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Abstract: This mini-review summarizes the clinical outcomes and antifungal susceptibility results,
where available, for three new antifungals, including fosmanogepix, ibrexafungerp, and rezafungin,
against Candida isolates cultured from patients in clinical trials. When reported, most of the data were
generated by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method
or by both the CLSI and European Committee on Antimicrobial Susceptibility Testing (EUCAST)
methodologies. For fosmanogepix, we summarize the in vitro data for C. auris isolates from 9 patients
and for Candida spp. cultured from 20 patients in two clinical trials. Ibrexafungerp has also been
evaluated in several clinical trials. From conference proceedings, a total of 176 Candida isolates were
evaluated in the FURI and CARES studies, including 18 C. auris isolates (CARES study). However,
MIC data are not available for all clinical isolates. Results from the ReSTORE rezafungin phase
3 clinical study also included in vitro results against Candida spp., but no patients with C. auris
infections were included. In conclusion, this mini-review summarizes insights regarding clinical
outcomes and the in vitro activity of three new antifungals against Candida spp. cultured from
patients in clinical trials.
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1. Introduction

The incidence of fungal infections is increasing worldwide and is associated with
significant morbidity and mortality in immunocompromised patients [1,2]. There are
several antifungals with novel mechanisms of action that have recently been approved
for clinical use in patients or are in the last stage of clinical development. These include
ibrexafungerp and rezafungin, which have been approved by the U.S. Food and Drug
Administration (FDA) and are available for clinical use, and fosmanogepix, which has
completed phase 2 clinical studies and for which a phase 3 study is soon to begin [3–6].
The development of new antifungal agents is important because the incidence of fungal
infections and rates of drug resistance both continue to increase [7,8]. These new agents
may play a vital role against infections caused by Candida spp. with reduced susceptibility
or resistance to clinically available drugs, such as C. glabrata and C. auris. This is especially
important against C. auris, an emerging pathogen, that continues to spread throughout
the world and was associated with a dramatic peak in the U.S. in 2021 [8]. Unfortunately,
screening is not conducted uniformly in the U.S., so the true burden of C. auris cases
is most likely underestimated. In addition, pan-resistant C. auris infections have been
documented [9], and fatal cases of breakthrough candidiasis caused by this pathogen
have been reported in individuals receiving combination therapy liposomal amphotericin
B and caspofungin [10]. The echinocandin resistance in these breakthrough strains was
demonstrated to be due to a novel mutation in the hot-spot 1 region of the FKS1 gene.
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2. Purpose Statement

In this mini-review, we focused on the clinical and in vitro data from patients with
invasive disease caused by Candida spp. cultured from patients enrolled in the clinical trials
of three new antifungal agents: fosmanogepix, ibrexafungerp, and rezafungin.

3. Fosmanogepix

Fosmanogepix (FMGX, PF-07842805, APX001, E1211) is a prodrug that is converted
in vivo to the active moiety manogepix (MGX, APX001A, E1210) by systemic phosphatases
following administration (Figure 1) [6]. Manogepix has a novel mechanism of action in-
hibiting the fungal acyltransferase enzyme Gwt1, which is an important component of the
glycosylphosphatidylinositol (GPI)-anchored protein maturation pathway [11,12]. This agent
has broad-spectrum activity against many pathogenic yeast, molds, and dimorphic fungi
(e.g., Coccidioides spp.), including C. auris and azole-resistant Aspergillus fumigatus [6,13].
However, it has limited activity against certain Candida spp., including C. krusei and the
rarer species C. inconspicua and C. kefyr [14]. The in vitro potency of manogepix has also
translated into in vivo efficacy in murine models of invasive candidiasis caused by C. albicans,
C. glabrata, and C. auris [15–17]. Pharmacokinetic/pharmacodynamic (PK/PD) studies have
demonstrated concentration-dependent activity with AUC/MIC being the parameter most
closely associated with efficacy [15,16]. Due to its potent in vitro activity, in vivo efficacy in
experimental models of Candida infections, considerable bioavailability following oral admin-
istration in humans, extensive tissue penetration, and a favorable safety profile, fosmanogepix
may become a treatment option in patients with invasive candidiasis, including those with
chorioretinitis or meningitis [6,14,17–20]. Both IV and oral formulations received fast-track
and orphan drug designations from the U.S. FDA for invasive mycoses caused by Candida,
Aspergillus, Cryptococcus, Coccidoides, Scedosporium, Fusarium spp., and the Mucorales (Mucor
and Rhizopus spp.), and invasive candidiasis by the European Medicines Agency (EMA).J. Fungi 2024, 10, x FOR PEER REVIEW 3 of 12 

 

 

 
Figure 1. Structures and characteristics of fosmanogepix/manogepix, ibrexafungerp, and rezafun-
gin. 

4. Phase 2 Clinical Trials of Fosmanogepix in the Treatment of Invasive  
Candidiasis/Candidemia, including Infections Caused by Candida auris 

The results of two phase 2 clinical trials that evaluated fosmanogepix in the treatment 
of patients with candidiasis have been published. One study conducted in intensive care 
units in South Africa was an open-label, multicenter, single-arm study that evaluated pa-
tients 18 years of age or older who had invasive candidiasis or candidemia caused by C. 
auris [21]. A total of 9 patients were included and received fosmanogepix 1000 mg IV twice 
daily on day 1, followed by 600 mg daily thereafter with the option to switch to oral 

Fosmanogepix

Manogepix

Ibrexafungerp

Rezafungin

• Phase 2 clinical trial complete
• IV & oral formulations under 

development
• In vitro activity vs. C. auris and 

azole & echinocandin resistant 
Candida

• No activity vs. C. krusei

• Approved for VVC in US
• Orally administered
• In vitro activity vs. C. auris and 

azole resistant Candida
• In vitro activity vs. some Candida 

harboring certain FKS mutations

• Approved for candidemia/IC in US 
and Europe

• Once weekly IV administration
• In vitro activity vs. C. auris and 

azole resistant Candida

Figure 1. Structures and characteristics of fosmanogepix/manogepix, ibrexafungerp, and rezafungin.



J. Fungi 2024, 10, 362 3 of 11

4. Phase 2 Clinical Trials of Fosmanogepix in the Treatment of Invasive
Candidiasis/Candidemia, including Infections Caused by Candida auris

The results of two phase 2 clinical trials that evaluated fosmanogepix in the treatment
of patients with candidiasis have been published. One study conducted in intensive care
units in South Africa was an open-label, multicenter, single-arm study that evaluated
patients 18 years of age or older who had invasive candidiasis or candidemia caused by
C. auris [21]. A total of 9 patients were included and received fosmanogepix 1000 mg IV
twice daily on day 1, followed by 600 mg daily thereafter with the option to switch to
oral therapy at 800 mg once daily from days 4 through 42. Treatment was deemed to be
successful in 8 of 9 (89%) patients (survival and clearance of C. auris from blood/tissue
cultures without the need for additional antifungals at the end of the study treatment). Two
patients experienced serious adverse events, and two patients died during the study. Both
the adverse effects and the deaths were considered unrelated to fosmanogepix therapy.
Both CLSI and EUCAST MIC results for manogepix and other antifungals against C. auris
isolates collected at baseline are shown in Table 1. These in vitro results are similar to what
others have reported for manogepix against larger sets of isolates [18,22].

Table 1. CLSI and EUCAST MIC ranges for manogepix and other antifungal agents against 9 baseline
Candida auris isolates cultured from patients enrolled in a phase 2 clinical trial. All results are in mg/L.

Antifungal Agent CLSI MIC Range EUCAST MIC Range

Manogepix 0.008–0.015 0.004–0.015

Amphotericin B 1 0.5

Anidulafungin 0.5–1 0.03–2

Micafungin 0.12–0.25 0.06–2

Fluconazole ≥128 ≥128

Voriconazole 1–2 0.5–8

A second phase 2 study evaluated the efficacy of fosmanogepix for first-line treatment
of non-neutropenic patients with candidemia [23]. Patients with infections caused by
C. krusei were excluded. Fosmanogepix was administered IV for 14 days, beginning with a
loading dose of 1000 mg twice daily on day 1 and then 600 mg daily thereafter. Patients
could be switched to oral therapy (700 mg once daily) after day 4. Success, defined
as clearance of Candida from blood cultures and survival to day 42, was observed in
80% (16 of 20 patients) in the modified intent-to-treat population, and the mean time to
the first negative blood culture was 2.4 days. Manogepix MICs against the 22 Candida
baseline isolates cultured from the 20 patients are shown in Table 2. These in vitro results
are also similar to what others have reported for manogepix against common Candida
spp. [14,24,25]. One patient experienced recurrent candidemia due to C. glabrata two weeks
after the end of treatment, and the manogepix MIC increased from 0.004 mg/L at baseline
to 0.12 mg/L (>30-fold increase). In contrast, in another patient who experienced a clinical
relapse secondary to a C. albicans biliary infection, the manogepix MIC remained the same
(0.008 mg/L) between the baseline bloodstream and subsequent biliary isolates.

Table 2. CLSI MIC ranges for manogepix and other antifungal agents against 22 baseline Candida
species isolates from a phase 2 clinical trial of patients with candidemia. All results in mg/L.

Species (No.) Manogepix Anidulafungin Fluconazole Amphotericin B

C. albicans (8) 0.002–0.008 0.016–0.03 0.12–2 0.5–4

C. dubliniensis (1) 0.004 0.016 0.12 1

C. glabrata (10) 0.004–0.03 0.03–0.25 0.5–4 0.5–2

C. parapsilosis (3) 0.004–0.016 0.5–4 0.25–0.5 0.5–4
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5. Ibrexafungerp

Ibrexafungerp (SCY-078 or MK-3118, Brexafemme) is a semi-synthetic derivative of en-
fumafungin, a naturally occurring product, and is the first member of the triterpenoid class
of antifungal agents [26]. Although both the echinocandins and triterpenoids target the
production of 1,3-β-D-glucan in the cell wall of pathogenic fungi through non-competitive
inhibition of the 1,3-β-D-glucan synthase complex, ibrexafungerp is structurally different
than the echinocandins, and the binding sites only partially overlap [27–29]. This results in
limited cross-resistance between these different antifungal classes. However, certain muta-
tions can affect both the echinocandins and ibrexafungerp, including the F659del and F659S
mutations in hot-spot 1 of Fks1p [30–34]. In addition, it is now known that mutations both
upstream (i.e., E655A) and downstream (W715L) of this hot-spot region can also markedly
reduce the in vitro activity of ibrexafungerp. Furthermore, this agent can be given orally,
while the other echinocandins must be administered intravenously. In preclinical animal
models, ibrexafungerp has demonstrated in vivo activity against C. albicans, C. parapsilosis,
and echinocandin-susceptible and resistant strains of C. glabrata [35,36], as well as against
C. auris, both in disseminated and cutaneous models of infection [36,37], which is consistent
with the in vitro activity reported by different groups [31,38–42]. In one of the largest pre-
clinical in vitro studies of ibrexafungerp against C. auris, the MIC of ibrexafungerp ranged
from 0.06 to 2 mg/L with a mode of 1 mg/mL [42]. Concentration-dependent activity has
also been observed with ibrexafungerp in animal models of candidiasis, and AUC/MIC is
the PK/PD parameter most closely associated with in vivo efficacy [35,43]. These in vitro
and in vivo results are promising and point to the potential use of this agent for controlling
skin infection and colonization of patients, as well as in the treatment of invasive diseases.

6. Phase 2 and 3 Clinical Trials of Ibrexafungerp in the Treatment of Invasive
Candidiasis/Candidemia, Including Infections Caused by Candida auris

Although both oral and IV formulations have been evaluated in preclinical studies,
the clinical data are for the oral formulation and in patients refractory to or intolerant
of standard antifungal therapy [4]. These have included several studies of patients with
vulvovaginal candidiasis (VVC), for which ibrexafungerp is approved for clinical use in the
U.S. [44,45], as well as in patients with invasive candidiasis [46–50]. In one phase 2 study
that evaluated oral ibrexafungerp as step-down therapy following initial IV echinocandin
treatment, favorable responses were observed in 6 of the 7 that received ibrexafungerp at
a maintenance dose of 750 mg per day following an initial loading dose of 1250 mg [51].
Population pharmacokinetic assessment predicted that this dose would achieve target
exposure in ~85% of patients established in a preclinical study of invasive candidiasis [43].
Similar responses were observed in patients randomized to a lower dose of ibrexafungerp
(1000 mg loading dose followed by 500 mg per day) or standard of care (fluconazole 800 mg
oral loading dose followed by 400 mg daily thereafter). Ibrexafungerp was well tolerated
at both dose levels.

Two phase 3 open-label, single-arm studies (FURI, NCT03059992, for the treatment of
patients intolerant to or refractory to standard care, and CARES, NCT03363841, for the treat-
ment of C. auris infections) have also evaluated the safety and efficacy of oral ibrexafungerp,
although results from these studies are only available in abstract form thus far. These
studies have included patients with candidemia and multiple forms of invasive candidiasis,
including intraabdominal, bone/joint, oropharyngeal, esophageal, and vulvovaginal can-
didiasis, among others, and infections caused by azole and echinocandin-resistant strains.
In one update from the FURI and CARES studies, results from patients with candidemia
or invasive candidiasis were reported [52]. Complete or partial responses were observed
in 13 of 18 patients with candidiasis and 20 of 30 with invasive candidiasis. Of the ma-
jor pathogens cultured from patients in this study (C. albicans and C. glabrata), response
rates (clinical improvement, complete or partial response) were 11 of 16 for C. albicans
and 7 of 7 for C. glabrata [53]. In the CARES study, 14 of 18 patients infected with C. auris
demonstrated complete or partial response with ibrexafungerp treatment [54]. Antifungal



J. Fungi 2024, 10, 362 5 of 11

susceptibility was also determined in the FURI study for cultures collected at screening
and all subsequent study visits. This included 158 Candida spp. [48], and MIC results for
ibrexafungerp and fluconazole are shown in Table 3.

Table 3. Ibrexafungerp and fluconazole susceptibility results against 158 Candida isolates from the
FURI study. All results were determined by CLSI broth microdilution methods and are reported
in mg/L.

Species (No.) MIC Parameter Ibrexafungerp Fluconazole

C. glabrata (92)

Range 0.12–8 ≤0.06–>64

MIC50 0.5 2

MIC90 4 32

C. albicans (45)

Range 0.03–8 ≤0.06–>64

MIC50 0.06 4

MIC90 0.5 >64

C. krusei (5) Range 0.5–1 2–16

C. parapsilosis (5) Range 0.12–0.25 0.25–2

C. tropicalis (4) Range 0.06–0.5 0.5–64

7. Rezafungin

Rezafungin (CD101, Rezzayo) is a new echinocandin that has been approved for the
treatment of candidemia and invasive candidiasis in the U.S. and Europe. As with the
other echinocandins, rezafungin non-competitively inhibits the 1,3-β-D-glucan synthase
enzyme complex leading to reductions in 1,3-β-D-glucan levels in the cell wall of many
pathogenic fungi [55]. Similar to the other members of this class, it must also be adminis-
tered intravenously. However, due to a modification of its structure which stabilizes the
molecule, the half-life of rezafungin is ~130 h, which allows for once-weekly administration,
which is in contrast to the other echinocandins that must be administered daily. Based
on its slow clearance, rezafungin is administered as a loading dose of 400 mg followed
by weekly doses of 200 mg thereafter. This strategy also takes advantage of the pharma-
cokinetic/pharmacodynamic parameters of AUC/MIC and Cmax/MIC that have been
associated with in vivo efficacy for the echinocandins [56–61]. The in vitro activity of reza-
fungin is similar to that of the other echinocandins [62–65], and preclinical in vivo models
have reported effectiveness against infections caused by different Candida spp., including
C. albicans, C. auris, C. dubliniensis, C. glabrata, C. parapsilosis, and C. tropicalis [15,59,60,66–68].
As with the other echinocandins, point mutations in highly conserved regions of the FKS1
and FKS2 genes can lead to resistance to rezafungin [63,69].

8. Phase 2 and 3 Clinical Trials of Rezafungin in the Treatment of Invasive
Candidiasis/Candidemia

Rezafungin has been evaluated for the treatment of candidemia and invasive can-
didiasis in two randomized clinical trials. In the STRIVE study (NCT02734862), a phase
2 double-blind trial, patients were randomized to receive two different doses of rezafungin
(400 mg weekly or 400 mg loading dose followed by 200 mg weekly) or the standard dose
of caspofungin [70]. Candida albicans was the predominant pathogen (49.7%), followed by
C. glabrata (20.2%), C. parapsilosis (15.3%), C. tropicalis (12.0%), C. krusei (2.7%), C. dublin-
iensis (2.7%), and other Candida spp. (4.4%). Overall cure, defined as resolution of signs
of candidemia/invasive candidiasis and mycological eradication, was reported in 60.5%
(46/76) of those in the rezafungin 400 mg weekly group, 76.1% (35/46) in the rezafungin
400 mg loading dose/200 mg weekly group, and 67.2% (41/61) in the caspofungin group.
Day 30 all-cause mortality rates were 15.8%, 4.4%, and 13.1%, respectively. In each group,
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the antifungal agents were well tolerated, and the drug-related serious adverse events were
between 1.2% to 2.9% of the patients.

ReSTORE was a randomized, double-blind, multicenter phase 3 study (NCT03667690)
in which patients with candidemia or invasive candidiasis were treated with either rezafun-
gin (400 mg loading dose followed by 200 mg weekly) or caspofungin [71]. Two primary
endpoints were evaluated: global cure (clinical/radiological cure and mycological eradica-
tion) at day 14, and all-cause mortality at day 30. Results between the two groups were
similar, with 55 of 93 (59%) patients in the rezafungin group and 57 of 94 (50%) achieving
global cure by day 14. All-cause mortality was also similar between the groups with 24%
in the rezafungin group and 21% in the caspofungin group dying or having an unknown
survival status at day 30. The distribution of Candida species in this study was similar to
that in the STRIVE study, with >99% being susceptible to both caspofungin and rezafungin
using CLSI breakpoints. Neither the STRIVE nor ReSTORE trials included patients infected
with C. auris. In a pooled analysis of the modified intent-to-treat population from both the
STRIVE and ReSTORE trials, the 30 all-cause mortality rates were the same between the
rezafungin 400 mg/200 mg and caspofungin groups (19%) [72]. Mycological eradiation
by day 5 occurred in 73% of those treated with rezafungin and 65% of those with caspo-
fungin. An analysis of ReSTORE clinical outcomes data by baseline Candida species and
in vitro susceptibility results has recently been published (Table 4) [73]. Only two patients
in this study had baseline isolates that had non-susceptible MIC results to both rezafungin
and caspofungin. Both were randomized to the rezafungin group and were classified as
treatment successes based on the day 30 all-cause mortality endpoint.

Table 4. Outcomes in relation to Candida spp. and rezafungin MIC values from the ReSTORE phase
3 study. MICs were determined by the CLSI broth microdilution methodology.

Species Outcome
Number of Patients with Response/Number by Pathogen and MIC Value (mg/L)

0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2

C. albicans
Cure 4/7 11/20 4/6 1/4 1/2 --- --- --- ---

Eradication 5/7 11/20 5/6 1/4 1/2 --- --- --- ---

C. glabrata
Cure --- --- 6/8 4/6 6/9 --- 0/1 --- ---

Eradication --- --- 7/8 6/6 6/9 --- 1/1 --- ---

C. tropicalis
Cure --- 3/3 5/8 5/7 1/2 --- --- --- ---

Eradication --- 3/3 5/8 5/7 2/2 --- --- --- ---

C. parapsilosis
Cure --- --- --- --- --- --- 1/1 2/4 3/3

Eradication --- --- --- --- --- --- 1/1 2/4 3/3

9. In Vitro Guidance

Currently, no breakpoints have been set for manogepix or ibrexafungerp to classify
individual isolates of different Candida spp. as susceptible or resistant to these antifungals. In
addition, epidemiologic cut-off values (ECVs or ECOFFs) have not been formally determined
for either of these agents. Instead, individual laboratories have reported what is called
wild-type upper-limit (WT-UL) MIC values to help distinguish between wild-type (isolates
unlikely to have acquired resistance) from non-wild type (those that may harbor resistance
mechanisms) for both manogepix and ibrexafunerp (Table 5) [14,18,24,34,38,39,74–77]. In
contrast, susceptible breakpoints have now been set for rezafungin by the U.S. FDA and
CLSI [78,79]. It should be noted that no breakpoints for rezafungin resistance are currently set,
and the FDA and CLSI breakpoints differ against some Candida species.
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Table 5. Wild-type upper-limit (WT-UL) MICs for manogepix and ibrexafungerp, and susceptible
breakpoints for rezafungin against different Candida species. All values in mg/L.

Wild-Type Upper-Limit MIC Values for Manogepix and Ibrexafungerp

Species
Manogepix Ibrexafungerp

EUCAST CLSI EUCAST CLSI

C. albicans 0.06 0.015–0.03 0.25–0.5 0.5

C. auris 0.06 0.03 2 ---

C. glabrata 0.12 0.12–0.25 0.5–1 2

C. krusei --- --- 1–4 4

C. parapsilosis 0.06 0.03 1–4 1

C. tropicalis 0.016 0.06 1–2 1

Rezafungin Breakpoints against Candida spp.

Species U.S. FDA Breakpoint CLSI Breakpoint

C. albicans ≤0.12 ≤0.25

C. auris --- ≤0.5

C. dubliniensis --- ≤0.12

C. glabrata ≤0.12 ≤0.5

C. krusei --- ≤0.25

C. parapsilosis ≤2 ≤2

C. tropicalis ≤0.12 ≤0.25

10. Conclusions

Each of these new antifungal agents, fosmanogepix, ibrexafungerp, and rezafungin,
has demonstrated promising in vitro and in vivo activity against Candida spp., including C.
auris. In addition, positive outcomes have also been reported in phase 2 and phase 3 clinical
trials, although available data are limited to small phase 2 studies thus far for fosmanogepix,
and results are only available in abstract form for ibrexafungerp. To date, the most robust
clinical data and in vitro data from clinical trials are available for rezafungin, although
no patients with C. auris were enrolled, and only two patients had infections at baseline
that were considered non-susceptible to this echinocandin. Thus, while these results are
promising, more studies are needed to determine the role of these antifungal agents in the
treatment of infections caused by Candida isolates that are resistant to the azoles and/or
the echinocandins.
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