Effectiveness of Several GRAS Salts against Fungal Rot of Fruit after Harvest and Assessment of the Phytotoxicity of Sodium Metabisufite in Treated Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Species
2.2. GRAS Salts Tested In Vitro
2.3. GRAS Salt Tested on Fruit
2.4. GRAS Salt and Phytotoxicity
2.5. Statistical Analyses
3. Results
3.1. In Vitro Experiment
3.2. In Vivo Activity of Sodium Metabisulfite
3.3. Phytotoxicity of Sodium Metabisulfite
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Romanazzi, G.; Moumni, M. Chitosan and other edible coatings to extend shelf life, manage postharvest decay, and reduce loss and waste of fresh fruits and vegetables. Curr. Opin. Biotechnol. 2022, 78, 102834. [Google Scholar] [CrossRef]
- Palou, L. Postharvest treatments with GRAS salts to control fresh fruit decay. Hortic 2018, 4, 46. [Google Scholar] [CrossRef]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance in Crop Pathogens: How Can It Be Managed? 3rd ed.; GIFAP: Brussels, Belgium, 1995; pp. 48–56. [Google Scholar]
- Palou, L.; Ali, A.; Fallik, E.; Romanazzi, G. GRAS, plant-and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharv. Biol. Technol. 2016, 122, 41–52. [Google Scholar] [CrossRef]
- Martínez-Blay, V.; Taberner, V.; Pérez-Gago, M.B.; Palou, L. Control of major citrus postharvest diseases by sulfur-containing food additives. Int. J. Food Microbio. 2020, 330, 108713. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.A.S.; Platt, H.W.; Hurta, R.A. Effect of salt compounds on mycelial growth, sporulation and spore germination of various potato pathogens. Postharv. Biol. Technol. 2004, 34, 341–350. [Google Scholar] [CrossRef]
- Guimaraes, J.E.; de la Fuente, B.; Pérez-Gago, M.B.; Andradas, C.; Carbó, R.; Mattiuz, B.H.; Palou, L. Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. Int. J. Food Microbiol. 2019, 301, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-Herrero, C.; Moscoso-Ramírez, P.A.; Palou, L. Evaluation of sodium benzoate and other food additives for the control of citrus postharvest green and blue molds. Postharv. Biol. Technol. 2016, 115, 72–80. [Google Scholar] [CrossRef]
- Askarne, L.; Boubaker, H.; Boudyach, E.H.; Aoumar, A.A.B. Use of food additives to control postharvest citrus blue mold disease. Atlas J. Biol. 2013, 2, 147–153. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Perez-Gago, M.B.; Del Rio, M.A.; Palou, L. Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coatings containing antifungal food additives to control citrus postharvest green and blue molds. J. Agric. Food Chem. 2009, 57, 2770–2777. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Mansour, M.F.; Gabler, F.M.; Sorenson, D. Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharv. Biol. Technol. 2008, 47, 226–238. [Google Scholar] [CrossRef]
- Palou, L.; Usall, J.; Muñoz, J.A.; Smilanick, J.L.; Viñas, I. Hot water, sodium carbonate, and sodium bicarbonate for the control of postharvest green and blue molds of clementine mandarins. Postharv. Biol. Technol. 2002, 24, 93–96. [Google Scholar] [CrossRef]
- EFSA Panel on Food additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228) as food additives. EFSA J. 2016, 14, 4438. [Google Scholar]
- Bhatta, U.K. Alternative management approaches of citrus diseases caused by Penicillium digitatum (green mold) and Penicillium italicum (blue mold). Front. Plant Sci. 2022, 12, 833328. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Z.; Zou, Y.; Li, W.; He, F.; Huang, X.; Wu, X. Pre-and postharvest measures used to control decay and mycotoxigenic fungi in potato (Solanum tuberosum L.) during storage. Critic. Rev. Food Sci. Nutri. 2021, 62, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Edelenbos, M. Postharvest environmentally and human-friendly pre-treatments to minimize carrot waste in the supply chain caused by physiological disorders and fungi. Trends. Food Sci. Technol. 2021, 112, 88–98. [Google Scholar] [CrossRef]
- Nilmini, R.K.; Kodituwakku, T.D.; Abeywickrama, K.; Kuruppu, M. In vitro and in vivo Application of Eco-friendly Treatments to Control Postharvest Stem-end Rot of Naturally Infected Avocado (cv. Pollock). J. Agric. Sci. 2021, 16, 283–299. [Google Scholar] [CrossRef]
- Usall, J.; Smilanick, J.; Palou, L.; Denis-Arrue, N.; Teixidó, N.; Torres, R.; Vinas, I. Preventive and curative activity of combined treatments of sodium carbonates and Pantoea agglomerans CPA-2 to control postharvest green mold of citrus fruit. Postharv. Biol. Technol. 2008, 50, 1–7. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Mackey, B.E.; Reese, R.; Usall, J.; Margosan, D.A. Influence of concentration of soda ash, temperature, and immersion period on the control of postharvest green mold of oranges. Plant Dis. 1997, 81, 379–382. [Google Scholar] [CrossRef]
- Cerioni, L.; Sepulveda, M.; Rubio-Ames, Z.; Volentini, S.I.; Rodríguez-Montelongo, L.; Smilanick, J.L.; Ramallo, J.; Rapisarda, V.A. Control of lemon postharvest diseases by low-toxicity salts combined with hydrogen peroxide and heat. Postharvest. Biol. Technol. 2013, 83, 17–21. [Google Scholar] [CrossRef]
- Allagui, M.B.; Moumni, M.; Romanazzi, G. Antifungal activity of thirty essential oils to control pathogenic fungi of postharvest decay. Antibiotics 2024, 13, 28. [Google Scholar] [CrossRef]
- Palou, L.; Usall, J.; Smilanick, J.L.; Aguilar, M.J.; Viñas, I. Evaluation of food additives and low-toxicity compounds as alternative chemicals for the control of Penicillium digitatum and Penicillium italicum on citrus fruit. Pest. Manag. Sci. 2001, 58, 459–466. [Google Scholar] [CrossRef]
- Alaoui, F.T.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Ait Ben Aoumar, A. Control of gray mold disease of tomato by postharvest application of organic acids and salts. Plant Pathol. J. 2017, 16, 62–72. [Google Scholar]
- Zhao, J.; Wang, Y.; Liu, Q.; Liu, S.; Pan, H.; Cheng, Y.; Long, C. The GRAS Salts of Na2SiO3 and EDTA-Na2 Control Citrus Postharvest Pathogens by Disrupting the Cell Membrane. Foods 2023, 12, 2368. [Google Scholar] [CrossRef] [PubMed]
- Lyousfi, N.; Legrifi, I.; Ennahli, N.; Blenzar, A.; Amiri, S.; Laasli, S.E.; Lahlali, R. Evaluating Food Additives Based on Organic and Inorganic Salts as Antifungal Agents against Monilinia fructigena and Maintaining Postharvest Quality of Apple Fruit. J. Fungi. 2023, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, G.H.; Yoon, K.S.; Shankar, S.; Rhim, J.W. Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb. Pathogen. 2020, 144, 104178. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, L.; Wang, R.; Ji, N.; Ma, C.; Lei, J.; Zhang, X. Pullulan-Based Active Coating Incorporating Potassium Metabisulfite Maintains Postharvest Quality and Induces Disease Resistance to Soft Rot in Kiwifruit. Foods 2023, 12, 3197. [Google Scholar] [CrossRef] [PubMed]
- Enginsu, S.; Erper, I.; Yildirim, E.; Avci, S.; Turkkan, M. Evaluation of antifungal activity of organic and inorganic salts against Penicillium digitatum, the causal agent of citrus green mould. In Proceedings of the IV. International Agriculture Congress 2018, Temmuz, Turkey, 13–15 October 2018. [Google Scholar]
- Arslan, U. Efficacy of boric acid, monopotassium phosphate and sodium metabisulfite on the control of apple scab. J. Phytopathol. 2016, 164, 678–685. [Google Scholar] [CrossRef]
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Aoumar, A.A.B. In vitro and in vivo antifungal activities of organic and inorganic salts against citrus sour rot agent Geotrichum candidum. Plant Pathol. J. 2011, 10, 138–145. [Google Scholar] [CrossRef]
- Divol, B.; Du Toit, M.; Duckitt, E. Surviving in the presence of sulphur dioxide: Strategies developed by wine yeasts. Appl. Microbiol. Biotechnol. 2012, 95, 601–613. [Google Scholar] [CrossRef]
- Davidson, P.M.; Junja, V.K.; Branen, A.L. Antimicrobial agents. In Food Additives; Branen, A.L., Davidson, P.M., Salminen, S., Thorngate, J., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2003; pp. 563–620. [Google Scholar]
- Prusky, D.; Yakoby, N. Pathogenic fungi: Leading or led by ambient pH? Mol. Plant Pathol. 2003, 4, 509–516. [Google Scholar] [CrossRef]
- Prusky, D.; Lichter, A. Mechanisms modulating fungal attack in postharvest pathogen interactions and their control. Eur. J. Plant Pathol. 2008, 121, 281–289. [Google Scholar] [CrossRef]
- Zhang, Z.; Dvir, O.; Pesis, E.; Pick, U.; Lichter, A. Weak organic acids and inhibitors of pH homeostasis suppress growth of Penicillium infesting litchi fruits. J. Phytopathol. 2005, 153, 667–673. [Google Scholar] [CrossRef]
- Olmedo, G.M.; Debes, M.A.; Sepúlveda, M.; Ramallo, J.; Rapisarda, V.A.; Cerioni, L.; Volentini, S.I. Overcoming lemon postharvest molds caused by Penicillium spp. multiresistant isolates by the application of potassium sorbate in aqueous and wax treatments. J. Food Sci. 2023, 88, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Lydakis, D.; Aked, J. Vapour heat treatment of Sultanina table grapes. I: Control of Botrytis cinerea. Postharv. Biol. Technol. 2003, 27, 109–116. [Google Scholar] [CrossRef]
- Spadoni, A.; Cappellin, L.; Neri, F.; Algarra Alarcon, A.; Romano, A.; Guidarelli, M.; Gasperib, F.; Biasiolib, F.; Mari, M. Effect of hot water treatment on peach volatile emission and Monilinia fructicola development. Plant Pathol. 2015, 64, 1120–1129. [Google Scholar] [CrossRef]
- Spadoni, A.; Guidarelli, M.; Sanzani, S.M.; Ippolito, A.; Mari, M. Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress. Postharvest Biol. Technol. 2014, 94, 66–73. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Droby, S. Alternatives to conventional fungicides for the control of citrus postharvest green and blue moulds. Stewart Postharv. Rev. 2008, 2, 1–16. [Google Scholar]
- Martínez-Blay, V.; Taberner, V.; Pérez-Gago, M.B.; Palou, L. Postharvest Treatments with Sulfur-Containing Food Additives to Control Major Fungal Pathogens of Stone Fruits. Foods 2021, 10, 2115. [Google Scholar] [CrossRef]
- Delisle-Houde, M.; Affia, H.; Tweddell, R.J. Evaluation of different salts for the control of lettuce varnish spot: When phytotoxicity rules. J. Plant Sci. 2018, 98, 753–761. [Google Scholar] [CrossRef]
Source of Variation | DF | F-Value |
---|---|---|
Factor A (GRAS salts) | 3 | 230.4 ** |
Factor B (fungi) | 3 | 18.2 * |
Interaction A × B | 9 | 10.6 * |
SMB Concentrations % (x) | 0.5 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Oranges (cv. ‘Maltaise’) | |||||
Decay inhibition (%) 1 | 98.7 | 94.1 | 88.0 | 84.8 | 78.2 |
A (mm)= DSMBI − DC− | 0.9 ± 0. 1 | 4 ± 1.4 | 8.2 ± 5.6 | 10.4 ± 1.1 | 14.9 ± 3.5 |
B (mm) = DSMB − DC− | 1.3 ± 0.3 | 4 ± 2.1 | 6.4 ± 2.3 | 11.7 ± 1.5 | 9.2 ± 2.9 |
Fungal effect (A − B) (mm) | −0.4 | 0 | 1.8 | −1.3 | 5.7 |
(A + B)/2, [y observed] (mm) | 1.1 | 4 | 7.3 | 11.05 | 12.05 |
y = a.x +b, [y calculated] | y = 3.76.x − 0.2; R2 = 0.99 | ||||
Apples (cv. ‘Golden’) | |||||
Decay inhibition (%) 1 | 93.2 | 91.6 | 84.7 | 87.1 | 71.7 |
A (mm)= DSMBI − DC− | 2.5 ± 0.3 | 2.5 ± 0.6 | 5.1 ± 1.6 | 5.8 ± 1.3 | 9.5± 2.3 |
B (mm) = DSMB − DC− | 2.8 ± 0.9 | 3.5 ± 1.7 | 6.3 ± 1.4 | 5.3 ± 1.6 | 11.7 ± 4.2 |
Fungal effect (A − B) (mm) | 0.3 | 1.0 | 1.3 | −0.5 | 2.2 |
(A + B)/2, [y observed] (mm) | 2.7 | 3.0 | 5.7 | 5.6 | 10.6 |
y = a.x + b, [y calculated] | y = 2.47.x; R2 = 0.96 |
SMB (%) | Observed Values | Expected Values | Chi-Square Test | |
---|---|---|---|---|
Oranges cv. ‘Thompson’ | 7 | 26.02 | 26.12 | χ2c = 0.809 χ2(0.05, 1) = 3.84 |
10 | 31.9 | 37.4 | ||
Apples cv. ‘Golden’ | 7 | 16.7 | 17.3 | χ2c = 0.23 χ2(0.05, 1) = 3.84 |
10 | 22.4 | 24.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allagui, M.B.; Ben Amara, M. Effectiveness of Several GRAS Salts against Fungal Rot of Fruit after Harvest and Assessment of the Phytotoxicity of Sodium Metabisufite in Treated Fruit. J. Fungi 2024, 10, 359. https://doi.org/10.3390/jof10050359
Allagui MB, Ben Amara M. Effectiveness of Several GRAS Salts against Fungal Rot of Fruit after Harvest and Assessment of the Phytotoxicity of Sodium Metabisufite in Treated Fruit. Journal of Fungi. 2024; 10(5):359. https://doi.org/10.3390/jof10050359
Chicago/Turabian StyleAllagui, Mohamed Bechir, and Mouna Ben Amara. 2024. "Effectiveness of Several GRAS Salts against Fungal Rot of Fruit after Harvest and Assessment of the Phytotoxicity of Sodium Metabisufite in Treated Fruit" Journal of Fungi 10, no. 5: 359. https://doi.org/10.3390/jof10050359
APA StyleAllagui, M. B., & Ben Amara, M. (2024). Effectiveness of Several GRAS Salts against Fungal Rot of Fruit after Harvest and Assessment of the Phytotoxicity of Sodium Metabisufite in Treated Fruit. Journal of Fungi, 10(5), 359. https://doi.org/10.3390/jof10050359