Unleashing Fungicidal Forces: Exploring the Synergistic Power of Amphotericin B-Loaded Nanoparticles and Monoclonal Antibodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymeric Nanoparticles: Preparation and Physicochemical Characterization
2.2. Strains and Growth Conditions
2.3. Cultivation of Human and Mammalian Cells
2.4. Cell Viability Assay
2.5. Antifungal Activity
2.6. Synergistic Effect of Anti-Chitooligomer Antibodies with NPs
2.7. ELISA Analysis of Glucuronoxylomannan (GXM) in C. neoformans
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of the NPs
3.2. Cytotoxicity of NPs
3.3. Antifungal Activity
3.3.1. Antifungal Activity of AmB-NPs
3.3.2. Antifungal Activity of AmB-Loaded NPs in Combination with mAbs
3.3.3. Effect of mAbs in Synergism with NP-AmB on GXM Release
4. Discussion
5. Future Perspectives
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armstrong-James, D.; Meintjes, G.; Brown, G.D. A Neglected Epidemic: Fungal Infections in HIV/AIDS. Trends Microbiol. 2014, 22, 120–127. [Google Scholar] [CrossRef] [PubMed]
- GAFFI Fungal Disease Frequency. Available online: https://gaffi.org/why/fungal-disease-frequency/ (accessed on 20 April 2019).
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of Invasive Candidiasis: A Persistent Public Health Problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global Burden of Disease of HIV-Associated Cryptococcal Meningitis: An Updated Analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Winn, W.A. The Use of Amphotericin B in the Treatment of Coccidioidal Disease. Am. J. Med. 1959, 27, 617–635. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.W.; Su, L.; Yu, D.T.; Chertow, G.M.; Seger, D.L.; Gomes, D.R.J.; Dasbach, E.J.; Platt, R. Mortality and Costs of Acute Renal Failure Associated with Amphotericin B Therapy. Clin. Infect. Dis. 2001, 32, 686–693. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Albuquerque, P.C. Searching for a Change: The Need for Increased Support for Public Health and Research on Fungal Diseases. PLoS Negl. Trop. Dis. 2018, 12, e0006479. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.L.; Nosanchuk, J.D. Fungal Diseases as Neglected Pathogens: A Wake-up Call to Public Health Officials. PLoS Negl. Trop. Dis. 2020, 14, e0007964. [Google Scholar] [CrossRef]
- Serrano, D.R.; Lalatsa, A. Oral Amphotericin B: The Journey from Bench to Market. J. Drug Deliv. Sci. Technol. 2017, 42, 75–83. [Google Scholar] [CrossRef]
- Dos Santos, M.L.; Quintilio, W.; Manieri, T.M.; Tsuruta, L.R.; Moro, A.M. Advances and Challenges in Therapeutic Monoclonal Antibodies Drug Development. Braz. J. Pharm. Sci. 2018, 54, e01007. [Google Scholar] [CrossRef]
- Kaplon, H.; Reichert, J.M. Antibodies to Watch in 2019. MAbs 2019, 11, 219–238. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Fuentefria, A.M.; Pippi, B.; Dalla Lana, D.F.; Donato, K.K.; de Andrade, S.F. Antifungals Discovery: An Insight into New Strategies to Combat Antifungal Resistance. Lett. Appl. Microbiol. 2018, 66, 2–13. [Google Scholar] [CrossRef]
- Oura, M.; Sternberg, T.H.; Wright, E.T. A New Antifungal Antibiotic, Amphotericin B. Antibiot. Annu. 1955, 3, 566–573. [Google Scholar] [PubMed]
- Figueiredo, A.B.C.; Fonseca, F.L.; Kuczera, D.; Conte, F.D.P.; Arissawa, M.; Rodrigues, M.L. Monoclonal Antibodies against Cell Wall Chitooligomers as Accessory Tools for the Control of Cryptococcosis. Antimicrob. Agents Chemother. 2021, 65, e0118121. [Google Scholar] [CrossRef]
- Di Mambro, T.; Vanzolini, T.; Bruscolini, P.; Perez-Gaviro, S.; Marra, E.; Roscilli, G.; Bianchi, M.; Fraternale, A.; Schiavano, G.F.; Canonico, B.; et al. A New Humanized Antibody Is Effective against Pathogenic Fungi In Vitro. Sci. Rep. 2021, 11, 19500. [Google Scholar] [CrossRef]
- Marcano, R.G.D.J.V.; Tominaga, T.T.; Khalil, N.M.; Pedroso, L.S.; Mainardes, R.M. Chitosan Functionalized Poly (ε-Caprolactone) Nanoparticles for Amphotericin B Delivery. Carbohydr. Polym. 2018, 202, 345–354. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R. Rapid Colorimetric Assay for Cell Growth and Survival: Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Guinea, J.; Cuenca-Estrella, M.; Lagrou, K.; Howard, S.J.; Arendrup, M.C.; Howard, S.J.; Mouton, J.; et al. EUCAST Technical Note on Isavuconazole Breakpoints for Aspergillus, Itraconazole Breakpoints for Candida and Updates for the Antifungal Susceptibility Testing Method Documents. Clin. Microbiol. Infect. 2016, 22, 571.e1–571.e4. [Google Scholar] [CrossRef]
- Joffe, L.S.; Schneider, R.; Lopes, W.; Azevedo, R.; Staats, C.C.; Kmetzsch, L.; Schrank, A.; Poeta, M.D.; Vainstein, M.H.; Rodrigues, M.L. The Anti-Helminthic Compound Mebendazole Has Multiple Antifungal Effects against Cryptococcus neoformans. Front. Microbiol. 2017, 8, 241095. [Google Scholar] [CrossRef]
- Williams, T.J.; Harvey, S.; Armstrong-James, D. Immunotherapeutic Approaches for Fungal Infections. Curr. Opin. Microbiol. 2020, 58, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Łukasiewicz, S.; Mikołajczyk, A.; Błasiak, E.; Fic, E.; Dziedzicka-Wasylewska, M. Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics 2021, 13, 191. [Google Scholar] [CrossRef]
- Uroro, E.O.; Bright, R.; Hayles, A.; Vasilev, K. Lipase-Responsive Amphotericin B Loaded PCL Nanoparticles for Antifungal Therapies. Nanomaterials 2023, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Andes, D.R.; Kang, J.Y.; Krug, C.; Kwon, G.S. Antifungal Efficacy of an Intravenous Formulation Containing Monomeric Amphotericin B, 5-Fluorocytosine, and Saline for Sodium Supplementation. Pharm. Res. 2017, 34, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, F.L.; Nimrichter, L.; Cordero, R.J.B.; Frases, S.; Rodrigues, J.; Goldman, D.L.; Andruszkiewicz, R.; Milewski, S.; Travassos, L.R.; Casadevall, A.; et al. Role for Chitin and Chitooligomers in the Capsular Architecture of Cryptococcus neoformans. Eukaryot. Cell 2009, 8, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- Janbon, G. Cryptococcus neoformans Capsule Biosynthesis and Regulation. FEMS Yeast Res. 2004, 4, 765–771. [Google Scholar] [CrossRef]
- Coelho, C.; Casadevall, A. Cryptococcal Therapies and Drug Targets: The Old, the New and the Promising. Cell. Microbiol. 2016, 18, 792–799. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, C.S.d.; Lopes, V.R.d.C.; Barcellos, G.; Alexandrino-Junior, F.; Neves, P.C.d.C.; Patricio, B.F.d.C.; Rocha, H.V.A.; Ano Bom, A.P.D.; Figueiredo, A.B.C. Unleashing Fungicidal Forces: Exploring the Synergistic Power of Amphotericin B-Loaded Nanoparticles and Monoclonal Antibodies. J. Fungi 2024, 10, 344. https://doi.org/10.3390/jof10050344
Souza CSd, Lopes VRdC, Barcellos G, Alexandrino-Junior F, Neves PCdC, Patricio BFdC, Rocha HVA, Ano Bom APD, Figueiredo ABC. Unleashing Fungicidal Forces: Exploring the Synergistic Power of Amphotericin B-Loaded Nanoparticles and Monoclonal Antibodies. Journal of Fungi. 2024; 10(5):344. https://doi.org/10.3390/jof10050344
Chicago/Turabian StyleSouza, Carla Soares de, Victor Ropke da Cruz Lopes, Gabriel Barcellos, Francisco Alexandrino-Junior, Patrícia Cristina da Costa Neves, Beatriz Ferreira de Carvalho Patricio, Helvécio Vinícius Antunes Rocha, Ana Paula Dinis Ano Bom, and Alexandre Bezerra Conde Figueiredo. 2024. "Unleashing Fungicidal Forces: Exploring the Synergistic Power of Amphotericin B-Loaded Nanoparticles and Monoclonal Antibodies" Journal of Fungi 10, no. 5: 344. https://doi.org/10.3390/jof10050344
APA StyleSouza, C. S. d., Lopes, V. R. d. C., Barcellos, G., Alexandrino-Junior, F., Neves, P. C. d. C., Patricio, B. F. d. C., Rocha, H. V. A., Ano Bom, A. P. D., & Figueiredo, A. B. C. (2024). Unleashing Fungicidal Forces: Exploring the Synergistic Power of Amphotericin B-Loaded Nanoparticles and Monoclonal Antibodies. Journal of Fungi, 10(5), 344. https://doi.org/10.3390/jof10050344