Natural Substances as Valuable Alternative for Improving Conventional Antifungal Chemotherapy: Lights and Shadows
Abstract
:1. Introduction
2. Current Clinical Chemotherapies against Fungi: Main Families and Some Drawbacks
3. Natural Products: Potential Adjuvants of Antifungal Chemotherapy
Natural Extract/Oil (Scientific Name) | Main Bioactive Molecules | Fungal Species Tested | Concentration | Ref. |
---|---|---|---|---|
Aloe Vera gel (Aloe barbadensis miller) | Aloesin, Aloin | C. albicans, A. fumigatus, A. niger, C. glabrata, C. tropicalis | 312.5–625 μL/mL extract | [52,53] |
Barberry (Berberis vulgaris) | Berberine, polyphenols | C. albicans, C. krusei, C. glabrata, C. dubliniensis, 6 Candida clinical isolates | 10 μg/mL | [54,55] |
Black pepper oil (Piper nigrum); Cayenne pepper (Capsicum frutescens) | Phenols, terpenes, alkaloids, capsaicinoids | A. flavus, A. ochraceus, F. graminearum, P. viridcatum, C. neoformans, Candida spp. | 4–16 μg/mL | [56,57,58] |
Cinnamon oil (Cinnamomum verum) | Cinnamaldehyde | A. niger, C. albicans, C. auris | 25 μg/mL | [59,60,61] |
Clove (Syzygium aromaticum) oil | Eugenol | A. flavus, A, fumigatus, A. niger, C. auris, C. parapsilosis, C. krusei. 5 dermatophyte clinical strains: Microsporum canis, M. gypseum, Trichophyton rubrum, T. mentagrophytes, Epidermophyton floccosum | 0.02–20 μL/mL | [62,63] |
Cumin (Cuminum cyminum) seed oil | Cumin aldehyde, cumin quinones | C. albicans, Candida clinical isolates | 0.02–1.25 μL/mL | [64,65] |
Garlic (Allium sativum) extract | Allicin, NpRS peptide | C. albicans, Candida clinical isolates | 12–23 mg/mL (extract) 32–128 μg/mL (allicin) | [49,66,67,68,69,70] |
Manuka (Leptospermum scoparium) oil and honey | Sesquiterpenes, β-triketone, acetanisole | Malassezia furfur, Trichosporon mucoides, C. albicans, C. tropicalis, C. glabrata | 0.01–3.13% (v/v) | [71,72] |
Maqui Berry (Aristotelia chilensis) fruit extract | Anthocyanidin (delphinidin) | C. albicans | >10 mg/mL | [73,74] |
Neem (Azadirachta indica) extract | Azadirachtin | Rhizopus, A. flavus, A. fumigatus, A. niger, A. terreus, C. albicans, Microsporum gypseum | 5–20% | [75,76] |
Olive (Olea europaea) oil | Oleuropein, tyrosol, triterpenes (i.e., oleanolic acid) | Candida spp., Saprochaete spp., Candida clinical isolates, Saprochaete capitata | 50 μL/well (around 10%) | [77,78] |
Oregano (Origanum vulgare) oil | Carvacrol and thymol | C. neoformans, C. laurentii | 16–128 μg/mL | [46,79,80] |
Rosemary (Rosmarinus officinalis) oil/extract | Rosmarinic and carnosic acids, terpenes, triterpenes (i.e., ursolic acid) | Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, Aspegillus flavus | 50–200 mg/mL, 0.5 mg/mL | [81,82] |
Tea Tree (Melaleuca alternifolia) oil | Terpinenes, acetanisole | C. albicans, C. glabrata, S. cerevisiae | 0.25–1% (v/v) | [83,84,85] |
Turmeric (Curcuma longa) oil/extract | Curcumin | C. albicans, C. neoformans | 128–256 μg/mL | [9,86,87,88] |
Essential oils/extracts of other sources (thyme, peppermint, anise, camphor, lemon grass, marjoram, caraway, parsley, celery, spinach, onion, coconut, grapefruit, purple coneflower, etc.) | Monoterpenes (thymol, carvacrol), sesqui, di and triterpenes, alkaloids, saponins, phenols, flavonoids, organosulfurs, fatty acids, polyphenols, chicoric acid, etc. | Mostly Candida and Aspergillus species. Details at the references indicated (column on the right). | Diverse, wide ranges according to the type of oil, the studies, and the fungal strains | [46,63,70,90,91,92] |
Propolis (Apis mellifera) resin extract | Flavonoids, phenol esters | C. albicans, C. dubliniensis, C. glabrata, C. parapsisolis, C. krusei, C. tropicalis, C. Neoformans, S. cerevisiae | 4–2000 μg/mL (greatly dependent on geographical area) | [41,42,94] |
Sage (Salvia officinalis) leaf extract | Carnosic acid, triterpenes | C. albicans, C. neoformans, C. glabrata | 50–500 μg/mL | [41,42,95,96] |
4. Therapies Based on Combinations among Chemotherapy/Natural Products
4.1. Combination of Two Antifungal Drugs Used for Chemotherapy
4.2. Combination among Natural Products
4.3. Combination of Antifungal Drugs and Natural Products
5. Some Pending Questions Regarding Benefits and Drawbacks of NPs as Alternative in Antifungal Therapy
6. Concluding Remarks and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2022. Available online: https://www.who.int/publications/i/item/9789240062702 (accessed on 2 March 2024).
- McKenn, M. What a treatment for “super gonorrhoea” means for future drug development. Nature 2024, 626, 942–944. [Google Scholar]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.F. Advances and challenges in management of invasive mycoses. Lancet 2005, 366, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.; Rodrigues, M.L.; Coelho, C. The Still Underestimated Problem of Fungal Diseases Worldwide. Front. Microbiol. 2019, 10, 214. [Google Scholar] [CrossRef] [PubMed]
- López-Herrero, R.; Prada, L.S.-D.; Tamayo-Velasco, A.; Heredia-Rodríguez, M.; Carrillo, M.B.; Monjas, P.J.; de la Varga-Martínez, O.; Resino, S.; de Quintana, G.S.-L.; Gómez-Sánchez, E.; et al. Epidemiology of fungal infection in COVID 19 in Spain during 2020 and 2021: A nationwide study. Sci. Rep. 2024, 14, 5203. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of Invasive Mycoses in North America. Crit. Rev. Microbiol. 2010, 36, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M.; Ćirić, A.; Stojković, D. Emerging Antifungal Targets and Strategies. Int. J. Mol. Sci. 2022, 23, 2756. [Google Scholar] [CrossRef] [PubMed]
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal infections in humans: The silent crisis. Microb. Cell 2020, 7, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Castanheira, M. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis. Med. Mycol. 2016, 54, 1–22. [Google Scholar] [CrossRef]
- Vanreppelen, G.; Wuyts, J.; Van Dijck, P.; Vandecruys, P. Sources of Antifungal Drugs. J. Fungi 2023, 9, 171. [Google Scholar] [CrossRef]
- Denning, D.W.; Bromley, M.J. How to bolster the antifungal pipeline. Science 2015, 347, 1414–1416. [Google Scholar] [CrossRef] [PubMed]
- Shor, E.; Perlin, D.S. Coping with Stress and the Emergence of Multidrug Resistance in Fungi. PLoS Pathog. 2015, 11, e1004668. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Arif, T.; Bhosale, J.D.; Kumar, N.; Mandal, T.K.; Bendre, R.S.; Lavekar, G.S.; Dabur, R. Natural products—Antifungal agents derived from plants. J. Asian Nat. Prod. Res. 2009, 11, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Gintjee, T.J.; Donnelley, M.A.; Thompson, G.R. Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. J. Fungi 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Aldholmi, M.; Marchand, P.; Ourliac-Garnier, I.; Le Pape, P.; Ganesan, A. A Decade of Antifungal Leads from Natural Products: 2010–2019. Pharmaceuticals 2019, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef] [PubMed]
- Vincent, B.M.; Lancaster, A.K.; Scherz-Shouval, R.; Whitesell, L.; Lindquist, S. Fitness Trade-offs Restrict the Evolution of Resistance to Amphotericin B. PLoS Biol. 2013, 11, e1001692. [Google Scholar] [CrossRef]
- Quentin, M.; Besson, F.; Peypoux, F.; Michel, G. Action of peptidolipidic antibiotics of the iturin group on erythrocytes: Effect of some lipids on hemolysis. Biochim. Biophys. Acta (BBA) Biomembr. 1982, 684, 207–211. [Google Scholar] [CrossRef]
- Akins, R.A. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med. Mycol. 2005, 43, 285–318. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti-Infect. Ther. 2015, 13, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Lepesheva, G.I.; Waterman, M.R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta (BBA) Gen. Subj. 2007, 1770, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, L.; Lv, Q.; Yan, L.; Wang, Y.; Jiang, Y. The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors. Front. Microbiol. 2019, 10, 691. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Lee, R.E.B.; Barker, K.S.; Wei, L.; Homayouni, R.; Rogers, P.D. Genome-Wide Expression Profiling of the Response to Azole, Polyene, Echinocandin, and Pyrimidine Antifungal Agents in Candida albicans. Antimicrob. Agents Chemother. 2005, 49, 2226–2236. [Google Scholar] [CrossRef] [PubMed]
- Wall, G.; Lopez-Ribot, J.L. Current Antimycotics, New Prospects, and Future Approaches to Antifungal Therapy. Antibiotics 2020, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Szymański, M.; Chmielewska, S.; Czyżewska, U.; Malinowska, M.; Tylicki, A. Echinocandins—Structure, mechanism of action and use in antifungal therapy. J. Enzym. Inhib. Med. Chem. 2022, 37, 876–894. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, P.H.; Sobel, J.D. Micafungin: A New Echinocandin. Clin. Infect. Dis. 2006, 42, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Eschenauer, G.; DePestel, D.D.; Carver, P.L. Comparison of echinocandin antifungals. Ther. Clin. Risk Manag. 2007, 3, 71–97. [Google Scholar] [CrossRef]
- Belenky, P.; Camacho, D.; Collins, J.J. Fungicidal Drugs Induce a Common Oxidative-Damage Cellular Death Pathway. Cell Rep. 2013, 3, 350–358. [Google Scholar] [CrossRef]
- Mesa-Arango, A.C.; Trevijano-Contador, N.; Román, E.; Sánchez-Fresneda, R.; Casas, C.; Herrero, E.; Argüelles, J.C.; Pla, J.; Cuenca-Estrella, M.; Zaragoza, O. The Production of Reactive Oxygen Species Is a Universal Action Mechanism of Amphotericin B against Pathogenic Yeasts and Contributes to the Fungicidal Effect of This Drug. Antimicrob. Agents Chemother. 2014, 58, 6627–6638. [Google Scholar] [CrossRef]
- Guirao-Abad, J.P.; Sánchez-Fresneda, R.; Román, E.; Pla, J.; Argüelles, J.C.; Alonso-Monge, R. The MAPK Hog1 mediates the response to amphotericin B in Candida albicans. Fungal Genet. Biol. 2020, 136, 103302. [Google Scholar] [CrossRef] [PubMed]
- Guirao-Abad, J.P.; Sánchez-Fresneda, R.; Alburquerque, B.; Hernández, J.A.; Argüelles, J.-C. ROS formation is a differential contributory factor to the fungicidal action of Amphotericin B and Micafungin in Candida albicans. Int. J. Med. Microbiol. 2017, 307, 241–248. [Google Scholar] [CrossRef]
- Shekhova, E.; Kniemeyer, O.; Brakhage, A.A. Induction of mitochondrial reactive oxygen species production by itraconazole, terbinafine and amphotericin B as a mode of action against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2017, 61, e00978-17. [Google Scholar] [CrossRef]
- Sánchez-Fresneda, R.; Muñoz-Megías, M.L.; Yagüe, G.; Solano, F.; Maicas, S.; Argüelles, J.C. Lack of Functional Trehalase Activity in Candida parapsilosis Increases Susceptibility to Itraconazole. J. Fungi 2022, 8, 371. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.-B.; Zhang, M.; Li, D.; Zhao, Y.; Huang, L.-Z.; Gao, J.-M. Synthesis and Antifungal Activity of Derivatives of the Natural Product Griseofulvin against Phytopathogenic Fungi. J. Agric. Food Chem. 2023, 71, 6236–6248. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.W.; Kontoyiannis, D.P.; Cornely, O.A.; Perfect, J.R.; Walsh, T.J. Novel Agents and Drug Targets to Meet the Challenges of Resistant Fungi. J. Infect. Dis. 2017, 216, S474–S483. [Google Scholar] [CrossRef]
- Shao, Y.; Molestak, E.; Su, W.; Stankevič, M.; Tchórzewski, M. Sordarin—An anti-fungal antibiotic with a unique modus operandi. Br. J. Pharmacol. 2022, 179, 1125–1145. [Google Scholar] [CrossRef]
- Adewusi, E.A.; Afolayan, A.J. A review of natural products with hepatoprotective activity. J. Med. Plants Res. 2010, 4, 1318–1334. [Google Scholar]
- Argüelles, A.; Sánchez-Fresneda, R.; Guirao-Abad, J.P.; Belda, C.; Lozano, J.A.; Solano, F.; Argüelles, J.-C. Novel Bi-Factorial Strategy against Candida albicans Viability Using Carnosic Acid and Propolis: Synergistic Antifungal Action. Microorganisms 2020, 8, 749. [Google Scholar] [CrossRef]
- Argüelles, A.; Sánchez-Fresneda, R.; Martínez-Mármol, E.; Lozano, J.A.; Solano, F.; Argüelles, J.C. A Specific Mixture of Propolis and Carnosic Acid Triggers a Strong Fungicidal Action against Cryptococcus neoformans. Antibiotics 2021, 10, 1395. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Guha, P. A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. J. Food Sci. Technol. 2018, 55, 4701–4710. [Google Scholar] [CrossRef] [PubMed]
- Dutra, J.A.P.; Maximino, S.C.; Gonçalves, R.d.C.R.; Morais, P.A.B.; Silva, W.C.d.L.; Rodrigues, R.P.; Neto, C.; Júnior, V.L.; Borges, W.d.S.; Kitagawa, R.R. Anti-Candida, docking studies, and in vitro metabolism-mediated cytotoxicity evaluation of Eugenol derivatives. Chem. Biol. Drug Des. 2022, 101, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Mishra, R.; Arora, N.; Chatrath, A.; Gangwar, R.; Roy, P.; Prasad, R. Antifungal and Anti-Biofilm Activity of Essential Oil Active Components against Cryptococcus neoformans and Cryptococcus laurentii. Front. Microbiol. 2017, 8, 2161. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Soković, M. Camphor and Eucalyptol—Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. Int. J. Mol. Sci. 2021, 22, 483. [Google Scholar] [CrossRef]
- Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Soković, M. Flavones, Flavonols, and Glycosylated Derivatives—Impact on Candida albicans Growth and Virulence, Expression of CDR1 and ERG11, Cytotoxicity. Pharmaceuticals 2020, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y.; Zhou, J.; Wang, J.; Zhang, M.; Chen, H. Structural Characterization, Cytotoxicity, and the Antifungal Mechanism of a Novel Peptide Extracted from Garlic (Allium sativa L.). Molecules 2023, 28, 3098. [Google Scholar] [CrossRef] [PubMed]
- Leontiev, R.; Hohaus, N.; Jacob, C.; Gruhlke, M.C.H.; Slusarenko, A.J. A Comparison of the Antibacterial and Antifungal Activities of Thiosulfinate Analogues of Allicin. Sci. Rep. 2018, 8, 6763. [Google Scholar] [CrossRef]
- Pelvan, E.; Karaoğlu, Ö.; Fırat, E.; Kalyon, K.B.; Ros, E.; Alasalvar, C. Immunomodulatory effects of selected medicinal herbs and their essential oils: A comprehensive review. J. Funct. Foods 2022, 94, 105108. [Google Scholar] [CrossRef]
- Danish, P.; Ali, Q.; Hafeez, M.; Malik, A. Antifungal and antibacterial activity of aloe vera plant extract. Biol. Clin. Sci. Res. J. 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Rezvaninejad, R.; Rezvaninejad, R.; Ashoorian, M.J.; Talebi, M. Comparison of Effect of Aloe vera Gel and Nystatin on Candida Species: An In Vitro Study. Jundishapur J. Health Sci. 2022, 14, e122029. [Google Scholar] [CrossRef]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, X.; Zhou, P. In vitro Antifungal Effects of Berberine against Candida spp. In Planktonic and Biofilm Conditions. Drug Des. Dev. Ther. 2020, 14, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, J.; Famous, E.; Pan, S.; Peng, X.; Tian, J. Antioxidant, hepatoprotective and antifungal activities of black pepper (Piper nigrum L.) essential oil. Food Chem. 2020, 346, 128845. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Marimuthu, P.; Catalan, C.; Delampasona, M. Chemical, antioxidant and antifungal activities of volatile oil of black pepper and its acetone extract. J. Sci. Food Agric. 2004, 84, 1878–1884. [Google Scholar] [CrossRef]
- Renault, S.; De Lucca, A.J.; Boue, S.; Bland, J.M.; Vigo, C.B.; Selitrennikoff, C.P. CAY-I, a novel antifungal compound from cayenne pepper. Med. Mycol. 2003, 41, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Tyburski, J.; Matysiak, K.; Jakubowska, M.; Łukaszyk, J.; Krzymińska, J. Cinnamon as a Useful Preventive Substance for the Care of Human and Plant Health. Molecules 2021, 26, 5299. [Google Scholar] [CrossRef]
- Wang, M.; Liu, H.; Dang, Y.; Li, D.; Qiao, Z.; Wang, G.; Liu, G.; Xu, J.; Li, E. Antifungal Mechanism of Cinnamon Essential Oil against Chinese Yam-Derived Aspergillus niger. J. Food Process. Preserv. 2023, 2023, 5777460. [Google Scholar] [CrossRef]
- Tran, H.N.H.; Graham, L.; Adukwu, E.C. In vitro antifungal activity of Cinnamomum zeylanicum bark and leaf essential oils against Candida albicans and Candida auris. Appl. Microbiol. Biotechnol. 2020, 104, 8911–8924. [Google Scholar] [CrossRef]
- Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2009, 58, 1454–1462. [Google Scholar] [CrossRef]
- Parker, R.A.; Gabriel, K.T.; Graham, K.D.; Butts, B.K.; Cornelison, C.T. Antifungal Activity of Select Essential Oils against Candida auris and Their Interactions with Antifungal Drugs. Pathogens 2022, 11, 821. [Google Scholar] [CrossRef]
- Egbe, N. Antifungal effects of Nigella sativa L. (Black cumin) seed extracts and seed oil on selected Candida albicans strains. J. Curr. Biomed. Res. 2023, 3, 993–1004. [Google Scholar] [CrossRef]
- Kamble, V.A. In vitro Anti-Fungal Activity of Cuminum cyminum (Cumin Seed) Essential Oil against Clinical Isolates of Candida Species. Am. J. Phytomed. Clin. Therap. 2015, 3, 264–275. [Google Scholar]
- An, M.; Shen, H.; Cao, Y.; Zhang, J.; Cai, Y.; Wang, R.; Jiang, Y. Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. Int. J. Antimicrob. Agents 2009, 33, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Katiraee, F.; Afshar, S.A.; Pirmahalleh, S.R.; Shokri, H. In vitro antifungal activity of essential oils extracted from plants against fluconazole-susceptible and-resistant Candida albicans. Cur. Med. Mycol. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Na Guo, N.; Wu, X.; Yu, L.; Liu, J.; Meng, R.; Jin, J.; Lu, H.; Wang, X.; Yan, S.; Deng, X. In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazole-resistant Candida albicans determined by alternative methods. FEMS Immunol. Med. Microbiol. 2010, 58, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, E.; Khodavandi, A. Evaluation of the anti-Candida effect of garlic, shallot and onion to inhibit the quorum sensing activity. Adv. Biores. 2016, 7, 125–132. [Google Scholar]
- Khounganian, R.M.; Alwakeel, A.; Albadah, A.; Nakshabandi, A.; Alharbi, S.; Almslam, A.S. The Antifungal Efficacy of Pure Garlic, Onion, and Lemon Extracts Against Candida albicans. Cureus 2023, 15, e38637. [Google Scholar] [CrossRef]
- Mathew, C.; Tesfaye, W.; Rasmussen, P.; Peterson, G.M.; Bartholomaeus, A.; Sharma, M.; Thomas, J. Mānuka Oil—A Review of Antimicrobial and Other Medicinal Properties. Pharmaceuticals 2020, 13, 343. [Google Scholar] [CrossRef]
- Anand, S.; Deighton, M.; Livanos, G.; Pang, E.C.K.; Mantri, N. Agastache honey has superior antifungal activity in comparison with important commercial honeys. Sci. Rep. 2019, 9, 18197. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga, G.E.; Tapia, A.; Arenas, A.; Contreras, R.A.; Zúñiga-Libano, G. Phytochemistry and biological properties of Aristotelia chilensis a Chilean blackberry: A review. Phytochem. Rev. 2017, 16, 1081–1094. [Google Scholar] [CrossRef]
- Savic, K.J.; Djokic, L.; Stankovic, N.; Moric, I.; Pavlovic, B.; Senerovic, L.; Aydogan, C.; Pavic, A. Maqui berry extract inhibits filamentation of Candidaalbicans and improves the antifungal efficacy of nystatin. J. Funct. Foods 2023, 106, 105617. [Google Scholar] [CrossRef]
- Mondali, N.K.; Mojumdar, A.; Chatterje, S.K.; Banerjee, A.; Datta, J.K.; Gupta, S. Antifungal activities and chemical char-acterization of Neem leaf extracts on the growth of some selected fungal species in vitro culture medium. J. Appl. Sci. Environ. Manag. 2009, 13, 49–53. [Google Scholar]
- Mahmoud, D.; Hassanein, N.; Youssef, K.; Zeid, M.A. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens. Braz. J. Microbiol. 2011, 42, 1007–1016. [Google Scholar] [CrossRef]
- Goel, N.; Rohilla, H.; Singh, G.; Punia, P. Antifungal Activity of Cinnamon Oil and Olive Oil against Candida spp. Isolated from Blood Stream Infections. J. Clin. Diagn. Res. 2016, 10, DC09–DC11. [Google Scholar] [CrossRef]
- Varol, K.; Koc, A.N.; Atalay, M.A.; Keles, I. Antifungal Activity of Olive Oil and Ozonated Olive Oil against Candida spp. and Saprochaete spp. Ozone Sci. Eng. 2017, 39, 462–470. [Google Scholar] [CrossRef]
- Khodavandi, A.; Alizadeh, F.; Alizandeh, E. Antifungal activity of carvacrol in combination with fluconazole or amphotericin B against Candida albicans. Malays. J. Microbiol. 2018, 14, 356–363. [Google Scholar] [CrossRef]
- Monteiro, A.C.M.; Drame, A.D.; Nascimento, F.M.; Miranda-Vilela, A.L.; Lima, A.V.; da Silva, M.A.N.; Ribeiro, I.F. In vitro Inhibitory Action of the Essential Oils of Origanum Vulgare and Rosmarinus Officinalis against Aspergillus Fumigatus. Planta Medica Int. Open 2021, 8, e143–e152. [Google Scholar] [CrossRef]
- Özcan, M.M.; Chalchat, J.-C. Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int. J. Food Sci. Nutr. 2008, 59, 691–698. [Google Scholar] [CrossRef]
- Meccatti, V.M.; Oliveira, J.R.; Figueira, L.W.; Lagareiro Netto, A.A.; Zamarioli, L.S.; Marcucci, M.C.; Oliveira, L.D. Rosmarinus officinalis L. (rosemary) extract has antibiofilm effect similar to the antifungal nystatin on Candida samples. An. Acad. Bras. Ciênc. 2021, 93, e20190366. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.N.M.; Aquino, S.G.; Junior, C.R.; Spolidorio, D.M.P. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages. Inflamm. Res. 2014, 63, 769–778. [Google Scholar]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J. Antimicrob. Chemother. 2004, 53, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska, M.; Szymańska, E.; Winnicka, K. The Influence of Tea Tree Oil on Antifungal Activity and Pharmaceutical Characteristics of Pluronic® F-127 Gel Formulations with Ketoconazole. Int. J. Mol. Sci. 2021, 22, 11326. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-S.; Chen, T.-H.; Weng, L.; Huang, L.; Lai, D.; Weng, C.-F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed. Pharmacother. 2021, 141, 111888. [Google Scholar] [CrossRef] [PubMed]
- Urošević, M.; Nikolić, L.; Gajić, I.; Nikolić, V.; Dinić, A.; Miljković, V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics 2022, 11, 135. [Google Scholar] [CrossRef]
- Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Res. Int. 2014, 2014, 186864. [Google Scholar] [CrossRef] [PubMed]
- Cheraghipour, K.; Ezatpour, B.; Masoori, L.; Marzban, A.; Sepahvand, A.; Rouzbahani, A.K.; Moridnia, A.; Khanizadeh, S.; Mahmoudvand, H. Anti-Candida Activity of Curcumin: A Systematic Review. Curr. Cancer Drug Targets 2021, 18, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Akula, S.T.; Nagaraja, A.; Ravikanth, M.; Kumar, N.G.R.; Kalyan, Y.; Divya, D. Antifungal efficacy of lauric acid and caprylic acid—Derivatives of virgin coconut oil against Candida albicans. Biomed. Biotechnol. Res. J. (BBRJ) 2021, 5, 229–234. [Google Scholar] [CrossRef]
- Tsutsumi-Arai, C.; Terada-Ito, C.; Tatehara, S.; Imamura, T.; Takebe, Y.; Ide, S.; Satomura, K. Fungicidal activity of grapefruit seed extract against the pathogenic Candida species causing oral candidiasis. J. Oral Maxillofac. Surg. Med. Pathol. 2021, 33, 626–632. [Google Scholar] [CrossRef]
- Mir-Rashed, N.; Cruz, I.; Jessulat, M.; Dumontier, M.; Chesnais, C.; Juliana, N.G.; Amiguet, V.T.; Golshani, A.; Arnason, J.T.; Smith, M.L. Disruption of fungal cell wall by antifungal Echinacea extracts. Med. Mycol. 2010, 48, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Jesus, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update. Evid.-Based Complement. Altern. Med. 2015, 2015, 620472. [Google Scholar] [CrossRef] [PubMed]
- Ożarowski, M.; Karpiński, T.M.; Alam, R.; Łochyńska, M. Antifungal Properties of Chemically Defined Propolis from Various Geographical Regions. Microorganisms 2022, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Jordán, M.J.; Castillo, J.; Bañón, S.; Martínez-Conesa, C.; Sotomayor, J.A. Relevance of the carnosic acid/carnosol ratio for the level of rosemary diterpene transfer and for improving lamb meat antioxidant status. Food Chem. 2014, 151, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Birtić, S.; Dussort, P.; Pierre, F.-X.; Bily, A.C.; Roller, M. Carnosic acid. Phytochemistry 2015, 115, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Tu, X.-F.; Thakur, K.; Hu, F.; Li, X.-L.; Zhang, Y.-S.; Zhang, J.-G.; Wei, Z.-J. Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem. Toxicol. 2019, 134, 110821. [Google Scholar] [CrossRef] [PubMed]
- Khodavandi, A.; Alizadeh, F.; Khezrian, F. Inhibition of Candida albicans yeast-hyphal transition by combination of fluconazole with amphotericin B. Physiol. Pharmacol. 2018, 22, 195–204. [Google Scholar]
- Rossi, S.A.; de Oliveira, H.C.; Agreda-Mellon, D.; Lucio, J.; Mendes-Giannini, M.J.S.; García-Cambero, J.P.; Zaragoza, O. Identification of off-patent Drugs that show synergism with Amphotericin B or that present antifungal action against Cryp-tococcus neoformans and Candida spp. Antimicrob. Agents Chemother. 2020, 64, e01921-19. [Google Scholar] [CrossRef]
- Hassan, H.A.; Genaidy, M.M.; Kamel, M.S.; Abdelwahab, S.F. Synergistic antifungal activity of mixtures of clove, cumin and caraway essential oils and their major active components. J. Herb. Med. 2020, 24, 100399. [Google Scholar] [CrossRef]
- Ota, C.; Unterkircher, C.; Fantinato, V.; Shimizu, M.T. Antifungal activity of propolis on different species of Candida. Mycoses 2001, 44, 375–378. [Google Scholar] [CrossRef]
- Argüelles, A.; Sánchez-Fresneda, R.; Guirao-Abad, J.P.; Lozano, J.A.; Solano, F.; Argüelles, J.-C. Insight into the Antifungal Effects of Propolis and Carnosic Acid—Extension to the Pathogenic Yeast Candida glabrata: New Propolis Fractionation and Potential Synergistic Applications. J. Fungi 2023, 9, 442. [Google Scholar] [CrossRef]
- Mamoon, K.; Thammasit, P.; Iadnut, A.; Kitidee, K.; Anukool, U.; Tragoolpua, Y.; Tragoolpua, K. Unveiling the Properties of Thai Stingless Bee Propolis via Diminishing Cell Wall-Associated Cryptococcal Melanin and Enhancing the Fungicidal Activity of Macrophages. Antibiotics 2020, 9, 420. [Google Scholar] [CrossRef] [PubMed]
- Carrión-Navarro, J.; Argüelles, A.; Martínez-Gimeno, M.L.; Lozada, A.T.; Ayuso-Sacido, A.; Belda-Iniesta, C.; Arnás-Rodríguez, M.; García-Romero, N. A New Natural Antimycotic Agent is Effective against Oropharyngeal Candidiasis: The Viprocan Study. Open Dent. J. 2022, 16. [Google Scholar] [CrossRef]
- Gucwa, K.; Kusznierewicz, B.; Milewski, S.; Van Dijck, P.; Szweda, P. Antifungal Activity and Synergism with Azoles of Polish Propolis. Pathogens 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.N.; Khan, S.; Misba, L.; Sharief, M.; Hashmi, A.; Khan, A.U. Synergistic fungicidal activity with low doses of eugenol and amphotericin B against Candida albicans. Biochem. Biophys. Res. Commun. 2019, 518, 459–464. [Google Scholar] [CrossRef]
- Oliveira, V.M.; Carraro, E.; Auler, M.E.; Khalil, N.M. Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz. J. Biol. 2016, 76, 1029–1034. [Google Scholar] [CrossRef]
- Stepanović, S.; Antić, N.; Dakić, I.; Švabić-Vlahović, M. In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs. Microbiol. Res. 2003, 158, 353–357. [Google Scholar] [CrossRef]
- Yerer, M.B. Natural products in Clinical Trials. Proceeding 2019, 40, 32. [Google Scholar] [CrossRef]
- Clinical Trial NCT03005353, Treatment of Candidal Vulvovaginitis Using Cumin Seed Extract Vaginal Suppositories Conditions: Infection, Fungal, Locations: Assiut, Egypt. Available online: https://clinicaltrials.gov (accessed on 28 February 2024).
- Clinical Trial NCT05916729, Use of Maqui Berry Extract in Treating Oral Candidiasis in Diabetes Mellitus Patients and Systemically Healthy Persons. Conditions: Oral Candidiases, Locations: Belgrade, Serbia. Available online: https://clinicaltrials.gov (accessed on 28 February 2024).
- Clinical Trial NCT05367089, The Effect of Medical Grade Honey Formulation (L-Mesitran) Administration on Recurrent Vulvovaginal Candidiasis Symptoms. Conditions: Candidiasis, Vulvovaginal and Recurrent Candidiasis of Vagina, Locations: Heerlen, Netherlands. Available online: https://clinicaltrials.gov (accessed on 28 February 2024).
- Clinical Trial NCT01237782, Efficacy of a Propolis-Based Denture Cleanser. Conditions: Dental Plaque, Denture Stomatitis, Oral Hygiene, Locations: Ribeirão Preto, São Paulo, Brazil. Available online: https://clinicaltrials.gov (accessed on 28 February 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argüelles, J.C.; Sánchez-Fresneda, R.; Argüelles, A.; Solano, F. Natural Substances as Valuable Alternative for Improving Conventional Antifungal Chemotherapy: Lights and Shadows. J. Fungi 2024, 10, 334. https://doi.org/10.3390/jof10050334
Argüelles JC, Sánchez-Fresneda R, Argüelles A, Solano F. Natural Substances as Valuable Alternative for Improving Conventional Antifungal Chemotherapy: Lights and Shadows. Journal of Fungi. 2024; 10(5):334. https://doi.org/10.3390/jof10050334
Chicago/Turabian StyleArgüelles, Juan Carlos, Ruth Sánchez-Fresneda, Alejandra Argüelles, and Francisco Solano. 2024. "Natural Substances as Valuable Alternative for Improving Conventional Antifungal Chemotherapy: Lights and Shadows" Journal of Fungi 10, no. 5: 334. https://doi.org/10.3390/jof10050334
APA StyleArgüelles, J. C., Sánchez-Fresneda, R., Argüelles, A., & Solano, F. (2024). Natural Substances as Valuable Alternative for Improving Conventional Antifungal Chemotherapy: Lights and Shadows. Journal of Fungi, 10(5), 334. https://doi.org/10.3390/jof10050334