Three New Species of Penicillium from East and Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Materials
2.2. Morphological Observations
2.3. DNA Extraction, PCR Amplification, and Sequencing
2.4. Phylogenetic Analyses
3. Results
4. Taxonomy
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ning, Y.N.; Tian, D.; Zhao, S.; Feng, J.X. Regulation of genes encoding polysaccharide-degrading enzymes in Penicillium. Appl. Microbiol. Biotechnol. 2024, 108, 16. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, M.; Larini, I.; Scafati, V.; Scortica, A.; Compri, M.; Pontiggia, D.; Zapparoli, G.; Vitulo, N.; Benedetti, M.; Mattei, B. A novel Penicillium sumatraense isolate reveals an arsenal of degrading enzymes exploitable in algal bio-refinery processes. Biotechnol. Biofuels 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Karp, S.G.; Rozhkova, A.M.; Semenova, M.V.; Osipov, D.O.; de Pauli, S.T.Z.; Sinitsyna, O.A.; Zorov, I.N.; de Souza Vandenberghe, L.P.; Soccol, C.R.; Sinitsyn, A.P. Designing enzyme cocktails from Penicillium and Aspergillus species for the enhanced saccharification of agro-industrial wastes. Bioresour. Technol. 2021, 330, 124888. [Google Scholar] [CrossRef] [PubMed]
- Houbraken, J.; Frisvad, J.C.; Seifert, K.A.; Overy, D.P.; Tuthill, D.M.; Valdez, J.G.; Samson, R.A. New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 2012, 29, 78–100. [Google Scholar] [CrossRef] [PubMed]
- Toghueo, R.M.K.; Boyom, F.F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2020, 10, 107. [Google Scholar] [CrossRef]
- Costa, J.H.; Bazioli, J.M.; Pontes, J.G.D.; Fill, T.P. Penicillium digitatum infection mechanisms in citrus: What do we know so far? Fungal Biol. 2019, 123, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Oshikata, C.; Tsurikisawa, N.; Saito, A.; Watanabe, M.; Kamata, Y.; Tanaka, M.; Tsuburai, T.; Mitomi, H.; Takatori, K.; Yasueda, H.; et al. Fatal pneumonia caused by Penicillium digitatum: A case report. BMC Pulm. Med. 2013, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Iturrieta-Gonzalez, I.; Giacaman, A.; Godoy-Martinez, P.; Vega, F.; Sepulveda, M.; Santos, C.; Toledo, V.; Rivera, G.; Ortega, L.; San Martin, A.; et al. Penicillium digitatum, first clinical report in Chile: Fungal co-infection in COVID-19 patient. J. Fungi 2022, 8, 961. [Google Scholar] [CrossRef]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef]
- Houbraken, J.; Kocsube, S.; Visagie, C.M.; Yilmaz, N.; Wang, X.C.; Meijer, M.; Kraak, B.; Hubka, V.; Bensch, K.; Samson, R.A.; et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020, 95, 5–169. [Google Scholar] [CrossRef]
- Visagie, C.M.; Yilmaz, N.; Kocsubé, S.; Frisvad, J.C.; Hubka, V.; Samson, R.A.; Houbraken, J. A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Stud. Mycol. 2024, 107, 1–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Zhang, Z.K.; Zhuang, W.Y. Species diversity of Penicillium in Southwest China with discovery of forty-three new species. J. Fungi 2023, 9, 1150. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Chen, K.; Xia, Y.W.; Wang, L.; Li, T.H.; Zhuang, W.Y. A new species of Talaromyces (Trichocomaceae) from the Xisha Islands, Hainan, China. Phytotaxa 2016, 267, 187–200. [Google Scholar] [CrossRef]
- Wang, X.C.; Chen, K.; Qin, W.T.; Zhuang, W.Y. Talaromyces heiheensis and T. mangshanicus, two new species from China. Mycol. Prog. 2017, 16, 73–81. [Google Scholar] [CrossRef]
- Wang, X.C.; Chen, K.; Zeng, Z.Q.; Zhuang, W.Y. Phylogeny and morphological analyses of Penicillium section Sclerotiora (Fungi) lead to the discovery of five new species. Sci. Rep. 2017, 7, 8233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.K.; Wang, X.C.; Zhuang, W.Y.; Cheng, X.H.; Zhao, P. New species of Talaromyces (Fungi) isolated from soil in southwestern China. Biology 2021, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Zhuang, W.Y. New Species of Aspergillus (Aspergillaceae) from tropical islands of China. J. Fungi 2022, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Zhuang, W.Y. New Species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China. J. Fungi 2022, 8, 647. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Penicillium subgenus Penicillium—A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud. Mycol. 2004, 49, 1–173. [Google Scholar]
- Houbraken, J.; Wang, L.; Lee, H.B.; Frisvad, J.C. New sections in Penicillium containing novel species producing patulin, pyripyropens or other bioactive compounds. Persoonia 2016, 36, 299–314. [Google Scholar] [CrossRef]
- Houbraken, J.; Visagie, C.M.; Meijer, M.; Frisvad, J.C.; Busby, P.E.; Pitt, J.I.; Seifert, K.A.; Louis-Seize, G.; Demirel, R.; Yilmaz, N.; et al. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Stud. Mycol. 2014, 78, 373–451. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces; Academic Press Inc.: London, UK, 1979; p. 634. [Google Scholar]
- Andrade, K.C.R.; Fernandes, R.A.; Pinho, D.B.; de Freitas, M.M.; Filho, E.X.F.; Pessoa, A.; Silva, J.I.; Magalhaes, P.O. Sequencing and characterization of an L-asparaginase gene from a new species of Penicillium section Citrina isolated from Cerrado. Sci. Rep. 2021, 11, 17861. [Google Scholar] [CrossRef]
- Tan, Y.P.; Shivas, R.G. Index of Australian Fungi No. 3; Zenodo: Geneva, Switzerland, 2022; p. 21. [Google Scholar]
- Dutta, M.; Hazra, A.; Bhattacharya, E.; Bose, R.; Mandal Biswas, S. Characterization and metabolomic profiling of two pigment producing fungi from infected fruits of Indian Gooseberry. Arch. Microbiol. 2023, 205, 141. [Google Scholar] [CrossRef]
Series | Species | Strain | Locality | Substrate | ITS | BenA | CaM | RPB2 |
---|---|---|---|---|---|---|---|---|
Robsamsonia | P. brevistipitatum L. Wang & W.Y. Zhuang 2005 | CGMCC 3.6887 T | China: Jilin | soil | DQ221696 | DQ221695 | KU896824 | JN406528 |
Robsamsonia | P. compactum L. Wang & Houbraken 2016 | CGMCC 3.15411 T | China: Heilongjiang | soil | KM973207 | KM973203 | KM973200 | KT698909 |
Robsamsonia | P. concentricum Samson et al., 1976 | CBS 477.75 T | Germany | colon of Cervidae | KC411763 | AY674413 | DQ911131 | KT900575 |
Robsamsonia | P. coprobium Frisvad 1990 | CBS 561.90 T | Norway | pig feed | DQ339559 | AY674425 | KU896830 | KT900576 |
Robsamsonia | P. coprophilum (Berk. & M.A. Curtis) Seifert & Samson 1986 | CBS 110760 T | Cuba | dung of Aves | AF033469 | AY674421 | KU896831 | JN406645 |
Robsamsonia | P. fimorum Houbraken & Frisvad 2016 | CBS 140575 T | Denmark | dung of mouse | KU904343 | KT698889 | KT698898 | KT698908 |
Robsamsonia | P. fuyuanense X.C. Wang & W.Y. Zhuang, sp. nov. | HLJ59-03 = CGMCC 3.27293 T | China: Heilongjiang | soil under Rhododendron dauricum | PP357618 | PP373069 | n.a. | PP373080 |
Robsamsonia | P. robsamsonii Houbraken & Frisvad 2016 | CBS 140573 T | Denmark | dung of mouse | KU904339 | KT698885 | KT698894 | KT698904 |
Urticicolae | P. griseofulvum Dierckx 1901 | CBS 185.27 T | unknown | unknown | AF033468 | JF909942 | KT900574 | JN121449 |
Series | Species | Strain | Locality | Substrate | ITS | BenA | CaM | RPB2 |
---|---|---|---|---|---|---|---|---|
Glabra | P. armarii Houbraken et al., 2014 | CBS 138171 T | Australia | house dust | KM189758 | KM089007 | KM089394 | KM089781 |
Glabra | P. bussumense Houbraken 2014 | CBS 138160 T | The Netherlands | soil | KM189458 | KM088685 | KM089070 | KM089457 |
Glabra | P. frequentans Westling 1911 | CBS 105.11 T | unknown | unknown | KM189525 | KM088762 | KM089147 | KM089534 |
Glabra | P. glabrum (Wehmer) Westling 1911 | CBS 125543 T | unknown | unknown | GU981567 | GU981619 | KM089152 | JF417447 |
Glabra | P. jiangsuense X.C. Wang & W.Y. Zhuang, sp. nov. | SHL01-03 = CGMCC 3.27294 T | China: Jiangsu | soil | PP357619 | PP373070 | PP373075 | PP373081 |
Glabra | P. pulvis Houbraken et al., 2014 | CBS 138432 T | South Africa | house dust | KM189632 | KM088876 | KM089263 | KM089650 |
Glabra | P. purpurescens (Sopp) Biourge 1923 | CBS 366.48 T | Canada | soil | KM189561 | KM088801 | KM089186 | KM089573 |
Glabra | P. rudallense Houbraken et al., 2014 | CBS 138162 T | Australia | soil | KM189504 | KM088741 | KM089126 | KM089513 |
Spinulosa | P. spinulosum Thom 1910 | CBS 374.48 T | Germany | culture contaminant | AF033410 | KJ834493 | GQ367524 | JN406558 |
Series | Species | Strain | Locality | Substrate | ITS | BenA | CaM | RPB2 |
---|---|---|---|---|---|---|---|---|
Sumatraensia | P. cerradense Cruvinel et al., 2021 | DCFS6a T | Brazil | soil | MT006126 | MT416533 | MT416534 | MT416532 |
Sumatraensia | P. jenningsiae Y.P. Tan et al., 2022 | BRIP 45936a T | Australia | compost | n.a. | OL741657 | n.a. | OL741660 |
CS02-04 | China: Chongqing | soil | OQ870876 | OR051078 | OR051255 | OR051429 | ||
Sumatraensia | P. qii X.C. Wang & W.Y. Zhuang 2023 | CS18-09 = CGMCC 3.25165 T | China: Chongqing | soil | OQ870878 | OR051080 | OR051257 | OR051430 |
Sumatraensia | P. rarum X.C. Wang & W.Y. Zhuang 2023 | CS15-04 = CGMCC 3.25166 T | China: Chongqing | soil | OQ870881 | OR051083 | OR051260 | OR051432 |
Sumatraensia | P. shanghaiense X.C. Wang & W.Y. Zhuang, sp. nov. | SHL06-18 = CGMCC 3.27295 T | China: Shanghai | soil under Camphora officinarum | PP357620 | PP373071 | PP373076 | PP373082 |
Sumatraensia | P. sumatraense Svilv. 1936 | CBS 281.36 T | Indonesia | heath soil | GU944578 | JN606639 | MN969301 | EF198541 |
Sumatraensia | P. vulgatum X.C. Wang & W.Y. Zhuang 2023 | CS15-03 = CGMCC 3.25180 T | China: Chongqing | soil | OQ870884 | OR051086 | OR051263 | OR051434 |
Westlingiorum | P. westlingii K.W. Zaleski 1927 | CBS 231.28 T | Poland | soil under conifer | GU944601 | JN606718 | MN969312 | JN606625 |
Dataset | Gene Fragment | No. of Seq. | Length of Alignment (bp) | No. of Variable Sites | No. of Parsimony-Informative Sites | Model for BI |
---|---|---|---|---|---|---|
Robsamsonia | BenA | 9 | 436 | 95 | 43 | |
CaM | 8 | 510 | 114 | 51 | ||
RPB2 | 9 | 915 | 150 | 75 | ||
BenA+CaM+RPB2 | 9 | 1861 | 359 | 169 | SYM+G | |
Glabra | BenA | 9 | 418 | 67 | 16 | |
CaM | 9 | 486 | 82 | 18 | ||
RPB2 | 9 | 885 | 96 | 32 | ||
BenA+CaM+RPB2 | 9 | 1789 | 245 | 66 | SYM+G | |
Sumatraensia | BenA | 9 | 445 | 73 | 20 | |
CaM | 8 | 569 | 132 | 12 | ||
RPB2 | 9 | 915 | 142 | 39 | ||
BenA+CaM+RPB2 | 9 | 1929 | 347 | 71 | TrNef+I+G |
Species | CYA 25 °C (mm) | CYA 37 °C (mm) | MEA (mm) | YES (mm) | Conidiophore | Conidia Shape | Conidia Wall | Conidia Size (µm) | Reference |
---|---|---|---|---|---|---|---|---|---|
P. fuyuanense | 27–28 | no growth | 19–20 | 32–34 | biverticillate to quaterverticillate | subglobose to ellipsoidal | smooth | 3.5–4.5 × 3.0–4.0 | This study |
P. compactum | 17–23 | no growth | 22–28 | 29–35 | terverticillate | ellipsoidal | smooth | 4.0–4.5 × 3.5–4.0 | [27] |
P. coprobium | 20–26 | n.a. | n.a. | 29–39 | terverticillate | broadly ellipsoidal | smooth | 3.2–4.0 × 2.5–3.0 | [26,27] |
Species | CYA 25 °C (mm) | CYA 37 °C (mm) | MEA (mm) | YES (mm) | Conidiophore | Conidia Shape | Conidia Wall | Conidia Size (µm) | Reference |
---|---|---|---|---|---|---|---|---|---|
P. jiangsuense | 44–45 | 8–9 | 42–43 | 40–41 | monoverticillate | subglobose to ellipsoidal | smooth | 3.0–3.5 × 2.5–3.0 | This study |
P. frequentans | 38–50 | no growth | 38–51 | 40–53 | monoverticillate | globose to subglobose | finely rough to rough | 2.5–3.0 | [28,29] |
P. glabrum | 35–48 | no growth | 38–50 | 40–59 | monoverticillate | globose to subglobose | finely rough | 2.5–3.0 | [28,29] |
Species | CYA 25 °C (mm) | CYA 37 °C (mm) | MEA (mm) | YES (mm) | Conidiophore | Conidia Shape | Conidia Wall | Conidia Size (µm) | Reference | BenA Difference (bp) | CaM Difference (bp) | RPB2 Difference (bp) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P. shanghaiense | 29–31 | no growth | 20–21 | 37–39 | biverticillate or terverticillate | subglobose | smooth | 2.0–3.0 | This study | _ | _ | _ |
P. cerradense | n.a. | n.a. | 15 | n.a. | monoverticillate or biverticillate | subglobose or ellipsoidal | smooth | 1.5–3.0 × 2.0–3.0 | [30] | 32 | 25 | 40 |
P. jenningsiae | 37–38 | no growth | 29–30 | 42–43 | divaricate or biverticillate | globose to subglobose | smooth | 2.0–3.0 | [12,31] | 15 | 17 | 39 |
P. qii | 31–32 | no growth | 19–20 | 37–38 | biverticillate | subglobose to broad ellipsoidal | smooth | 2.5–3.0 | [12] | 7 | 20 | 39 |
P. rarum | 28–36 | no growth | 17–23 | 32–42 | terverticillate, biverticillate or monoverticillate | subglobose | smooth | 2.5–3.0 | [12] | 11 | 19 | 46 |
P. sumatraense | 25–35 | no growth | 30–45 | n.a. | terverticillate, biverticillate or monoverticillate | spheroidal to subspheroidal | smooth | 2.5–3.0 | [29] | 17 | 18 | 37 |
P. vulgatum | 34–35 | no growth | 23–24 | 42–43 | biverticillate | subglobose to ellipsoidal | smooth | 2.5–3.0 × 2.0–2.8 | [12] | 12 | 18 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Ding, Y.-J.; Zhuang, W.-Y.; Ding, G.-Z.; Wang, X.-C. Three New Species of Penicillium from East and Northeast China. J. Fungi 2024, 10, 342. https://doi.org/10.3390/jof10050342
Song H, Ding Y-J, Zhuang W-Y, Ding G-Z, Wang X-C. Three New Species of Penicillium from East and Northeast China. Journal of Fungi. 2024; 10(5):342. https://doi.org/10.3390/jof10050342
Chicago/Turabian StyleSong, He, Yi-Jing Ding, Wen-Ying Zhuang, Guang-Zhou Ding, and Xin-Cun Wang. 2024. "Three New Species of Penicillium from East and Northeast China" Journal of Fungi 10, no. 5: 342. https://doi.org/10.3390/jof10050342
APA StyleSong, H., Ding, Y. -J., Zhuang, W. -Y., Ding, G. -Z., & Wang, X. -C. (2024). Three New Species of Penicillium from East and Northeast China. Journal of Fungi, 10(5), 342. https://doi.org/10.3390/jof10050342