and (ii) analyzing
the mycobiome of earwig exoskeletons using NGS to determine the spectrum of GTD-
related fungi.

Our results aim to gain insights into the possible contribution of arthropods in the
dissemination process of GTD-related pathogens in the field. Based on our results, we
highlight the importance of reducing and protecting grapevine pruning wounds in order
to minimize pathogen invasion.

2. Materials and Methods
2.1. Sampling Site and Collection of Arthropods

Arthropods were collected in 2019 and 2020 from experimental vineyards located at
the Julius Kühn-Institute (JKI) in Siebeldingen, Germany. Vineyard “A” (49◦13′00.2′′ N;
8◦02′53.1′′ E) was planted in 1996 with the fungus-resistant (PIWI-) cultivar Vitis vinifera
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cv. ‘Phoenix’ (resistance against powdery and downy mildew) and was managed with
integrated plant protection. Vineyard “B” (49◦13′08.8′′ N; 8◦02′39.6′′ E), planted in 2002,
comprised two PIWI- (‘Calandro’ and ‘Regent’) and two traditional cultivars (‘Pinot Noir’
and ‘Riesling’), and the plant protection measures were organic. In the years 2012 to 2015,
GLSD-symptoms and apoplexy were frequently observed in vineyard “A” [46], whereas
symptoms were rare in vineyard “B”.

Cardboard-traps were used to collect arthropods directly from selected vines (for
details see [42]). According to the period of arthropod activity observed in the vineyards,
traps were installed in early April and arthropods were collected until the end of October.
Collection was carried out by emptying traps every other week into a large plastic box and
aseptically placing individual arthropods into 2 mL reaction tubes. The mass occurrence of
earwigs was handled by considering five randomly chosen individuals as one sample, with
a maximum of five such samples per trap. The morphological identification of arthropod
species was accomplished using an identification guide for German fauna [47] and a field
guide for spiders [48].

2.2. Washing of Arthropod Exoskeletons and DNA Extraction

Esca-related pathogens on arthropod exoskeletons were detected by following the
protocol described in Kalvelage et al. [42]. Arthropods were freeze-killed prior to washing
off potential spores from their exoskeletons. Genomic DNA (gDNA) was extracted from
these washing suspensions.

2.3. qPCR for the Quantification of Pa. chlamydospora on Arthropods
2.3.1. Selection of Arthropod Samples for qPCR Analysis

A nested multiplex PCR of gDNA samples obtained from arthropod washing suspen-
sions showed the presence of the esca-related pathogens Pa. chlamydospora, C. luteo-olivacea,
and Phaeoacremonium spp. [42]. From this set, a total of 329 samples obtained from earwigs,
two jumping spiders (Marpissa muscosa and Synageles venator), and ants that contained
Pa. chlamydospora spores were selected for qPCR analysis as described below.

2.3.2. Construction of the Standard Curve

A representative isolate of Pa. chlamydospora also used in the transmission experiments
conducted by Kalvelage et al. [43] was grown on potato dextrose agar (PDA; Carl Roth
GmbH + Co., KG, Karlsruhe, Germany) plates for four weeks at room temperature under
daylight conditions. A conidial suspension was prepared by detaching conidia from the
medium using 3 mL of sterile water and filtering the suspension through an ADVANTEC®

membrane filter with 5 µm pore size (Toyo Roshi Kaisha, Ltd., Tokyo, Japan). The concen-
tration was determined using a hemocytometer (Neubauer improved). A 10-fold dilution
series was made from the initial spore suspension; gDNA was extracted [42] and used as
standard for the qPCR as described below. The standard regression curve was generated
by plotting the logarithm with base 10 of the known spore concentrations (conidia/µL)
against the threshold cycle (CT) values measured using the 7500/7500 Fast Real-Time PCR
System (Applied Biosystems, Darmstadt, Germany) (Figure A1).

2.3.3. qPCR Set Up

qPCR was carried out with Luna® Universal (RT)-qPCR reagents (New England Bio-
labs, Ipswich, MA, USA) and a 7500/7500 Fast Real-Time PCR System (Applied Biosystems).
The Pa. chlamydospora specific primers Pa. chlamydospora1H: 5′-CCC GAT CTC CAA CCC
TTT GTT T-3′ and Pa. chlamydospora2H: 5′-CGG GCC TAT CTT CTA TGA AAG-3′ [49]
were used.

The 20 µL PCR reactions were set up as follows: 1 µL template gDNA; 0.25 µM of each
primer; 10 µL Luna Universal qPCR Mix; adjusted with “Bioscience-grade”-water (Carl
Roth GmbH + Co., KG). Cycle conditions of the 2-step protocol were as follows: warming-
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up phase at 50 ◦C for 2 min, holding stage at 95 ◦C for 10 min, and 40 cycles for 15 s at
95 ◦C and 30 s at 60 ◦C. Melting curves were examined to verify the specific amplifications.

2.3.4. qPCR Sample Processing

In each run, 28 different gDNA samples and a standard dilution series were analyzed
in three replicates. The final standard curve comprised 2.23 × 105 to 2.23 × 102 spores,
with this spanning the number of spores observed in the examined samples. A no-template
control was run in two replicates. The linear regression equation of the standards was used
to estimate the conidial concentration in the arthropod washing suspensions. The number
of individuals was considered for pooled earwig samples.

As 223 spores were determined as the detection limit for conidia counts, the respec-
tive CT value in each qPCR round was set as threshold for the cutoff of false-positive
results. The number of Pa. chlamydospora spores on arthropod exoskeletons was analyzed
using a linear mixed effect model (lmer) with log2-transformed values. Fixed factors were
species and year and their interaction, and the intercept per season:vineyard was consid-
ered as a random effect. Based on this model, an ANOVA (Type II Wald chi-square test)
was calculated.

2.4. Mycobiome Analysis of Earwig Exoskeletons Using NGS
2.4.1. Selection of Earwig Samples for DNA Metabarcoding

A total of 120 randomly selected gDNA samples from earwig exoskeletons obtained
from June to August each in 2019 and 2020, originally proven to be positive or negative
for Pa. chlamydospora [42], were subjected to an ITS end point PCR after quality control
regarding the DNA concentration needed for metabarcoding.

The primers used are ITS1catta: 5′-ACCWGCGGARGGATCATTA-3′ and ITS2ngs: 5′-
TTYRCKRCGTTCTTCATCG-3′ being specific for the fungal ITS1 region [50]. Both primers
had a final concentration of 0.3 µM. The PCR reaction was carried out in a SimpliAmp™
Thermal Cycler (Applied Biosystems) and the reaction was conducted with the KAPA HiFi
Hotstart Taq polymerase (Peqlab, Erlangen, Germany). The reaction volume was 20 µL,
according to the user manual, and 1 µL of the extracted DNA was used as template. PCR
conditions were as follows: initial denaturation at 95 ◦C for 3 min; 30 cycles of 30 s at 98 ◦C,
20 s at 54 ◦C, and 20 s at 72 ◦C; final extension for 1 min at 72 ◦C. PCR products were loaded
on a 1.5% agarose gel, run at 6 V/5 cm for 45 min, and visualized under ultraviolet (UV) light
using a QUANTUM ST5 gel documentation system (Vilber Lourmat, Eberhardzell, Germany).

2.4.2. DNA Metabarcoding

AllGenetics & Biology SL (A Coruña, Spain) created sequence libraries and performed
high-throughput sequencing for metabarcoding. The primers ITS1catta and ITS2ngs ampli-
fying the fungal ITS1 region [50] were used to create DNA libraries. The 25 µL primary PCR
reaction was composed as follows: 2.5 µL DNA; 0.5 µM of each primer; 12.5 µL Supreme
NZYTaq 2× Green Master Mix (NZYTech, Lisboa, Portugal); adjusted with “Bioscience-
grade”-water. The PCR conditions were as follows: initial denaturation at 95 ◦C for 5 min,
35 cycles at 95 ◦C for 30 s, 48 ◦C for 45 s, 72 ◦C for 45 s, final elongation at 72 ◦C for 7 min.
Oligonucleotide-index sequences were attached in a secondary PCR reaction in order to
multiplex different libraries on a sequence pool. PCR conditions were set according to
the first PCR reaction, but included 5 instead of 35 cycles, and the annealing temperature
was increased to 60 ◦C. The size of PCR products was visualized on a 2% agarose-gel,
stained with GreenSafe (NZYTech). Purification of PCR products was conducted using the
Mag-Bind RXNPure Plus magnetic beads (Omega Biotek, Norcross, GA, USA) according to
the user manual. After pooling PCR products, they were sequenced using Illumina MiSeq
PE300 technology (Illumina Germany, Berlin, Germany).

Template-free library preparations were also analyzed in order to exclude contam-
inations. For overall quality control, an artificial mock community comprising DNA of
twelve in vitro cultivated fungal species (Aspergillus ochraceus, Aureobasidium pullulans,
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Bjerkandera adusta, Botrytis cinerea, Fomitiporia mediterranea, Fusarium avenaceum, Fusarium
culmorum, Gibellulopsis nigrescens, Phaeoacremonium angustius, Phaeomoniella chlamydospora,
Pichia kluyveri, Stereum hirsutum) was additionally analyzed.

2.4.3. Bioinformatic Processing

The analysis was performed using a metabarcoding pipeline only considering forward
read sequences [51]. Cutadapt v3.4 [52] and the R package ShortRead v1.58.0 [53] were
used to cut primers, and dada2 v1.28.0 [54] was used for quality filtering, denoising with
independent sample inference and eliminating chimeras. Vsearch v2.22.1 [55] was used for
post-clustering 98.5% operational taxonomical units (OTUs) from the denoised sequences,
and taxonomic assignment of OTUs against the UNITE v8.2 database [56] was again
performed with dada2.

Only samples with a minimum of 5000 reads were considered, and analyses were
limited to OTUs belonging to the kingdoms Fungi and Stramenopila and to OTUs found
in at least two samples. Relative quantification was used to describe the abundance of
individual OTUs. OTUs assigned to the same genus were pooled to present the relative
abundance of certain OUT-assigned taxonomic ranks in total reads.

The number of observed OTUs was analyzed using a negative binomial generalized
linear mixed-effect model (glmer.nb). The sampling year was set as a fixed factor, and so
was the random intercept per month; vineyard was considered as the random effect. Based
on this model, an ANOVA (Type II Wald chi-square test) was calculated.

3. Data Analysis

Statistical analyses were conducted with the RStudio software v4.3.2 [57]. General
analysis and plotting were performed with the R packages tidyverse v1.3.1 [58], ggpubr
v0.4.0 [59], psych v2.2.5 [60]), lme4 v 1.1-21 [61], emmeans v1.7.4-1 [62], multcomp v1.4.19 [63],
ggpubr v0.4.0 [59], and car v3.0.13 [64]. For metabarcoding data, the R packages phyloseq
v1.30.0 [65], vegan v2.5.7 [66], and cowplot v1.1.1 [67] were additionally used.

4. Results
4.1. Spore Loads of Pa. chlamydospora on Arthropods

Using qPCR, spore loads of Pa. chlamydospora on earwigs (F. auricularia), ants (Formi-
cidae), and two jumping spiders (M. muscosa and S. venator) were determined (Figure 1).
A total of 59.6% of samples testing positive for Pa. chlamydospora in the nested PCR [42]
yielded a positive result in the qPCR; vice versa, 40.4% of the samples did not contain
quantifiable spore numbers. Samples that tested positive revealed great variation within
each arthropod species. The effects of the species (Wald χ2 = 6.7726, p = 0.07951) and
sampling year (Wald χ2 = 0.7906, p = 0.37391) were not found to affect the number of spores,
but their interaction (Wald χ2 = 11.0965, p = 0.01122).

Overall, 54.3% of earwig samples contained quantifiable numbers of spores. Most
earwigs carried a spore number below 10,000 on their exoskeletons. In 2020, ten outliers
were found ranging from 10,000 to 40,000 spores. Of all ant samples tested in our qPCR,
41.9% contained a concentration of Pa. chlamydospora spores below the detection limit
and the other samples revealed numbers below 5000, except for one ant carrying approx.
9000 spores. In 2019, 48.6% of M. muscosa individuals carried between 10,000 and 20,000 Pa.
chlamydospora spores on their exoskeletons, whereas most spore numbers were below 5000
in 2020, and only four samples exceeded 10,000 spores. In 2019, a total of 78.6% of S. venator
samples tested positive for Pa. chlamydospora and showed spore numbers between approx.
5000 and 12,500. A total of 66.6% of S. venator carried Pa. chlamydospora in 2020 with spore
numbers below 2500.
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Figure 1. Spore loads of Pa. chlamydospora determined in 2019 (purple) and 2020 (green) on earwigs
(F. auricularia), ants (Formicidae), and two jumping spiders (M. muscosa and S. venator) using qPCR.
Arthropod sampling size (n) for each year and species is given below the individual violin plot.

4.2. Mycobiome Analysis of Earwig Exoskeletons
4.2.1. Summary of Dataset

A total of 6,466,441 raw reads were produced from 120 samples, and 5,971,932 were
retained after sequence quality control. After filtering, a total of 110 samples and 341 OTUs
were retained. Sample read sums ranged from 5772 to 115,638 with a median of 55,586.5.

4.2.2. Alpha Diversity Metrics

OTU richness was compared between earwig exoskeletons depending on sampling
years (Figure 2). Rarefaction curves show a saturation in OTU detection for all samples,
and no effect of the sampling year was found regarding the number of observed OTUs
(Wald χ2 = 0.0045, p = 0.9465).
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(n) were 42 in 2019 and 68 in 2020.
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4.2.3. Fungal Abundance and Diversity

The 341 retained OTUs spanned five phyla: Ascomycota, Mucoromycota, Basidiomy-
cota (kingdom Fungi), Oomycota, Ochrophyta (kingdom Stramenopila), while some OTUs
remained unidentified (Figure 3A). OTUs can further be classified into 24 classes, 63 orders,
135 families, and 191 genera.
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Figure 3. Mycobiome on earwig exoskeleton collected in the years 2019 and 2020 in two German
vineyards. Bar plots of the relative abundance total reads (%) of phyla belonging to the kingdoms
Fungi and Stramenopila identified (A), 15 most frequent genera (if genus-level assignment was
possible) (B) and genera associated with GTDs (C). ‘Others’ are OTUs not included due to the
respective filtering.

The fifteen most frequent genera (if genus-level assignment was possible) with the
highest relative abundance in total reads perceived from earwig exoskeletons are presented
in Figure 3B. Determining the fungal community present on earwig exoskeletons revealed
OTUs that matched with many genera associated with GTDs (for GTD-associated genera see
reviews [5,68,69], presented in Figure 3C). Overall, 9.6% of the total reads were associated
with fungal genera related to GTDs. OTUs with lower relative abundance are pooled
in ‘Others’.

GTD-related genera Phaeomoniella and Eutypa are included in the 15 most frequent
genera determined on earwig exoskeletons, and their relative abundance (total reads for every
earwig sample) is presented in Figure 4. The concentration of GTD-associated pathogens
differed greatly between samples and years. In 2019, 38% of samples contained Phaeomoniella,
with relative abundances ranging up to 100%. In 2020, only 13.2% of samples contained
Phaeomoniella, with relative abundances all below 12.5%. In only 3 out of 42 samples (7.1%),
Eutypa was found in 2019 with relative abundances close to zero, whereas 18 out of 68 (26.5%)
samples contained Eutypa in 2020 with relative abundances ranging up to 60%.
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5. Discussion

The potential risk presented by arthropods as vectors of GTD pathogens, in particular
esca pathogens, was highlighted with the detection of GTD-associated fungi on various
arthropods collected in vineyards in South Africa and Germany [41,42]. In addition, it
has been shown under artificial conditions that arthropods can transfer esca pathogens to
healthy vines, causing new infections [43,44].

In the present study, qPCR was used to quantify the spore load of Pa. chlamydospora
on certain arthropod species collected in German vineyards. As successful transmission
by ants and earwigs has already been described [43,44], we focused on these taxa and
additionally included two jumping spiders, as they frequently carried esca-associated
pathogens in German vineyards [42]. In our qPCR analysis, we processed only samples that
tested positive for Pa. chlamydospora in the nested PCR [42]. In total, 133 out of 329 samples
(40.4%) that had been positive for Pa. chlamydospora in the nested PCR did not test positive
in our qPCR, probably caused by a comparably lower sensitivity of the latter setup and/or
target concentration below the detection limit. High variation was additionally observed
between samples of the same arthropod species (Figure 1). Edwards et al. [70] compared
molecular detection methods for Pa. chlamydospora and noted not only a lack of detection
in qPCR despite positive results in nested PCR analysis, but also increasing variation with
decreasing spore loads. It should also be considered that the suspension used to wash the
spores off the arthropod exoskeletons [42] may not have been suitable to detach all the
spores, which could also have led to fluctuations in spore numbers.

The arthropod species studied differed in size, morphology, and behavior. The follow-
ing aspects could be advantageous for inoculum acquisition: a hairy surface, as is evident
in jumping spiders, i.e., M. muscosa, to which the spores can easily adhere, and a small
body size to reach inoculum deep inside or between small cracks in the vine wood [21,71].
Regarding the latter aspect, small mites have already been observed as being associated
with sporulating mycelium of Pa. chlamydospora [71]. The main risk of arthropod-mediated
transmission of spores most likely occurs during spring, when late-winter pruned vines
may still be susceptible [34,72,73], and putative vectors are active and attracted to wound
sap [41–43]. During the vegetative season, sucker and green shoot wounds may also serve
as entry portals [33]. Our analysis showed that many Pa. chlamydospora spores are present
on several arthropod species that are active in vineyards in early and late spring [42]. The
average spore numbers of Pa. chlamydospora determined during artificial transmission ex-
periments on ants and earwigs were 122,500 and 2,229,688, respectively [43], while another
author [44] determined an average of 55,000 Pa. chlamydospora spores on ants. In compari-
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son, our results revealed that 56.1% of arthropods that carried Pa. chlamydospora had spore
numbers below 1000. The rest of the arthropod samples showed greatly varying spore
numbers ranging up to 40,000, indicating that individuals irregularly came in contact with
sporulating inoculum and acquired a spore package that was potentially risky for disease
transmission in relation to artificial transmission experiments. Moreover, the sampling year
was found to affect the number of spores indicating that the risk of arthropods as vectors
may differ between years.

With regard to the results of Elena et al. [74], who considered an inoculation dose
of 100–2000 spores of Pa. chlamydospora as sufficient for successful infection, arthropod-
mediated transmission in the field might theoretically be possible. However, the molecular
detection of Pa. chlamydospora or any other GTD pathogen on arthropods only proves
its physical presence and does not allow definite statements on its viability. Because
spore germination in fungi is affected by abiotic conditions such as temperature, moisture,
humidity, or light [75], the actual transmission efficiency still remains unclear. In addition,
the actual number of spores that eventually reach susceptible vine wounds is very likely
to be much smaller than the total number of spores on arthropod exoskeletons. In our
study, we used a qPCR with defined spore numbers as the standard. Pa. chlamydospora is a
mitosporic species [18], readily producing enormous numbers of conidial spores, and these
are considered the main transmission agents in the field, vectored mainly by wind and/or
rain splash [28,29]. We do not know to which degree field-samples might contain mycelial
fragments, which would also be testing positive in the PCR-analysis.

Samples analyzed in this study were the same as those examined by Kalvelage et al. [42]
using a nested PCR approach. In total, 41.9% of the nested-positive samples did not
confirm the presence of Pa. chlamydospora in the qPCR, which could be due not only to
concentrations below the detection limit, but also to the fact that the nested PCR may have
yielded some false-positive results.

The European earwig F. auricularia is a vector candidate for the transmission of esca
pathogens in German vineyards [42,43]. In the present study, metabarcoding was used
to elucidate the involvement of earwigs in the dispersal of further GTD-related fungi by
describing for the first time the fungal community present on earwig exoskeletons.

The mycobiome on earwigs comprised 341 OTUs and OTU-richness can be compared
to grapevine leaves in the studies conducted by Perazzolli et al. [76] and Behrens & Fis-
cher [77], whereas 897 OTUs were detected by Castañeda et al. [78]. In comparison to the
mycobiome of grapevine wood, the fungal diversity on earwigs was slightly lower com-
pared to studies that found approx. 500 OTUs [79,80] and was much lower in comparison
to Vanga et al. [81], who detected 1250 OTUs in grapevine trunks. It has to be considered
that the number of OTUs highly depends on sampling and analysis methods.

Fungal genera such as Mucor, Cladosporium, Alternaria, Aureobasidium, Mycosphaerella,
and other members of the family Pleosporaceae have not only been detected on grapevine
leaves [76–78,82] but also in grapevine wood [83–85]. Other fungi present in vine trunks
are also described in our study, i.e., Arthrinium, Petriella, and members of the family Nectri-
aceae [84,85]. The yeast genus Kazachstania has not only been found in grape must [86,87],
but also on earwig exoskeletons. The genus Acrostalagmus, a valuable bioactive component
producer [88], identified in pooled grapevine samples [89], and the genus Neodidymelliopsis
frequently detected on xylem-feeding leafhoppers [90] were also detected in the present study.

Our analysis of earwig exoskeletons revealed the presence of fungi associated with the
esca disease, such as Phaeomoniella [15,18], Phaeoacremonium [19–21], and Cadophora [22–24].
We also identified the genus Eutypa associated with Eutypa dieback [91], the genus Diplodia
associated with Botryosphaeria dieback [13], the genus Diaporthe associated with Phomopsis
dieback [92], and the genus Ilyonectria associated with black-foot disease [93].

Important esca-associated pathogens have previously been detected on earwigs using
molecular techniques [41,42]. Moyo et al. [41] successfully isolated many above-mentioned
GTD fungi from other arthropods collected in vineyards. In our experiments, the di-
versity of GTD-associated genera comprised seven different genera with a total relative
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abundance of 9.6%. On grapevine leaves, only Cadophora, Diplodia, and Diaporthe were
detected [82,94]. The relative abundance of Diplodia ranged between 0.67% and 18% [82]
and relative abundances of Cadophora and Diaporthe were below 2% in the study conducted
by Pinto et al. [94]. As expected, high frequencies of GTD-associated fungi ranging from
approx. 42–76% have been described in vine trunk mycobiome studies [79,81,95]. The
numbers of GTD-associated genera assigned by OTUs were similar to those found in
our study.

As the majority of OTUs assigned to GTD-associated genera had only minor relative
abundances in total reads, we assume that the risk of earwig-mediated transmission might
be negligible for most pathogens. However, the genera Phaeomoniella and Eutypa are
comprised in the 15 most abundant genera, with relative OTU-abundances of 6.6% and
2.8% across all samples, respectively (Figure 3). In mycobiome studies of vine trunks,
Pa. chlamydospora and E. lata have been demonstrated as the most frequent OTUs [79,81,95].
Considering the sample specific relative abundance of the respective genera (Figure 4), it is
obvious that only a few earwig samples contained larger relative amounts of Phaeomoniella
or Eutypa, while the majority of earwigs did not come in contact with those fungi. This is in
accordance with the observations of the qPCR analysis. Interestingly, Pa. chlamydospora had
relative abundances of approx. 100% in some samples, indicating that individual earwigs
have been in intensive contact with sporulating mycelium.

Basidiomycota-assigned OTUs accounted for approx. 7% of the total reads. Interestingly,
no OTU was assigned to the esca-relevant genus Fomitiporia, although it has frequently been
detected in German vineyards both using isolation and metabarcoding techniques [79,96–98].
Apparently, earwigs are less involved in the dispersal of white-rot agents.

Earwigs frequently carried the genus Aureobasidium on their exoskeletons (4.9% of total
reads). The yeast-like fungus A. pullulans is a prominent biological antagonist of GTDs such
as Pa. chlamydospora, E. lata, and Diplodia seriata [4,99]. Recent studies, however, point to a
more complex interaction of A. pullulans and GTD pathogens, such as Pa. chlamydospora, as
the co-occurrence of these fungi in planta has been observed to enhance disease expression,
i.e., foliar symptoms of esca [100].

Our results shed more light on the role of arthropods in the dissemination of GTDs,
especially esca. Considering the number of arthropods with probably relevant numbers
of Pa. chlamydospora spores on their exoskeletons, the proportion of GTD pathogens in
the mycobiome of earwig exoskeletons, and the sporadic visit of pruning wounds by
potential vectors, we suggest that the risk of arthropods as vectors of GTD pathogens in
German vineyards theoretically exists but appears to be negligible in the field. In addition,
the co-occurrence of winter pruning wound susceptibility and the presence of potential
arthropod vectors in the field is complex [34,42], whereas the risk for sucker and green
shoot wounds seems to be more relevant and might need further analysis [33]. Overall,
arthropods disperse pathogenic inoculum on and between vines and may irregularly act
as vectors of GTD pathogens as they visit pruning wounds in search for food such as
wound sap [41–43]. With this background, any kind of injury in the grapevine wood should
be minimized, underlining the potential of minimal pruning techniques [79,101,102]. In
addition, the application of appropriate pruning wound protection is an effective measure
to prevent pathogen invasion [1,3,4,102]. The use of products containing biological control
agents (BCAs) such as the fungal antagonist Trichoderma atroviride SC1 in combination
with other strategies may offer a sustainable way to establish a long-term barrier against
GTD fungi [103].

6. Conclusions

The present study is the first in which the occurrence of Pa. chlamydospora spores on
different arthropod species in the field has been quantified. Our results show the acquisition
of spores to arthropods in the field, eventually leading to the possible transmission of spores
to susceptible vine wounds.
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For the first time, the mycobiome of earwig exoskeletons is presented. Although fungal
diversity related to GTDs was higher on earwigs in comparison to, e.g., grapevine leaves,
the majority of GTD-associated OTUs accounted for a negligible relative proportion only.
A relevant occurrence was described for the genera Phaeomoniella and Eutypa which could
indicate a possible involvement of earwigs in the transmission of esca and Eutypa dieback
in the field. However, only a few samples revealed relevant relative abundances, while the
majority of samples did not contain Phaeomoniella or Eutypa. Considering the number of
Pa. chlamydospora spores on arthropod exoskeletons and the relative abundance of GTD
pathogens detected during metabarcoding, we hypothesize that arthropod-mediated trans-
mission is possible, but its relevance seems negligible and has to be considered in light of
multiple influencing factors and other ways of spore transmission. Yet, our results highlight
another mechanism of spore transmission emphasizing the importance of minimizing and
protecting grapevine pruning wounds in order to prevent pathogen invasion.
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Figure A1. Standard curve for the quantification of Pa. chlamydospora spores on arthropod 
exoskeletons. The standard curve comprised the concentrations 2.23 × 105 to 2.23 × 102 conidia/µL 
obtained from a defined Pa. chlamydospora suspension. Values are means ± standard error of three 
standards. The black line shows the linear regression of the standard curve (y = 44.2 − 4.07x) with R2 
= 1 and p < 0.001. 
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