Arbuscular Mycorrhizal Fungi Diversity in Sophora japonica Rhizosphere at Different Altitudes and Lithologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment and Sampling Method
2.2. Determination of the S. japonica Soil Physicochemical Properties
2.3. Determination of S. japonica AMF Colonization and Spore Density
2.4. Determination of S. japonica Rhizosphere AMF Diversity
3. Data Processing
3.1. Sequencing Data Processing
3.2. Statistical Analysis
4. Results
4.1. Rhizosphere Soil Physicochemical Properties of S. japonica
4.2. AMF Colonization and Soil Spore Number of S. japonica
4.3. Composition and Distribution of the AMF Community in the S. japonica Rhizosphere
4.4. Rhizosphere Soil AMF Diversity of S. japonica
4.5. Relationship between AMF and Environmental Factors
4.6. The Association between Environmental Factors and AMF Characteristics
5. Discussion
5.1. Characteristics of the AMF Community in the Rhizosphere of S. japonica
5.2. Correlation between Altitude and AMF Community of S. japonica
5.3. Correlation between Lithology and AMF Community of S. japonica
5.4. The Relationship between AMF Community and Soil Characteristics
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Větrovský, T.; Kolaříková, Z.; Lepinay, C.; Awokunle Hollá, S.; Davison, J.; Fleyberková, A.; Gromyko, A.; Jelínková, B.; Kolařík, M.; Krüger, M.; et al. Global AM Fungi, a global database of arbuscular mycorrhizal fungal occurrences from high-throughput sequencing metabarcoding studies. New Phytol. 2023, 240, 2151–2163. [Google Scholar] [CrossRef] [PubMed]
- Rajtor, M.; Piotrowska-Seget, Z. Prospects for arbuscular mycorrhizal fungi AMF, to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere 2016, 162, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, Z.; Zhou, L. Advances in the studies on symbiotic arbuscular mycorrhizal fungi of traditional Chinese medicinal plants. Biocell 2022, 46, 2559–2573. [Google Scholar] [CrossRef]
- Della Monica, I.F.; Saparrat, M.C.N.; Godeas, A.M.; Scervino, J.M. The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecol. 2015, 17, 10–17. [Google Scholar] [CrossRef]
- Jones, S.L.; French, K. Soil nutrients differentially influence root colonisation patterns of AMF and DSE in Australian plant species. Symbiosis 2021, 83, 209–223. [Google Scholar] [CrossRef]
- Weemstra Peay, K.G.; Davies, S.J.; Mohamad, M.; Itoh, A.; Tan, S.; Russo, S.E. Lithological constraints on resource economies shape the mycorrhizal composition of a Bornean rain forest. New Phytol. 2020, 228, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiao, D.; Zheng, S.; Hu, Y.; Wang, X.; He, X. Responses of soil arbuscular mycorrhizal fungal communities to lithology and afforestation in karst region. Res. Agric. Mod. 2022, 43, 351–359. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Feng, S.; Qiu, H.; Gai, S.; Zhao, L.; Hu, Y.; He, X.; Lu, Z. Effects of lithology and vegetation type on the soil AM fungi community in karst region. J. Guangxi Norm. Univ. Nat. Sci. Ed. 2019, 37, 158–167. [Google Scholar] [CrossRef]
- Oehl, F.; Laczko, E.; Bogenrieder, A.; Stahr, K.; Bösch, R.; van der Heijden, M.; Sieverding, E. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil. Biol. Biochem. 2010, 42, 724–738. [Google Scholar] [CrossRef]
- Coutinho, E.S.; Fernandes, G.W.; Berbara, R.L.L.; Valério, H.M.; Goto, B.T. Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza 2015, 25, 627–638. [Google Scholar] [CrossRef]
- Yan, P.; Hou, H.; Lv, Y.; Zhang, H.; Li, J.; Shao, L.; Xie, Q.; Liang, Y.; Li, J.; Ni, X. Diversity characteristics of arbuscular mycorrhizal fungi communities in the soil along successional altitudes of Helan mountain.; arid.; and semi-arid regions of China. Front. Microbiol. 2023, 14, 1099131. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hart, M.M.; Zhang, J.; Cai, X.; Gai, J.; Christie, P.; Li, X.; Klironomos, J.N. Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland. FEMS Microbiol. Ecol. 2015, 91, fiv078. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.C.; da Silva, D.K.A.; de Melo, M.A.C.; Escobar, I.E.C.; Oehl, F.; da Silva, G.A. Edaphic factors influence the distribution of arbuscular mycorrhizal fungi along an altitudinal gradient of a Tropical Mountain. Microb. Ecol. 2019, 78, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shi, Z.; Yang, M.; Lu, S.; Cao, L.; Wang, X. Molecular diversity and distribution of arbuscular mycorrhizal fungi at different elevations in Mt. Taibai of Qinling mountain. Front. Microbiol. 2021, 12, 609386. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.; Liu, J.; Zhou, R.; Tang, J.; Xiong, Z.; Jiang, Y. Determination of the effect of different producing areas and harvest time on the content of rutin in Sophora japonica by high performance liquid chromatography. Lishizhen Med. Mater. Med. Res. 2017, 28, 709–711. [Google Scholar] [CrossRef]
- Xiao, D.; Tan, Y.; Liu, X.; Yang, R.; Zhang, W.; He, X.; Wang, K. Effects of different legume species and densities on arbuscular mycorrhizal fungal communities in a karst grassland ecosystem. Sci. Total Environ. 2019, 678, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Kuppe, C.W.; Schnepf, A.; von Lieres, E.; Watt, M.; Postma, J.A. Rhizosphere models, their concepts and application to plant-soil ecosystems. Plant Soil. 2022, 474, 17–55. [Google Scholar] [CrossRef]
- Mebius, L. A rapid method for the determination of organic carbon in soil. Anal. Chim. Acta 1960, 22, 120–124. [Google Scholar] [CrossRef]
- Sheng, H.J.; Tian, L.Y.; Jiang, X.; Wang, X.L. Discussion on determination of available nitrogen in the greenhouse soil with alkali hydrolysis diffusion method. Res. Explor. Lab. 2022, 41, 5–7+35. [Google Scholar] [CrossRef]
- Moonrungsee, N.; Pencharee, S.; Jakmunee, J. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta 2015, 136, 204–209. [Google Scholar] [CrossRef]
- Wanasuria, S.; De Datta, S.K.; Mengel, K. Rice yield in relation to electroultrafiltration extractable soil potassium. Plant Soil. 1981, 59, 23–31. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 551, 158–161, IN16–IN18. [Google Scholar] [CrossRef]
- Lumini, E.; Orgiazzi, A.; Borriello, R.; Bonfante, P.; Bianciotto, V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ. Microbiol. 2010, 12, 2165–2179. [Google Scholar] [CrossRef]
- Zhang, C.; Tan, J.; Luo, C. Arbuscular mycorrhizal fungal diversity of Rosa laevigata Michx in karst areas. Hubei Agric. Sci. 2013, 52, 2044–2047. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Z.; Zhou, L.; Huang, K. Effects of altitude and continuous cropping on arbuscular mycorrhizal fungi community in Siraitia grosvenorii rhizosphere. Agriculture 2023, 13, 1548. [Google Scholar] [CrossRef]
- Chagnon, P.L.; Bradley, R.L.; Maherali, H.; Klironomos, J.N. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 2013, 18, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.R.; Parrent, J.L.; Hart, M.M.; Klironomos, J.N.; Rillig, M.C.; Maherali, H. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc. R. Soc. B 2009, 276, 4237–4245. [Google Scholar] [CrossRef]
- Hart, M.M.; Reader, R.J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 2002, 153, 335–344. [Google Scholar] [CrossRef]
- Maherali, H.; Klironomos, J.N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 2007, 316, 1746–1748. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Andersen, K.; Morton, J.B. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 2003, 135, 268–279. [Google Scholar] [CrossRef]
- Wang, F.; Liu, P.; Xu, G. Overview of magnesium in soil and its effectiveness. J. Henan Agric. Sci. 2004, 1, 33–36. [Google Scholar] [CrossRef]
- Wang, W.; He, X.; Zhao, L.; Wang, C.; Zeng, X.; Wang, L. Spatial distribution characteristics of arbuscular mycorrhizal fungi of Artemisia ordosica in desert areas of northwest China. J. Fungal Res. 2020, 18, 20–30. [Google Scholar] [CrossRef]
- Li, X.; Xu, M.; Christie, P.; Li, X.; Zhang, J. Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan Plateau. Mycorrhiza 2018, 28, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J. Effects of Glomus mosseae on Flavonoids and Phenolic Acids Contents in Medicago sativa L. Seedlings under Both Elevated Temperature and Cadmium-Contaminated Soils. Master’s Thesis, Chang’an University, Xi’an, China, 2022. [Google Scholar] [CrossRef]
- Li, F. Plant Community and Arbuscular Mycorrhizalfungal Diversity of the Wulanhada Volcano Group in Inner Mongolia. Master’s Thesis, Inner Mongolia University, Hohhot, China, 2022. [Google Scholar] [CrossRef]
- Jia, S.; Yu, L. Soil properties and correlation analysis on karst rocky desertification areas of limestone and dolomite—A case study in Xingyi city of Guizhou. Guizhou Sci. 2010, 28, 29–33+55. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GZKX201003008&DbName=CJFQ2010 (accessed on 15 August 2023).
- Li, W.; Liu, Y.; Wu, G.; Xiang, J.; Li, M.; Yu, L. The migration characteristics of main elements in different geological backgrounds and their correlation with plant transpiration in Maocun Village, Guilin. Soils 2007, 5, 746–752. [Google Scholar] [CrossRef]
- Liang, Y.; Su, Y.; He, X.; Chen, X. Effects of lithology on the abundance and composition of soil nitrogen-fixing bacteria and arbuscular mycorrhizal fungal communities in karst shrub ecosystem. Environ. Sci. 2017, 38, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Eilers, K.G.; Debenport, S.; Anderson, S.; Fierer, N. Digging deeper to find unique microbial communities, the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil. Biol. Biochem. 2012, 50, 58–65. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; Jiang, N.; Zheng, S.; Hu, Y.; Chen, X.; He, X. Responses of arbuscular mycorrhizal fungi colonization rate to slope position and shrub species in karst slopes. Guangxi Zhiwu 2023, 43, 547–556. [Google Scholar] [CrossRef]
- Qiu, H.; Su, Y.; Li, L.; He, X.; Chen, X.; Li, Y. Distribution of soil nutrients and its influencing factors in slope of typical karst plateau. Soils 2013, 45, 985–991. [Google Scholar] [CrossRef]
- Oehl, F.; Sýkorová, Z.; Redecker, D.; Wiemken, A.; Sieverding, E. Acaulospora alpina: A new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss Alps. Mycologia 2006, 98, 286–294. [Google Scholar] [CrossRef]
- García de León, D.; Moora, M.; Öpik, M.; Neuenkamp, L.; Gerz, M.; Jairus, T.; Vasar, M.; Guillermo Bueno, C.; Davison, J.; Zobel, M. Symbiont dynamics during ecosystem succession, co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiol. Ecol. 2016, 92, fiw097. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.; Reader, R. Host plant benefit from association with arbuscular mycorrhizal fungi, variation due to differences in size of mycelium. Biol. Fertil. Soils 2002, 36, 357–366. [Google Scholar] [CrossRef]
- Lekberg, Y.; Koide, R.T.; Rohr, J.R.; Aldrich-Wolfe, L.; Morton, J.B. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J. Ecol. 2007, 95, 95–105. [Google Scholar] [CrossRef]
- Khan, M.H.; Meghvansi, M.K.; Gupta, R.; Veer, V. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude. J. Plant Physiol. 2015, 189, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Porras-Soriano, A.; Soriano-Martín, M.L.; Porras-Piedra, A.; Azcón, R. Arbuscular mycorrhizal fungi increased growth.; nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J. Plant Physiol. 2009, 166, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, N. Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Ann. Microbiol. 2012, 63, 151–160. [Google Scholar] [CrossRef]
- Li, D.; Wen, L.; Yang, L.; Luo, P.; Xiao, K.; Chen, H.; Zhang, W.; He, X.; Chen, H.; Wang, K. Dynamics of soil organic carbon and nitrogen following agricultural abandonment in a karst region. J. Geophys. Res. Biogeosci. 2017, 122, 230–242. [Google Scholar] [CrossRef]
- Sun, M.; Yang, R.; Tang, Y.; Xiao, D.; Zhang, W.; Xu, Z.; Shi, Z.; Hu, P.; Wu, H.; Wang, K. Lithologic control of soil C, N, P stoichiometry across a climatic gradient in southwest China. J. Soils Sediments 2023, 23, 1662–1673. [Google Scholar] [CrossRef]
- Xiao, K.; He, T.; Chen, H.; Peng, W.; Song, T.; Wang, K.; Li, D. Impacts of vegetation restoration strategies on soil organic carbon and nitrogen dynamics in a karst area, southwest China. Ecol. Eng. 2017, 101, 247–254. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Zhuang, W. Soil magnesium status and control measures of magnesium deficiency in Dimocarpus longan orchards in mountainous areas of Fujian Province. J. Mt. Sci. 2001, 5, 460–464. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L.; Wang, M.; Shi, X.; Sun, W. Application zoning of magnesium fertilizer in Bijie tobacco growing area based on soil calcium-magnesium ratio. Acta Pedol. Sin. 2022, 60, 1739–1750. Available online: https://kns.cnki.net/kcms/detail/32.1119.P.20220825.1018.006 (accessed on 19 August 2023).
- Lisboa, F.J.G.; Chaer, G.M.; Fernandes, M.F.; Berbara, R.L.L.; Madari, B.E. The match between microbial community structure and soil properties is modulated by land use types and sample origin within an integrated agroecosystem. Soil. Biol. Biochem. 2014, 78, 97–108. [Google Scholar] [CrossRef]
- Moreira, F.; de Carvalho, T.S.; Siqueira, J.O. Effect of fertilizers, lime, and inoculation with rhizobia and mycorrhizal fungi on the growth of four leguminous tree species in a low-fertility soil. Biol. Fertil. Soils 2010, 46, 771–779. [Google Scholar] [CrossRef]
Sample ID | Richness Index | Chao1 Index | Shannon Index | Simpson Index |
---|---|---|---|---|
SY1 | 1204 ± 93 b | 1205 ± 93 b | 1.69 ± 0.06 a | 0.07 ± 0.01 a |
SY2 | 1676 ± 204 a | 1676 ± 203 a | 1.92 ± 0.28 a | 0.06 ± 0.06 a |
BY1 | 1442 ± 32 ab | 1443 ± 32 ab | 1.86 ± 0.06 a | 0.06 ± 0.02 a |
BY2 | 1558 ± 113 a | 1559 ± 113 a | 1.90 ± 0.04 a | 0.05 ± 0.01 a |
BY3 | 1268 ± 190 b | 1270 ± 189 b | 1.56 ± 0.58 a | 0.17 ± 0.22 a |
SH1 | 1383 ± 128 bc | 1385 ± 128 bc | 1.79 ± 0.15 ab | 0.06 ± 0.02 a |
SH2 | 1319 ± 105 c | 1320 ± 105 c | 1.65 ± 0.25 ab | 0.09 ± 0.06 a |
SH3 | 1271 ± 89 c | 1273 ± 89 c | 1.49 ± 0.09 b | 0.12 ± 0.01 a |
SH4 | 1627 ± 117 a | 1627 ± 117 a | 1.92 ± 0.09 a | 0.05 ± 0.01 a |
SH5 | 1555 ± 41 ab | 1556 ± 41 ab | 1.85 ± 0.19 a | 0.06 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Zhang, Z.; Liu, P.; Zhou, L.; Tan, S.; Kuang, S. Arbuscular Mycorrhizal Fungi Diversity in Sophora japonica Rhizosphere at Different Altitudes and Lithologies. J. Fungi 2024, 10, 340. https://doi.org/10.3390/jof10050340
Yu L, Zhang Z, Liu P, Zhou L, Tan S, Kuang S. Arbuscular Mycorrhizal Fungi Diversity in Sophora japonica Rhizosphere at Different Altitudes and Lithologies. Journal of Fungi. 2024; 10(5):340. https://doi.org/10.3390/jof10050340
Chicago/Turabian StyleYu, Limin, Zhongfeng Zhang, Peiyuan Liu, Longwu Zhou, Shuhui Tan, and Shitou Kuang. 2024. "Arbuscular Mycorrhizal Fungi Diversity in Sophora japonica Rhizosphere at Different Altitudes and Lithologies" Journal of Fungi 10, no. 5: 340. https://doi.org/10.3390/jof10050340
APA StyleYu, L., Zhang, Z., Liu, P., Zhou, L., Tan, S., & Kuang, S. (2024). Arbuscular Mycorrhizal Fungi Diversity in Sophora japonica Rhizosphere at Different Altitudes and Lithologies. Journal of Fungi, 10(5), 340. https://doi.org/10.3390/jof10050340