Potential Environmental Reservoirs of Candida auris: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Synthesis
2.4. Risk of Bias (ROB) Assessment
3. Results
3.1. Potential Natural Environmental Reservoirs
3.2. Potential Urban Non-Hospital Environmental Reservoirs
First Author and Year | Country | Time of the Year | Positive Type of Samples | Harvesting Method | Culture and Temperature | Genomic Amplification | Proteomic | Clade |
---|---|---|---|---|---|---|---|---|
Yadav, 2022 [40] | India | March–April 2020; June–July 2021 | Stored apples (epicarp) | Sterile Swabs Swept | Sabouraud dextrose with chloramphenicol and gentamicin, CHROMagar Candida, and Yeast nitrogen broth at 37 °C | Illumina Hiseq 4000 | MALDI-TOF MS | I |
Epicard homogenizes in saline | ||||||||
Yadav, 2023 [39] | India | - | Ear and skin of dogs | Swab samples | Yeast nitrogen broth with 10% NaCl at 37 °C for 4 days | Illumina HiSeq 4000 | MALDI-TOF MS | I |
Arora, 2021 [41] | India | February–March 2020 | Salt march soil and sandy beach sediment | 2 g sediment suspended in 8 mL of 0.85% NaCl | Sabouraud dextrose agar plates with chloramphenicol and gentamicin at 28 °C up to 7 days | Illumina Hiseq 4000 | MALDI-TOF MS | I |
Seawater from the sandy beach | filtered with 0.45 um filters in 50 mL sterile bottles | |||||||
Membrane biofilm | ||||||||
Escandón, 2022 [42] | Colombia | 2018 | Water from Estuaries | 100 mL of water from a depth of 30 cm | Salt Sabouraud Dextrose selective broth at 40 °C for 48 h | PCR | MALDI-TOF MS | - |
Irinyi, 2022 [43] | UK | 2019 | Skin of Lissotriron vulgaris and Triturus cristatus | Sterile Swabs | - | Illumina Miseq | - | - |
Spain | 2019 | Ear of dog | - | - | PCR | - | - | |
Kuwait | 2017–2018 | Airborne dust | Dust-laden filter paper from a high-volume air sampler | - | Illumina HiSeq 2500 | - | - | |
Republic of Korea | 2016 | Activated sludge | 50 mL of a sterilized conical tube | - | Illumina MiSeq | - | - | |
Barber, 2023 [44] | USA | June–September 2022 | Pelleted wastewater solids | - | - | qPCR | - | - |
Babler, 2023 [45] | USA | 2021–2022 | Wastewater from the central district plant | Sterile HDPE bottle containing 0.1 g sodium thiosulfate | CHROMagar at 42 °C for 48 h | qPCR | - | - |
Wastewater from sewer cleanout from the hospital | ||||||||
Ekowati, 2018 [46] | Netherlands | - | Water samples from two pools | Plastic containers | Sabouraud Dextrose Agar and Malt Extract Agar at 24 °C for 7 days | PCR | - | - |
First Author and Year | Country | Time of the Year | Sample Type | Sampling Method | Culture and Detection | Positive Samples/Total Samples Collected | Molecular Identification | Clade and Clinical Identical | Conclusion |
---|---|---|---|---|---|---|---|---|---|
Katsiari, 2023 [13] | Greece | October 2020–January 2022 | Environmental screening process | - | Sabouraud Dextrose Agar at 35 °C and 42 °C | 3/NA | PCR MALDI-TOF | Clade I and identical sequences to clinical samples | Only beds and a side table near infected patients were positive. |
Tian, 2021 [47] | China | March 2018 | Environmental screening process | - | Yeast Extract–Peptone–Dextrose Medium at 37 °C for 16 h | 1/1 | Illumina NovaSeq platform MALDI-TOF | Clade III clade and clinically related | Only the bedrails of a patient infected were positive. |
Didik, 2023 [48] | Hong Kong | September–October 2022 | Frequently touched items of ward communal area returned air grilles and high-level supply air grilles. | Flexible pre-moistened sterile poly wipe sponge swabs | Sabouraud dextrose broth with 10% NaCl, chloramphenicol and colistin for 7 days at 40° | 32/249 | Illumina iSeq or MiSeq MALDI-TOF | Clade I | 29 positive samples were from frequently touched items and 3 from returned air grilles and supply air grilles. |
Alanio, 2022 [49] | France | January 2021 | Investigation of the environment after bio-cleaning (sodium hypochlorite and sporicide) | Sterile pre-moistened cotton swabs unloaded in water. | Sabouraud Dextrose Agar | 0/NA | qPCR | Clade I | Only the mattresses, bed fences, and trolleys of infected patients were positive. |
qPCR | NA/NA | ||||||||
Yadav, 2021 [50] | India | December 2019–May 2020 | Near each patient’s bed (bed railing, bed sheet, pillow, bedside trolly, floor, and air conditioner air wings), medical equipment (thermometer, B.P. cuffs, ECG clip and sucker, oxygen mask, and nebulizer), and portable devices (mobile, wheelchair, and intravenous pole). | Premoistened swabs | Sabouraud Dextrose Agar containing chloramphenicol and gentamicin at 37 °C for 48–72 h | 15/148 | Illumina Hiseq 4000 MALDI-TOF | Clade I and SNP difference Between 1–160 among clinical and environmental isolates. | Recovered from near-patient sites (floor, bed railing, bedside trollies, pillow, and bed sheet). It was also recovered from air conditioner air wings, a mobile phone, and two medical equipment: an oxygen mask and intravenous pole. |
Yeast nitrogen enrichment broth containing 10% NaCl and 2% mannitol as a carbon source, and vortexed and incubated at 37 °C for 72–96 h | |||||||||
Umamheshwari, 2021 [51] | India | December 2018–March 2019 | Beds, bed rails, bedside tables/cardiac tables, and nursing cart. | Sterile pre-moistened in saline cotton swabs | Sabouraud Dextrose Agar plates for 7 days at 37 °C | 2/46 | PCR VITEK 2 MALDI TOF MS | Clade I and >90% similarity between clinical and environmental isolates | Only the bed railings around an infected patient were positive |
Taori, 2019 [52] | UK | July 2016–February 2017 | High touch point areas | Sterile pre-moistened in saline cotton swabs | Brilliance Candida agar for 48 h at 37 °C | 2/48 | PCR VITEK 2 MALDI TOF MS | Clade I | Only the bed railings and dining trolleys around an infected patient were positive |
Biswal, 2017 [53] | India | January–March 2017 | Environmental sampling of surfaces of objects or fomites in ICU | Cotton swabs pre-moistened in saline | Sabouraud dextrose agar for 48 h at 37 °C | 24/304 | Sequencing of ITS and D1/D2 regions of ribosomal DNA MALDI TOF | - | Recovered from near-patient sites (beds) and medical equipment: expiratory end of the ventilator, ECG leads, cuffs blood pressure, and temperature probes. |
Ruiz-Gaitan, 2019 [54] | Spain | 2016–2018 | Patients’ environment (bed rails, table, infusion pumps, keyboards, and walls) after cleaning, faucets, benches, and reusable medical devices. | Cotton gauzes soaked in saline | Sabouraud dextrose broth with chloramphenicol at 35 °C for 72 h | 61/738 | Sequencing ITS VITEK MS IVD | - | Isolated from Blood pressure cuffs, patient tables, keyboards, infusion pumps |
Adams, 2018 [55] | USA (New York) | 2013–2017 | Environmental samples were collected from rooms belonging to infected patients on near-patient surfaces, equipment, and other objects. They were also collected from objects outside these rooms. | Sponge sticks with 45 mL of phosphate-buffered saline with 0.02% Tween 80 | Sponge suspension on different agar media or Sponge suspension in 5 mL of SDB-AS broth at 40 °C for 2 weeks | 62/781 | Real-time PCR MALDI-TOF | Clade I | Isolated from near-patient surfaces and other surfaces inside patients’ rooms, like floors, curtains, and others. It was also isolated from equipment outside these rooms, like vital sign machines, thermometers, and others. |
Real-time PCR | 19/781 (culture negative) | ||||||||
Al Maani, 2019 [56] | Oman | October 2018 | Collected from high touch areas and re-useable devices | Sterile swabs pre-moistened in sterile saline | Sabouraud dextrose agar and incubated at 37 °C for 48 h. | 2/140 | PCR MALDI-TOF MS | Clade I | Isolated from the ventilator end and trolley belonging to the patient’s rooms. |
Alfouzan, 2020 [57] | Kuwait | January 2018–2019 | Collected from infected patients’ rooms. | Swab samples | Sabouraud dextrose agar with gentamicin for 24–48 h at 37 °C | 7/261 | PCR VITEK 2 MALDI TOF MS | Clade I and genetically identical to clinical strains | Isolated from the Bedrail, bedside drawer, toilet flush handle, toilet faucet handle, and wall |
Kumar, 2019 [58] | USA | April–June 2017 | Patients’ room objects <3 feet from the patient, >3 feet away, and bathrooms. As well as portable medical equipment. | Sponge sticks pre-moistened with neutralizing buffer | Sabouraud dextrose agar and incubated at 37 °C for 96 h. | 8/204 | MALDI-TOF | - | Isolated from the Bedrail, bedside table, call button, and sink drain |
Ruiz-Gaitán, 2018 [59] | Spain | April 2016–January 2017 | Environmental surveillance on various surfaces and objects. | Cotton gauze moistened with saline | Sabouraud dextrose agar with chloramphenicol For 72 h at 35 °C | - | PCR Vitek MS Ruo | - | Isolated from Beds, tables, floors, walls, keyboards blood pressure cuffs, and hemodialysis drains |
Escandón, 2019 [60] | Colombia | February 2015–August 2016 | Samples were collected from surfaces and objects belonging to four zones in patients’ rooms: zone 1 being near bed, zone 2 being infrequent patient contact, zone 3 with almost no contact, and zone 4 being bathrooms adjects to patients’ rooms. | 3M Sponge sticks and EnviroMax Plus swabs | Salt Sabouraud dextrose broth | 37/322 | Illumina Hiseq 2500 MALDI-TOF | Genetically identical to clinical strains | From zone 1 it was isolated from bedrails, cellular phones, hand controllers, and floors. From zone 2, chairs, bed trays, and medical equipment. From zone 3, closets, door handles, and alcohol gel dispensers, and zone 4 sink basins, bedpans, and mop buckets. |
Eyre, 2018 [61] | UK | November 2016–April 2017 | Environmental screening | Bacterial swabs in a liquid transport medium (Sigma Transwab) and sponges to sample larger surface areas (Polywipe) and Sabouraud dextrose agar contact plates | Sabouraud Dextrose Agar with chloramphenicol at 37 °C | NA/128 | Illumina miseq MALDI-TOF | Clade III and clinical and environmental samples were closely related. | Isolated from a pulse oximeter, temperature probes, and patient mobile hoist. |
Rhodes, 2018 [62] | UK | April 2015–November 2016 | Environmental screening of a room of a colonized patient. | - | Sabouraud Dextrose Agar at 35 °C for 18–48 h | 2/2 | Illumina hiseq 2500 MALDI-TOF | Clade I | Isolated from Beds and trolleys |
Lesho, 2018 [63] | USA | - | 3/132 (outside) | Sponge sticks and premoistened rayon-tipped swabs | Sabouraud Dextrose Agar with gentamycin and chloramphenicol 5 days | 3/ 132 | WGS MALDI-TOF | Clade I and genetically identical to clinical strains | Isolated from reclining chairs inside the patient room and sink outside the room. |
Naicker, 2021 [64] | South Africa | 2017 | Hight touch surfaces and objects and other surfaces in patient care are | Swab | Sabourad agar | 10/NA | WGS MALDI-TOF | Clade III and there were a maximum of 27 SNP differences between environmental to clinical strains. | Isolated from handwashing basin, bed linen, bed rails, window-sill, a curtain, drying rack, and the floor. |
Pacilli, 2020 [65] | USA | May 2016–December 2018 | Hight touch surfaces in patient care environments, multiuse patient care items, and mobile equipment. | 3M Sponge sticks with neutralizing buffer, homogenized in 40 mL of phosphate-buffered saline with 0.02% Tween 80 | CHROMagar Candida plates for 7 days | 73/191 | MALDI-TOF | - | Isolated from glucometers, temperature probes, mobile ultrasounds, pulse-oximeters, blood pressure cuffs, stethoscopes, over-bed tables, bedside chairs, nursing carts, doorknobs, bedrails, and windowsills |
Salah, 2021 [66] | Qatar | April 2018–November 2020 | Environmental screening | - | CHROMagar Candida for 5 days at 42 °C | - | Illumina NextSeq 550 or Illumina Miseq MALDI-TOF | Clade I and genetically identical to clinical isolates | Isolated from a bedside table, bed, couch, and cabinet inside patients’ rooms. |
Schelenz, 2016 [67] | UK | April 2015–July 2016 | Environmental screening of the area surrounding colonized patients | - | Sabouraud Dextrose Agar plates | - | MALDI-TOF | - | Isolated from the Floor around bedsites, trollies, radiators, windowsills, equipment monitors, keypads |
Sexton, 2021 [68] | USA (Chicago) | October 2018 | Environmental screening of patients’ rooms windowsills, doorknobs, and handrails. | 3M Sponge sticks with neutralizing buffer, homogenized in 40 mL of phosphate-buffered saline with 0.02% Tween 80 | CHROMagar Candida plates at 40 °C for 72 h | 50/100 | qPCR MALDI-TOF | - | Isolated from window, indoor knob, outdoor knob, left handrail and right handrail |
qPCR | 70/100 | ||||||||
Zhu, 2020 [69] | USA | 2016–2018 | Environmental sampling of porous and nonporous surfaces. | 3M sponge sticks, vortexed with 1 mL modified liquid amies medium | Sabouraud Dextrose Agar with chloramphenicol, gentamicin, penicillin and streptomycin, and Sabouraud ulcitol agar containing the above antibacterial with 10 salt | 109/3672 | PCR MALDI-TOF | Clade I | Isolated from near-patient environments (floors, beds, walls, etc.), from mobile medical equipment (lifter, blood pressure cuff, etc.), and outside rooms (computer keyboard). Degrees of colonization were significantly higher on nonporous than porous surfaces. |
PCR | 434/3672 | ||||||||
Patterson, 2021 [70] | UK | - | - | 3M Sponge sticks with neutralizing buffer | - | - | - | - | A patient’s bed space and staff lanyards were infected. |
3.3. Potential Hospital Environmental Reservoirs
3.4. Susceptibility of Natural and Hospital Environmental Samples
3.5. Risk of Bias—Quality Assessment
4. Discussion
4.1. Sampling and Detection
4.2. Potential Natural Environmental Reservoirs
4.3. Potential Urban Non-Hospital Environmental Reservoirs
4.4. Potential Hospital Environmental Reservoirs
4.5. Susceptibility and Phylogeny
4.6. Strategic Surveillance Approach
4.7. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Correction Statement
References
- Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 2009, 53, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Kumar, N.; Pandey, R.; Meis, J.F.; Chowdhary, A. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect. 2016, 13, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Kohlenberg, A.; Monnet, D.L.; Plachouras, D. Increasing number of cases and outbreaks caused by Candida auris in the EU/EEA, 2020 to 2021. Eurosurveill 2022, 27, 2200846. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Tracking Candida auris. Available online: https://stacks.cdc.gov/view/cdc/100943 (accessed on 16 January 2024).
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Kömeç, S.; Karabıçak, N.; Ceylan, A.N.; Gülmez, A.; Özalp, O. Three Candida auris Case Reports from Istanbul, Turkey. Mikrobiyol. Bul. 2021, 55, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.C.; Yuen, L.L.; Li, C.K.; Kwok, M.O.; Chen, J.H.; Cheng, V.C. Proactive infection control measures to prevent nosocomial transmission of Candida auris in Hong Kong. J. Hosp. Infect. 2023, 134, 166–168. [Google Scholar] [CrossRef]
- Codda, G.; Willison, E.; Magnasco, L.; Morici, P.; Giacobbe, D.R.; Mencacci, A.; Marini, D.; Mikulska, M.; Bassetti, M.; Marchese, A.; et al. In vivo evolution to echinocandin resistance and increasing clonal heterogeneity in Candida auris during a difficult-to-control hospital outbreak, Italy, 2019 to 2022. Eurosurveill 2023, 28, 2300161. [Google Scholar] [CrossRef]
- Theut, M.; Antsupova, V.; Andreasen, A.S.; Buhl, D.; Midttun, M.; Knudsen, J.D.; Arendrup, M.C.; Hare, R.K.; Astvad, K.; Bangsborg, J. The first two cases of Candida auris in Denmark. Ugeskr. Laeger 2022, 184, V10210768. [Google Scholar] [PubMed]
- Stanciu, A.M.; Florea, D.; Surleac, M.; Paraschiv, S.; Oțelea, D.; Tălăpan, D.; Popescu, G.A. First report of Candida auris in Romania: Clinical and molecular aspects. Antimicrob. Resist. Infect. Control 2023, 12, 91. [Google Scholar] [CrossRef]
- Allaw, F.; Kara Zahreddine, N.; Ibrahim, A.; Tannous, J.; Taleb, H.; Bizri, A.R.; Dbaibo, G.; Kanj, S.S. First Candida auris Outbreak during a COVID-19 Pandemic in a Tertiary-Care Center in Lebanon. Pathogens 2021, 10, 157. [Google Scholar] [CrossRef]
- Katsiari, M.; Mavroidi, A.; Kesesidis, N.; Palla, E.; Zourla, K.; Ntorlis, K.; Konstantinidis, K.; Laskou, M.; Strigklis, K.; Sakkalis, A.; et al. Emergence of Clonally-Related South Asian Clade I Clinical Isolates of Candida auris in a Greek COVID-19 Intensive Care Unit. J. Fungi 2023, 9, 243. [Google Scholar] [CrossRef] [PubMed]
- Zerrouki, H.; Ibrahim, A.; Rebiahi, S.A.; Elhabiri, Y.; Benhaddouche, D.E.; de Groot, T.; Meis, J.F.; Rolain, J.M.; Bittar, F. Emergence of Candida auris in intensive care units in Algeria. Mycoses 2022, 65, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Oladele, R.; Uwanibe, J.N.; Olawoye, I.B.; Ettu, A.O.; Meis, J.F.; Happi, C.T. Emergence and Genomic Characterization of Multidrug Resistant Candida auris in Nigeria, West Africa. J. Fungi 2022, 8, 787. [Google Scholar] [CrossRef] [PubMed]
- de Melo, C.C.; de Sousa, B.R.; da Costa, G.L.; Oliveira, M.M.E.; de Lima-Neto, R.G. Colonized patients by Candida auris: Third and largest outbreak in Brazil and impact of biofilm formation. Front. Cell Infect. Microbiol. 2023, 13, 1033707. [Google Scholar] [CrossRef] [PubMed]
- Fox-Lewis, S.; Buckwell, L.; McKinney, W.; Tang, R.; Upton, G.; Francis, B.; Roberts, S. Candida auris: Lessons learnt from the first detected case in Aotearoa New Zealand. N. Z. Med. J. 2023, 136, 78–80. [Google Scholar] [PubMed]
- Henriques, J.; Mixao, V.; Cabrita, J.; Duarte, T.I.; Sequeira, T.; Cardoso, S.; Germano, N.; Dias, L.; Bento, L.; Duarte, S.; et al. Candida auris in Intensive Care Setting: The First Case Reported in Portugal. J. Fungi 2023, 9, 837. [Google Scholar] [CrossRef] [PubMed]
- Cortegiani, A.; Misseri, G.; Fasciana, T.; Giammanco, A.; Giarratano, A.; Chowdhary, A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J. Intensive Care 2018, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020, 16, e1008921. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, F.; Jiang, W.; Wang, Y.; Quan, Y.; Zhang, G.; Gu, F.; Yang, Y. Retrospective Analysis of the Clinical Characteristics of Candida auris Infection Worldwide From 2009 to 2020. Front. Microbiol. 2021, 12, 658329. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Sood, P. On the emergence, spread and resistance of Candida auris: Host, pathogen and environmental tipping points. J. Med. Microbiol. 2021, 70, 001318. [Google Scholar] [CrossRef]
- Spruijtenburg, B.; Badali, H.; Abastabar, M.; Mirhendi, H.; Khodavaisy, S.; Sharifisooraki, J.; Taghizadeh Armaki, M.; de Groot, T.; Meis, J.F. Confirmation of fifth Candida auris clade by whole genome sequencing. Emerg Microbes Infect. 2022, 11, 2405–2411. [Google Scholar] [CrossRef]
- Chayaporn, S.; Karrie Kwan Ki, K.; Kar Mun, L.; Mei Gie, T.; Patipan, B.; Joash Jun Keat, C.; Sui Sin, G.; Prevena, R.; Lai Chee, L.; Kwee Yuen, T.; et al. Discovery of the sixth Candida auris clade in Singapore. medRxiv 2023. [Google Scholar] [CrossRef]
- Osei Sekyere, J. Candida auris: A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. Microbiologyopen 2018, 7, e00578. [Google Scholar] [CrossRef] [PubMed]
- Lyman, M.; Forsberg, K.; Sexton, D.J.; Chow, N.A.; Lockhart, S.R.; Jackson, B.R.; Chiller, T. Worsening Spread of Candida auris in the United States, 2019 to 2021. Ann. Intern. Med. 2023, 176, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Bidaud, A.L.; Botterel, F.; Chowdhary, A.; Dannaoui, E. In vitro antifungal combination of flucytosine with amphotericin B, voriconazole, or micafungin against Candida auris shows no antagonism. Antimicrob. Agents Chemother. 2019, 63, e01393-19. [Google Scholar] [CrossRef]
- Ahmad, S.; Asadzadeh, M. Strategies to Prevent Transmission of Candida auris in Healthcare Settings. Curr. Fungal. Infect. Rep. 2023, 17, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Allert, S.; Schulz, D.; Kämmer, P.; Großmann, P.; Wolf, T.; Schäuble, S.; Panagiotou, G.; Brunke, S.; Hube, B. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence 2022, 13, 191–214. [Google Scholar] [CrossRef]
- Welsh, R.M.; Bentz, M.L.; Shams, A.; Houston, H.; Lyons, A.; Rose, L.J.; Litvintseva, A.P. Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast Candida auris on a Plastic Health Care Surface. J. Clin. Microbiol. 2017, 55, 2996–3005. [Google Scholar] [CrossRef]
- Robert, V.; Cardinali, G.; Casadevall, A. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol. 2015, 13, 18. [Google Scholar] [CrossRef]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. Environmental Candida auris and the Global Warming Emergence Hypothesis. mBio 2021, 12, e00360-21. [Google Scholar] [CrossRef]
- Dire, O.; Ahmad, A.; Duze, S.; Patel, M. Survival of Candida auris on environmental surface materials and low-level resistance to disinfectant. J. Hosp. Infect. 2023, 137, 17–23. [Google Scholar] [CrossRef]
- Rawlinson, S.; Ciric, L.; Cloutman-Green, E. How to carry out microbiological sampling of healthcare environment surfaces? A review of current evidence. J. Hosp. Infect. 2019, 103, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (Updated August 2023). Available online: www.training.cochrane.org/handbook (accessed on 3 March 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj 2021, 372, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 3 March 2024).
- Yadav, A.; Wang, Y.; Jain, K.; Panwar, V.A.R.; Kaur, H.; Kasana, V.; Xu, J.; Chowdhary, A. Candida auris in Dog Ears. J. Fungi 2023, 9, 720. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Jain, K.; Wang, Y.; Pawar, K.; Kaur, H.; Sharma, K.K.; Tripathy, V.; Singh, A.; Xu, J.; Chowdhary, A. Candida auris on Apples: Diversity and Clinical Significance. mBio 2022, 13, e00518-22. [Google Scholar] [CrossRef]
- Arora, P.; Singh, P.; Wang, Y.; Yadav, A.; Pawar, K.; Singh, A.; Padmavati, G.; Xu, J.; Chowdhary, A. Environmental Isolation of Candida auris from the Coastal Wetlands of Andaman Islands, India. mBio 2021, 12, e03181-20. [Google Scholar] [CrossRef] [PubMed]
- Escandón, P. Novel Environmental Niches for Candida auris: Isolation from a Coastal Habitat in Colombia. J. Fungi 2022, 8, 748. [Google Scholar] [CrossRef]
- Irinyi, L.; Roper, M.; Malik, R.; Meyer, W. Finding a Needle in a Haystack–In Silico Search for Environmental Traces of Candida auris. Jpn. J. Infect. Dis. 2022, 75, 490–495. [Google Scholar] [CrossRef]
- Barber, C.; Crank, K.; Papp, K.; Innes, G.K.; Schmitz, B.W.; Chavez, J.; Rossi, A.; Gerrity, D. Community-Scale Wastewater Surveillance of Candida auris during an Ongoing Outbreak in Southern Nevada. Environ. Sci. Technol. 2023, 57, 1755–1763. [Google Scholar] [CrossRef]
- Babler, K.; Sharkey, M.; Arenas, S.; Amirali, A.; Beaver, C.; Comerford, S.; Goodman, K.; Grills, G.; Holung, M.; Kobetz, E.; et al. Detection of the clinically persistent, pathogenic yeast spp. Candida auris from hospital and municipal wastewater in Miami-Dade County, Florida. Sci. Total Environ. 2023, 898, 165459. [Google Scholar] [CrossRef] [PubMed]
- Ekowati, Y.; Ferrero, G.; Kennedy, M.D.; de Roda Husman, A.M.; Schets, F.M. Potential transmission pathways of clinically relevant fungi in indoor swimming pool facilities. Int. J. Hyg. Environ. Health 2018, 221, 1107–1115. [Google Scholar] [CrossRef]
- Tian, S.; Bing, J.; Chu, Y.; Chen, J.; Cheng, S.; Wang, Q.; Zhang, J.; Ma, X.; Zhou, B.; Liu, L.; et al. Genomic epidemiology of Candida auris in a general hospital in Shenyang, China: A three-year surveillance study. Emerg. Microbes Infect. 2021, 10, 1088–1096. [Google Scholar] [CrossRef]
- Didik, T.; Pak-Yuen Yau, A.; Leong Cheung, H.; Suet-Yi, L.; Nga-Han, C.; Yuen-Ting, W.A.H.; Kam-Hei Luk, H.; Kwan-Yue Choi, G.; Hua-Yin Cheng, N.; Tse, H.; et al. Long-range air dispersion of Candida auris in a Cardiothoracic unit outbreak in Hong Kong. J. Hosp. Infect. 2023, 142, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Snell, H.M.; Cordier, C.; Desnos-Olivier, M.; Dellière, S.; Aissaoui, N.; Sturny-Leclère, A.; Da Silva, E.; Eblé, C.; Rouveau, M.; et al. First Patient-to-Patient Intrahospital Transmission of Clade I Candida auris in France Revealed after a Two-Month Incubation Period. Microbiol. Spectr. 2022, 10, e0183322. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, A.; Wang, Y.; Haren, M.H.V.; Singh, A.; De Groot, T.; Meis, J.F.; Xu, J.; Chowdhary, A. Colonisation and transmission dynamics of Candida auris among chronic respiratory diseases patients hospitalised in a chest hospital, Delhi, India: A comparative analysis of whole genome sequencing and microsatellite typing. J. Fungi 2021, 7, 81. [Google Scholar] [CrossRef]
- Umamaheshwari, S.; Neelambike, S.M.; Shankarnarayan, S.A.; Kumarswamy, K.S.; Gopal, S.; Prakash, H.; Rudramurthy, S.M. Clinical profile, antifungal susceptibility, and molecular characterization of Candida auris isolated from patients in a South Indian surgical ICU. J. Med. Mycol. 2021, 31, 101176. [Google Scholar] [CrossRef] [PubMed]
- Taori, S.K.; Khonyongwa, K.; Hayden, I.; Athukorala, G.D.A.; Letters, A.; Fife, A.; Desai, N.; Borman, A.M. Candida auris outbreak: Mortality, interventions and cost of sustaining control. J. Infect. 2019, 79, 601–611. [Google Scholar] [CrossRef]
- Biswal, M.; Rudramurthy, S.M.; Jain, N.; Shamanth, A.S.; Sharma, D.; Jain, K.; Yaddanapudi, L.N.; Chakrabarti, A. Controlling a possible outbreak of Candida auris infection: Lessons learnt from multiple interventions. J. Hosp. Infect. 2017, 97, 363–370. [Google Scholar] [CrossRef]
- Ruiz-Gaitán, A.; Martínez, H.; Moret, A.M.; Calabuig, E.; Tasias, M.; Alastruey-Izquierdo, A.; Zaragoza, Ó.; Mollar, J.; Frasquet, J.; Salavert-Lletí, M.; et al. Detection and treatment of Candida auris in an outbreak situation: Risk factors for developing colonization and candidemia by this new species in critically ill patients. Expert. Rev. Anti-Infect. Ther. 2019, 17, 295–305. [Google Scholar] [CrossRef]
- Adams, E.; Quinn, M.; Tsay, S.; Poirot, E.; Chaturvedi, S.; Southwick, K.; Greenko, J.; Fernandez, R.; Kallen, A.; Vallabhaneni, S.; et al. Candida auris in Healthcare Facilities, New York, USA, 2013–2017. Emerg. Infect. Dis. 2018, 24, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Al Maani, A.; Paul, H.; Al-Rashdi, A.; Al Wahaibi, A.; Al-Jardani, A.; Al Abri, A.M.A.; Al Balushi, M.A.H.; Al Abri, S.; Al Reesi, M.; Al Maqbali, A.; et al. Ongoing challenges with healthcare-associated Candida auris outbreaks in Oman. J. Fungi 2019, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Alfouzan, W.; Ahmad, S.; Dhar, R.; Asadzadeh, M.; Almerdasi, N.; Abdo, N.M.; Joseph, L.; de Groot, T.; Alali, W.Q.; Khan, Z.; et al. Molecular Epidemiology of Candida auris Outbreak in a Major Secondary-Care Hospital in Kuwait. J. Fungi 2020, 6, 307. [Google Scholar] [CrossRef]
- Kumar, J.; Eilertson, B.; Cadnum, J.L.; Whitlow, C.S.; Jencson, A.L.; Safdar, N.; Krein, S.L.; Tanner, W.D.; Mayer, J.; Samore, M.H.; et al. Environmental contamination with candida species in multiple hospitals including a tertiary care hospital with a Candida auris outbreak. Pathog. Immun. 2019, 4, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gaitán, A.; Moret, A.M.; Tasias-Pitarch, M.; Aleixandre-López, A.I.; Martínez-Morel, H.; Calabuig, E.; Salavert-Lletí, M.; Ramírez, P.; López-Hontangas, J.L.; Hagen, F.; et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 2018, 61, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Escandón, P.; Chow, N.A.; Caceres, D.H.; Gade, L.; Berkow, E.L.; Armstrong, P.; Rivera, S.; Misas, E.; Duarte, C.; Moulton-Meissner, H.; et al. Molecular Epidemiology of Candida auris in Colombia Reveals a Highly Related, Countrywide Colonization With Regional Patterns in Amphotericin B Resistance. Clin. Infect. Dis. 2019, 68, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Sheppard, A.E.; Madder, H.; Moir, I.; Moroney, R.; Quan, T.P.; Griffiths, D.; George, S.; Butcher, L.; Morgan, M.; et al. A Candida auris Outbreak and Its Control in an Intensive Care Setting. N. Engl. J. Med. 2018, 379, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.; Abdolrasouli, A.; Farrer, R.A.; Cuomo, C.A.; Aanensen, D.M.; Armstrong-James, D.; Fisher, M.C.; Schelenz, S. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg. Microbes Infect. 2018, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Lesho, E.P.; Bronstein, M.Z.; McGann, P.; Stam, J.; Kwak, Y.; Maybank, R.; McNamara, J.; Callahan, M.; Campbell, J.; Hinkle, M.K.; et al. Importation, Mitigation, and Genomic Epidemiology of Candida auris at a Large Teaching Hospital. Infect. Control Hosp. Epidemiol. 2018, 39, 53–57. [Google Scholar] [CrossRef]
- Naicker, S.D.; Maphanga, T.G.; Chow, N.A.; Allam, M.; Kwenda, S.; Ismail, A.; Govender, N.P. Clade distribution of Candida auris in South Africa using whole genome sequencing of clinical and environmental isolates. Emerg. Microbes Infect. 2021, 10, 1300–1308. [Google Scholar] [CrossRef]
- Pacilli, M.; Kerins, J.L.; Clegg, W.J.; Walblay, K.A.; Adil, H.; Kemble, S.K.; Xydis, S.; McPherson, T.D.; Lin, M.Y.; Hayden, M.K.; et al. Regional emergence of Candida auris in Chicago and lessons learned from intensive follow-up at 1 ventilator-capable skilled nursing facility. Clin. Infect. Dis. 2020, 71, E718–E725. [Google Scholar] [CrossRef] [PubMed]
- Salah, H.; Sundararaju, S.; Dalil, L.; Salameh, S.; Al-Wali, W.; Tang, P.T.; Ben Abid, F.; Tsui, C.K.M. Genomic Epidemiology of Candida auris in Qatar Reveals Hospital Transmission Dynamics and a South Asian Origin. J. Fungi 2021, 7, 240. [Google Scholar] [CrossRef] [PubMed]
- Schelenz, S.; Hagen, F.; Rhodes, J.L.; Abdolrasouli, A.; Chowdhary, A.; Hall, A.; Ryan, L.; Shackleton, J.; Trimlett, R.; Meis, J.F.; et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob. Resist. Infect. Control. 2016, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Sexton, D.J.; Bentz, M.L.; Welsh, R.M.; Derado, G.; Furin, W.; Rose, L.J.; Noble-Wang, J.; Pacilli, M.; McPherson, T.D.; Black, S.; et al. Positive Correlation between Candida auris Skin-Colonization Burden and Environmental Contamination at a Ventilator-Capable Skilled Nursing Facility in Chicago. Clin. Infect. Dis. 2021, 73, 1142–1148. [Google Scholar] [CrossRef]
- Zhu, Y.; O’Brien, B.; Leach, L.; Clarke, A.; Bates, M.; Adams, E.; Ostrowsky, B.; Quinn, M.; Dufort, E.; Southwick, K.; et al. Laboratory Analysis of an Outbreak of Candida auris in New York from 2016 to 2018: Impact and lessons learned. J. Clin. Microbiol. 2020, 58, e01503-19. [Google Scholar] [CrossRef] [PubMed]
- Patterson, C.A.; Wyncoll, D.; Patel, A.; Ceesay, Y.; Newsholme, W.; Chand, M.; Mitchell, H.; Tan, M.; Edgeworth, J.D. Cloth Lanyards as a Source of Intermittent Transmission of Candida auris on an ICU. Crit. Care Med. 2021, 49, 697–701. [Google Scholar] [CrossRef]
- CDC. Candida auris—Antifungal Susceptibility Testing and Interpretation. Available online: https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html (accessed on 4 March 2024).
- Furin, W.A.; Tran, L.H.; Chan, M.Y.; Lyons, A.K.; Noble-Wang, J.; Rose, L.J. Sampling efficiency of Candida auris from healthcare surfaces: Culture and nonculture detection methods. Infect. Control Hosp. Epidemiol. 2022, 43, 1492–1494. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Paul, S.; Sood, P.; Rudramurthy, S.M.; Rajbanshi, A.; Jillwin, T.J.; Chakrabarti, A. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections. Clin. Microbiol. Infect. 2015, 21, 372–378. [Google Scholar] [CrossRef]
- Ambaraghassi, G.; Dufresne, P.J.; Dufresne, S.F.; Vallières, É.; Muñoz, J.F.; Cuomo, C.A.; Berkow, E.L.; Lockhart, S.R.; Luong, M.L. Identification of Candida auris by Use of the Updated Vitek 2 Yeast Identification System, Version 8.01: A Multilaboratory Evaluation Study. J. Clin. Microbiol. 2019, 57, e00884-19. [Google Scholar] [CrossRef]
- Jeffery-Smith, A.; Taori, S.K.; Schelenz, S.; Jeffery, K.; Johnson, E.M.; Borman, A.; Manuel, R.; Brown, C.S. Candida auris: A Review of the Literature. Clin. Microbiol. Rev. 2018, 31, e00029-17. [Google Scholar] [CrossRef]
- Kordalewska, M.; Perlin, D.S. Molecular Diagnostics in the Times of Surveillance for Candida auris. J. Fungi 2019, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Seyedmousavi, S.; Bosco, S.M.G.; de Hoog, S.; Ebel, F.; Elad, D.; Gomes, R.R.; Jacobsen, I.D.; Jensen, H.E.; Martel, A.; Mignon, B.; et al. Fungal infections in animals: A patchwork of different situations. Med. Mycol. 2018, 56, 165–187. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C.; Davidson, A.D.; Jacobsen, M.D.; Tavanti, A.; Whyte, J.A.; Kibbler, C.C.; Ellis, D.H.; Maiden, M.C.; Shaw, D.J.; Gow, N.A. Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J. Clin. Microbiol. 2006, 44, 3647–3658. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Chiller, T.M.; Mody, R.K. Invasive Fungal Infections Acquired from Contaminated Food or Nutritional Supplements: A Review of the Literature. Foodborne Pathog. Dis. 2016, 13, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; HogenEsch, H.; Thangamani, S. Intestinal colonization with Candida auris and mucosal immune response in mice treated with cefoperazone oral antibiotic. Front. Immunol. 2023, 14, 1123200. [Google Scholar] [CrossRef] [PubMed]
- Lara-Martín, P.A.; González-Mazo, E.; Petrovic, M.; Barceló, D.; Brownawell, B.J. Occurrence, distribution and partitioning of nonionic surfactants and pharmaceuticals in the urbanized Long Island Sound Estuary (NY). Mar. Pollut. Bull 2014, 85, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Brandão, J.; Albergaria, I.; Albuquerque, J.; José, S.; Grossinho, J.; Ferreira, F.C.; Raposo, A.; Rodrigues, R.; Silva, C.; Jordao, L.; et al. Untreated sewage contamination of beach sand from a leaking underground sewage system. Sci. Total Environ. 2020, 740, 140237. [Google Scholar] [CrossRef] [PubMed]
- Garcia, X.; Pargament, D. Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making. Resour. Conserv. Recycl. 2015, 101, 154–166. [Google Scholar] [CrossRef]
- Farhadkhani, M.; Nikaeen, M.; Hadi, M.; Gholipour, S.; Yadegarfar, G. Campylobacter risk for the consumers of wastewater-irrigated vegetables based on field experiments. Chemosphere 2020, 251, 126408. [Google Scholar] [CrossRef]
- Barberán, A.; Dunn, R.R.; Reich, B.J.; Pacifici, K.; Laber, E.B.; Menninger, H.L.; Morton, J.M.; Henley, J.B.; Leff, J.W.; Miller, S.L.; et al. The ecology of microscopic life in household dust. Proc. Biol. Sci. 2015, 282, 20151139. [Google Scholar] [CrossRef]
- Dögen, A.; Sav, H.; Gonca, S.; Kaplan, E.; Ilkit, M.; Novak Babic, M.; Gunde-Cimerman, N.; de Hoog, G.S. Candida parapsilosis in domestic laundry machines. Med. Mycol. 2017, 55, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Góralska, K.; Błaszkowska, J.; Dzikowiec, M. The occurrence of potentially pathogenic filamentous fungi in recreational surface water as a public health risk. J. Water Health 2020, 18, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Siani, H.; Wesgate, R.; Maillard, J.Y. Impact of antimicrobial wipes compared with hypochlorite solution on environmental surface contamination in a health care setting: A double-crossover study. Am. J. Infect. Control 2018, 46, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Caliman Sato, M.; Izu Nakamura Pietro, E.C.; Marques da Costa Alves, L.; Kramer, A.; da Silva Santos, P.S. Candida auris: A novel emerging nosocomial pathogen-properties, epidemiological situation and infection control. GMS Hyg. Infect. Control 2023, 18, Doc18. [Google Scholar] [CrossRef] [PubMed]
- Thoma, R.; Seneghini, M.; Seiffert, S.N.; Vuichard Gysin, D.; Scanferla, G.; Haller, S.; Flury, D.; Boggian, K.; Kleger, G.R.; Filipovic, M.; et al. The challenge of preventing and containing outbreaks of multidrug-resistant organisms and Candida auris during the coronavirus disease 2019 pandemic: Report of a carbapenem-resistant Acinetobacter baumannii outbreak and a systematic review of the literature. Antimicrob. Resist. Infect. Control 2022, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.F.; Pearlmutter, B.S.; Cadnum, J.L.; Donskey, C.J. Efficacy of 23 commonly used liquid disinfectants against Candida auris isolates from the 4 major clades. Infect. Control. Hosp. Epidemiol. 2024, 45, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Infection Prevention and Control for Candida auris. Available online: https://www.cdc.gov/fungal/candida-auris/c-auris-infection-control.html (accessed on 18 March 2024).
- Wong, S.C.; Lam, G.K.; Chen, J.H.; Li, X.; Ip, F.T.; Yuen, L.L.; Chan, V.W.; AuYeung, C.H.; So, S.Y.; Ho, P.L.; et al. Air dispersal of multidrug-resistant Acinetobacter baumannii: Implications for nosocomial transmission during the COVID-19 pandemic. J. Hosp. Infect. 2021, 116, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.C.; Chen, J.H.; Yuen, L.L.; Chan, V.W.; AuYeung, C.H.; Leung, S.S.; So, S.Y.; Chan, B.W.; Li, X.; Leung, J.O.; et al. Air dispersal of meticillin-resistant Staphylococcus aureus in residential care homes for the elderly: Implications for transmission during the COVID-19 pandemic. J. Hosp. Infect. 2022, 123, 52–60. [Google Scholar] [CrossRef] [PubMed]
- CDC. Candida auris—Treatment and Management. Available online: https://www.cdc.gov/fungal/candida-auris/c-auris-treatment.html (accessed on 4 March 2024).
- Sionov, E.; Chang, Y.C.; Garraffo, H.M.; Dolan, M.A.; Ghannoum, M.A.; Kwon-Chung, K.J. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14α-demethylase (Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole. Antimicrob. Agents Chemother. 2012, 56, 1162–1169. [Google Scholar] [CrossRef]
- Rybak, J.M.; Muñoz, J.F.; Barker, K.S.; Parker, J.E.; Esquivel, B.D.; Berkow, E.L.; Lockhart, S.R.; Gade, L.; Palmer, G.E.; White, T.C.; et al. Mutations in TAC1B: A Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. mBio 2020, 11, e00365-20. [Google Scholar] [CrossRef]
- Coste, A.; Turner, V.; Ischer, F.o.; Morschhäuser, J.; Forche, A.; Selmecki, A.; Berman, J.; Bille, J.; Sanglard, D. A Mutation in Tac1p, a Transcription Factor Regulating CDR1 and CDR2, Is Coupled With Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans. Genetics 2006, 172, 2139–2156. [Google Scholar] [CrossRef]
- Muñoz, J.F.; Welsh, R.M.; Shea, T.; Batra, D.; Gade, L.; Howard, D.; Rowe, L.A.; Meis, J.F.; Litvintseva, A.P.; Cuomo, C.A. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics 2021, 218, iyab029. [Google Scholar] [CrossRef]
- Queiroz Júnior, J.R.A.d.; Melo, I.O.; Calado, G.H.d.S.; Cavalcanti, L.R.C.; Sobrinho, C.R.W. Identification and resistance profile of bacteria isolated on stethoscopes by health careprofessionals: Systematic review. Am. J. Infect. Control 2021, 49, 229–237. [Google Scholar] [CrossRef]
- Nnadi, N.E.; Carter, D.A. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021, 17, e1009503. [Google Scholar] [CrossRef]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef]
- Chowdhary, A.; Voss, A.; Meis, J.F. Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? J. Hosp. Infect. 2016, 94, 209–212. [Google Scholar] [CrossRef]
First Author, Year | Gene Mutation | MIC (mg/L)/Phenotype | |||||
---|---|---|---|---|---|---|---|
CDR1 | TAC1B | ERG11 | FCZ | AmB | AND | ||
Natural Environment | Yadav, 2023 [39] | - | A640V (2/6) | K143R (2/6) | 32–128 | 0.25–0.5 | 0.01–0.06 |
Yadav, 2022 [40] | V704L (13/19) E709D (3/19) | - | K143R (13/19) Y132F (3/19) | 16–128 | 0.25 | - | |
Escadón, 2022 [42] | - | - | - | 2.0 | 0.5 | 0.25 | |
Arora, 2021 [41] | - | - | Y132F | 8–256 | 1–4 | 0.125 | |
Hospital Environment | Tian, 2021 [47] | - | - | VF125AL (I74L) | 256 | 1 | 0.5 |
Yadav, 2021 [50] | - | - | Y132F | 16–128 | 0.25–4 | 0.125–0.5 | |
Umamaheshwari, 2021 [51] | - | - | Y132F | 16–32 | 2 | 0.25–0.5 | |
Alfouzan, 2020 [57] | - | - | Y132F | R * | S ** | - | |
Al Maani, 2019 [56] | - | - | - | 8–16 | 1–2 | 0.031 | |
Escadón, 2019 [60] | - | - | - | 2–64 | 0.38–4 | 0.03–0.125 | |
Zhu, 2019 [69] | - | - | - | 8–256 | 0.25–3.0 | 0.08–1 | |
Lesho, 2018 [63] | - | - | K143R (1/1) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, I.; Miranda, I.M.; Costa-de-Oliveira, S. Potential Environmental Reservoirs of Candida auris: A Systematic Review. J. Fungi 2024, 10, 336. https://doi.org/10.3390/jof10050336
Silva I, Miranda IM, Costa-de-Oliveira S. Potential Environmental Reservoirs of Candida auris: A Systematic Review. Journal of Fungi. 2024; 10(5):336. https://doi.org/10.3390/jof10050336
Chicago/Turabian StyleSilva, Isabel, Isabel M. Miranda, and Sofia Costa-de-Oliveira. 2024. "Potential Environmental Reservoirs of Candida auris: A Systematic Review" Journal of Fungi 10, no. 5: 336. https://doi.org/10.3390/jof10050336
APA StyleSilva, I., Miranda, I. M., & Costa-de-Oliveira, S. (2024). Potential Environmental Reservoirs of Candida auris: A Systematic Review. Journal of Fungi, 10(5), 336. https://doi.org/10.3390/jof10050336