Genome Analysis of Pseudomonas viciae G166 Conferring Antifungal Activity in Grapevine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Plant Material, and Growth Conditions
2.2. In Vitro Antifungal Activity for Inhibition of Mycelium Growth
2.3. Genome Sequencing, Assembly, and Putative Secondary Metabolite Clusters Analysis
2.4. Phylogenetic Tree Construction
2.5. Comparative Genomics Analysis
2.6. Phenotype Analysis of the Biocontrol Activity of P. viciae G166 against C. diplodiella
2.7. Statistical Analysis
3. Results
3.1. Antagonistic Activity of P. viciae G166
3.2. Identification and Genomic Features of P. viciae G166
3.3. Genome Comparisons among Pseudomonas spp.
3.4. Secondary Metabolite Clusters Analysis of P. viciae G166
3.5. Identification and Characterization of Biocontrol Activity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Girardello, R.C.; Cooper, M.L.; Smith, R.J.; Lerno, L.A.; Bruce, R.C.; Eridon, S.; Oberholster, A. Impact of Grapevine Red Blotch Disease on Grape Composition of Vitis vinifera Cabernet Sauvignon, Merlot, and Chardonnay. J. Agric. Food Chem. 2019, 67, 5496–5511. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Santoyo, G.; Urtis-Flores, C.A.; Loeza-Lara, P.D.; Orozco-Mosqueda, M.D.C.; Glick, B.R. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology 2021, 10, 475. [Google Scholar] [CrossRef]
- Bhat, B.A.; Tariq, L.; Nissar, S.; Islam, S.T.; Islam, S.U.; Mangral, Z.; Ilyas, N.; Sayyed, R.Z.; Muthusamy, G.; Kim, W.; et al. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. J. Appl. Microbiol. 2022, 133, 2717–2741. [Google Scholar] [CrossRef]
- Paulsen, I.T.; Press, C.M.; Ravel, J.; Kobayashi, D.Y.; Myers, G.S.; Mavrodi, D.V.; DeBoy, R.T.; Seshadri, R.; Ren, Q.; Madupu, R.; et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat. Biotechnol. 2005, 23, 873–878. [Google Scholar] [CrossRef]
- Nonaka, S.; Ezura, H. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. Front. Plant Sci. 2014, 5, 681. [Google Scholar] [CrossRef]
- Chowdhury, S.P.; Hartmann, A.; Gao, X.; Borriss, R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—a review. Front. Microbiol. 2015, 6, 780. [Google Scholar] [CrossRef]
- Esmaeel, Q.; Miotto, L.; Rondeau, M.; Leclère, V.; Clément, C.; Jacquard, C.; Sanchez, L.; Barka, E.A. Paraburkholderia phytofirmans PsJN-Plants Interaction: From Perception to the Induced Mechanisms. Front. Microbiol. 2018, 9, 2093. [Google Scholar] [CrossRef]
- Götze, S.; Stallforth, P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat. Prod. Rep. 2020, 37, 29–54. [Google Scholar] [CrossRef]
- Yu, F.; Jing, X.; Li, X.; Wang, H.; Chen, H.; Zhong, L.; Yin, J.; Pan, D.; Yin, Y.; Fu, J.; et al. Recombineering Pseudomonas protegens CHA0: An innovative approach that improves nitrogen fixation with impressive bactericidal potency. Microbiol. Res. 2019, 218, 58–65. [Google Scholar] [CrossRef]
- Anderson, A.J.; Kim, Y.C. Insights into plant-beneficial traits of probiotic Pseudomonas chlororaphis isolates. J. Med. Microbiol. 2020, 69, 361–371. [Google Scholar] [CrossRef]
- Jing, X.; Cui, Q.; Li, X.; Yin, J.; Ravichandran, V.; Pan, D.; Fu, J.; Tu, Q.; Wang, H.; Bian, X.; et al. Engineering Pseudomonas protegens Pf-5 to improve its antifungal activity and nitrogen fixation. Microb. Biotechnol. 2020, 13, 118–133. [Google Scholar] [CrossRef]
- Buch, A.; Gupta, V. Unusual concurrence of P-solubilizing and biocontrol traits under P-limitation in plant-beneficial Pseudomonas aeruginosa P4: Insights from in vitro metabolic and gene expression analysis. Arch. Microbiol. 2023, 205, 355. [Google Scholar] [CrossRef]
- García-López, J.V.; Redondo-Gómez, S.; Flores-Duarte, N.J.; Zunzunegui, M.; Rodríguez-Llorente, I.D.; Pajuelo, E.; Mateos-Naranjo, E. Exploring through the use of physiological and isotopic techniques the potential of a PGPR-based biofertilizer to improve nitrogen fertilization practices efficiency in strawberry cultivation. Front. Plant. Sci. 2023, 14, 1243509. [Google Scholar] [CrossRef]
- Sanow, S.; Kuang, W.; Schaaf, G.; Huesgen, P.; Schurr, U.; Roessner, U.; Watt, M.; Arsova, B. Molecular mechanisms of Pseudomonas-assisted plant nitrogen uptake: Opportunities for modern agriculture. Mol. Plant Microbe Interact. 2023, 36, 536–548. [Google Scholar] [CrossRef]
- Balthazar, C.; St-Onge, R.; Léger, G.; Lamarre, S.G.; Joly, D.L.; Filion, M. Pyoluteorin and 2,4-diacetylphloroglucinol are major contributors to Pseudomonas protegens Pf-5 biocontrol against Botrytis cinerea in cannabis. Front. Microbiol. 2022, 13, 945498. [Google Scholar] [CrossRef]
- Huang, R.; Feng, Z.; Chi, X.; Sun, X.; Lu, Y.; Zhang, B.; Lu, R.; Luo, W.; Wang, Y.; Miao, J.; et al. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol. Res. 2018, 215, 55–64. [Google Scholar] [CrossRef]
- Gu, Q.; Qiao, J.; Wang, R.; Lu, J.; Wang, Z.; Li, P.; Zhang, L.; Ali, Q.; Khan, A.R.; Gao, X.; et al. The Role of Pyoluteorin from Pseudomonas protegens Pf-5 in Suppressing the Growth and Pathogenicity of Pantoea ananatis on Maize. Int. J. Mol. Sci. 2022, 23, 6431. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Y.P.; Zhang, L.Q. In silico and genetic analyses of cyclic lipopeptide synthetic gene clusters in Pseudomonas sp. 11K1. Front. Microbiol. 2019, 10, 544. [Google Scholar] [CrossRef]
- Michelsen, C.F.; Watrous, J.; Glaring, M.A.; Kersten, R.; Koyama, N.; Dorrestein, P.C.; Stougaard, P. Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. mBio 2015, 6, e00079. [Google Scholar] [CrossRef]
- Hennessy, R.C.; Phippen, C.B.W.; Nielsen, K.F.; Olsson, S.; Stougaard, P. Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by Pseudomonas fluorescens strain In5 is regulated by the LuxR-type transcriptional regulator NunF. Microbiologyopen 2017, 6, e00516. [Google Scholar] [CrossRef]
- Van Der Voort, M.; Meijer, H.J.; Schmidt, Y.; Watrous, J.; Dekkers, E.; Mendes, R.; Dorrestein, P.C.; Gross, H.; Raaijmakers, J.M. Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Front. Microbiol. 2015, 6, 693. [Google Scholar] [CrossRef]
- Gütschow, M.; Ortlieb, N.; Moschny, J.; Niedermeyer, T.H.J.; Horak, J.; Lämmerhofer, M.; van der Voort, M.; Raaijmakers, J.M.; Gross, H. Discovery of Thanafactin A, a Linear, Proline-Containing Octalipopeptide from Pseudomonas sp. SH-C52, Motivated by Genome Mining. J. Nat. Prod. 2021, 84, 101–109. [Google Scholar]
- Scaloni, A.; Dalla Serra, M.; Amodeo, P.; Mannina, L.; Vitale, R.M.; Segre, A.L.; Cruciani, O.; Lodovichetti, F.; Greco, M.L.; Fiore, A.; et al. Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: Cormycin A. Biochem. J. 2004, 384, 25–36. [Google Scholar] [CrossRef]
- Strano, C.P.; Bella, P.; Licciardello, G.; Fiore, A.; Lo Piero, A.R.; Fogliano, V.; Venturi, V.; Catara, V. Pseudomonas corrugata crpCDE is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato and in hypersensitive response in Nicotiana benthamiana. Mol. Plant. Pathol. 2015, 16, 495–506. [Google Scholar] [CrossRef]
- Jang, J.Y.; Yang, S.Y.; Kim, Y.C.; Lee, C.W.; Park, M.S.; Kim, J.C.; Kim, I.S. Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J. Agric. Food Chem. 2013, 61, 6786–6791. [Google Scholar] [CrossRef]
- Loper, J.E.; Henkels, M.D.; Rangel, L.I.; Olcott, M.H.; Walker, F.L.; Bond, K.L.; Kidarsa, T.A.; Hesse, C.N.; Sneh, B.; Stockwell, V.O.; et al. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ. Microbiol. 2016, 18, 3509–3521. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, S.; Liang, J.; Sun, K.; Hu, J. Isolation and characterization of a new cyclic lipopeptide orfamide H from Pseudomonas protegens CHA0. J. Antibiot. 2020, 73, 179–183. [Google Scholar] [CrossRef]
- Meng, J.; Zan, F.; Liu, Z.; Zhang, Y.; Qin, C.; Hao, L.; Wang, Z.; Wang, L.; Liu, D.; Liang, S.; et al. Genomics Analysis Reveals the Potential Biocontrol Mechanism of Pseudomonas aeruginosa QY43 against Fusarium pseudograminearum. J. Fungi 2024, 10, 298. [Google Scholar] [CrossRef]
- Lim, H.J.; Lee, E.H.; Yoon, Y.; Chua, B.; Son, A. Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis. J. Appl. Microbiol. 2016, 120, 379–387. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. MAUVE: Multiple alignment of conserved genomic sequence with rearrangements. Genome. Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genomics 2011, 12, 402. [Google Scholar] [CrossRef]
- Chethana, K.W.T.; Zhou, Y.; Zhang, W.; Liu, M.; Xing, Q.K.; Li, X.H.; Yan, J.Y.; Chethana, K.W.T.; Hyde, K.D. Coniella vitis sp. nov. Is the Common Pathogen of White Rot in Chinese Vineyards. Plant Dis. 2017, 101, 2123–2136. [Google Scholar] [CrossRef]
- Jing, X.; Hou, P.; Lu, Y.; Deng, S.; Li, N.; Zhao, R.; Sun, J.; Wang, Y.; Han, Y.; Lang, T.; et al. Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Front. Plant Sci. 2015, 6, 23. [Google Scholar] [CrossRef]
- Sah, S.; Krishnani, S.; Singh, R. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr. Res. Microb. Sci. 2021, 2, 100084. [Google Scholar] [CrossRef]
- Lyng, M.; Kovács, Á.T. Frenemies of the soil: Bacillus and Pseudomonas interspecies interactions. Trends Microbiol. 2023, 31, 845–857. [Google Scholar] [CrossRef]
- Niem, J.M.; Billones-Baaijens, R.; Stodart, B.; Savocchia, S. Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic Pseudomonas against grapevine trunk diseases. Front Microbiol. 2020, 11, 477. [Google Scholar] [CrossRef]
- Deepika, S.; Mittal, A.; Kothamasi, D. HCN-producing Pseudomonas protegens CHA0 affects intraradical viability of Rhizophagus irregularis in Sorghum vulgare roots. J. Basic Microbiol. 2019, 59, 1229–1237. [Google Scholar] [CrossRef]
Genome size (bp) | 6,613,582 |
Total genes, number/total length/average length | 5880/5,835,862 bp/992 bp |
Gene length/genome% | 88.24% |
GC% | 60.57% |
Genes with function prediction | 5749 |
Genes with GOs | 3964 |
Genes connected to KEGG ontology | 5663 |
Genes assigned to COGs | 4702 |
CRISPR, number/total length/average length | 5/915 bp/183 bp |
tRNA genes, number/total length/average length | 67/77 bp/5222 bp |
5S rRNA genes, number/total length/average length | 6/116 bp/696 bp |
16S rRNA genes, number/total length/average length | 5/1525 bp/7626 bp |
23S rRNA genes, number/total length/average length | 5/2890 bp/14,450 bp |
sRNA genes, number/total length/average length | 17/189 bp/3219 bp |
Genomic Features | P. viciae G166 | P. viciae 11K1 | P. brassicacearum subsp. brassicacearum NFM421 | P. zarinae SWRI108 | P. bijieensis L22-9 |
---|---|---|---|---|---|
Size (bp) | 6,613,582 | 6,682,832 | 6,843,248 | 6,551,245 | 6,730,360 |
GC content | 60.6% | 60.4% | 60.8% | 60.9% | 60.9% |
Gene count | 5880 | 5898 | 6135 | 5825 | 6006 |
CDS count | 5749 | 5784 | 6066 | 5768 | 5936 |
Cluster | Type | Size (nt) | Similar Known Cluster | Similarity |
---|---|---|---|---|
Cluster 1 | NRPS-like | 30,967 | Fragin | 37% |
Cluster 2 | Arylpolyene | 43,611 | APE Vf | 40% |
Cluster 3 | RiPP-like | 10,869 | ||
Cluster 4 | NAGGN | 14,850 | ||
Cluster 5 | NRPS | 51,930 | Pyoverdin | 10% |
Cluster 6 | Betalactone, NRPS | 23,238 | Fengycin | 13% |
Cluster 7 | Hserlactone, NRPS | 19,624 | ||
Cluster 8 | NRPS | 165,451 | Syringopeptin | 100% |
Cluster 9 | NRPS | 67,055 | Thanafacin A | 44% |
Cluster 10 | NI-Siderophore | 18,918 | ||
Cluster 11 | NRPS | 77,547 | Pyoverdin | 19% |
Cluster 12 | Lanthipeptide-class-ii | 23,071 | ||
Cluster 13 | NRPS + PKS | 22,165 | Lankacidin C | 13% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, X.; Su, L.; Yin, X.; Chen, Y.; Guan, X.; Yang, D.; Sun, Y. Genome Analysis of Pseudomonas viciae G166 Conferring Antifungal Activity in Grapevine. J. Fungi 2024, 10, 398. https://doi.org/10.3390/jof10060398
Jing X, Su L, Yin X, Chen Y, Guan X, Yang D, Sun Y. Genome Analysis of Pseudomonas viciae G166 Conferring Antifungal Activity in Grapevine. Journal of Fungi. 2024; 10(6):398. https://doi.org/10.3390/jof10060398
Chicago/Turabian StyleJing, Xiaoshu, Ling Su, Xiangtian Yin, Yingchun Chen, Xueqiang Guan, Dongyue Yang, and Yuxia Sun. 2024. "Genome Analysis of Pseudomonas viciae G166 Conferring Antifungal Activity in Grapevine" Journal of Fungi 10, no. 6: 398. https://doi.org/10.3390/jof10060398
APA StyleJing, X., Su, L., Yin, X., Chen, Y., Guan, X., Yang, D., & Sun, Y. (2024). Genome Analysis of Pseudomonas viciae G166 Conferring Antifungal Activity in Grapevine. Journal of Fungi, 10(6), 398. https://doi.org/10.3390/jof10060398