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Abstract: Background: Selenium (Se) pollution poses serious threats to terrestrial ecosystems. Mush-
rooms are important sources of Se with the potential for bioremediation. Pre-eminent Se resources
must possess the ability to tolerate high levels of Se. To obtain Se-accumulating fungi, we isolated
selenite-tolerance-enhanced Ganoderma lucidum JNUSE-200 through adaptive evolution. Methods:
The molecular mechanism responsible for selenite tolerance and accumulation was explored in
G. lucidum JNUSE-200 by comparing it with the original strain, G. lucidum CGMCC 5.26, using a
combination of physiological and transcriptomic approaches. Results: G. lucidum JNUSE-200 demon-
strated tolerance to 200 mg/kg selenite in liquid culture and exhibited normal growth, whereas
G. lucidum CGMCC 5.26 experienced reduced growth, red coloration, and an unpleasant odor as a re-
sult of exposure to selenite at the same concentration. In this study, G. lucidum JNUSE-200 developed
a triple defense mechanism against high-level selenite toxicity, and the key genes responsible for
improved selenite tolerance were identified. Conclusions: The present study offers novel insights into
the molecular responses of fungi towards selenite, providing theoretical guidance for the breeding
and cultivation of Se-accumulating varieties. Moreover, it significantly enhances the capacity of
the bio-manufacturing industry and contributes to the development of beneficial applications in
environmental biotechnology through fungal selenite transformation bioprocesses.

Keywords: adaptive evolution; bioaccumulation; biotransformation; physiological phenotype;
transcriptomics

1. Introduction

Selenium (Se) is a naturally occurring abundant element in the environment, but
becomes a pollutant at high levels, particularly in the form of oxyanions selenate and
selenite. The cycling of Se between the ocean, terrestrial environment, and atmosphere in
the environment is primarily mediated by intricate chemical and biological transforma-
tions [1,2], and both natural processes and human activities contribute to the release of Se
into the atmosphere. Exposure to unnaturally high concentrations of Se can have lethal
effects on humans and easily enters the food chain through plants and organisms. The
consumption of more than 400 µg of Se per day can result in adverse effects such as hair
loss, liver necrosis, onychorrhexis, cerebral edema, hepatic injury, and neurotoxicity [1].
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Bioremediation, which relies on biological processes to degrade, transform, decompose or
remove Se, is considered an alternative to conventional physicochemical methods due to its
low economic cost and environmental impact, exhibiting the advantages of non-secondary
contamination, economic benefits, and the ability to perform in situ remediation [3–5].
Plants and fungi are recognized as primary sources for both biofortification with Se as well
as bioremediation [6–8].

Mushrooms are widely recognized for their diversity and nutritional value. Moreover,
they possess the ability to uptake and convert inorganic Se into organic Se, with their capac-
ity for Se accumulation varying depending on strain resources, culture conditions, source,
and dosage of Se compounds. Given their bioaccumulative potential, mushrooms have
been extensively studied and improved for both environmental and nutritional applications.
In terms of environmental studies, mushrooms can serve as promising bioremediators
for Se-induced pollution [9]. Hyperaccumulators possess the capability to accumulate
elements at exceedingly high concentrations without causing toxicity [10], thereby exhibit-
ing significant potential for food production, agriculture, and environmental applications.
The acquisition of Se tolerance may be a prerequisite for hyperaccumulation [11]. The
underlying mechanisms of Se tolerance and accumulation in typical plants have been
the subject of several reports, highlighting key genes associated with transport, defense,
and oxidative stress responses [12,13]. Metabolites such as flavonoids, phenylpropanoids,
and selenolanthionine enhance plants’ tolerance towards Se [14–16]. Additionally, cell
walls play a crucial role in the sequestration of selenate within vacuoles [15,17]. How-
ever, the mechanism underlying selenite tolerance and bioaccumulation in mushrooms
remains unclear.

Several mushroom species, including Flammulina velutipes [18], Hypsizygus marmoreus [19],
Lentunula edodes [20], Pleurotus [21], and Ganoderma lucidum [22], have been identified as
effective candidates for Se biotransformation and bioremediation. However, the tolerance
capacity of mushrooms towards Se varies with species. High levels of Se can pose a
challenge for extremely polluted environments where mushrooms cannot grow normally.
Although G. lucidum has a high accumulation ability for Se, it still exhibits toxic phenotypes
at certain concentrations. In our previous studies, we found that G. lucidum CGMCC 5.26
was intolerant to 200 mg/kg selenite in liquid culture and exhibited poisoning phenotypes
such as red coloration, pungent smell and decreased biomass [23].

To elucidate the mechanism behind selenite tolerance, G. lucidum JNUSE-200 with
enhanced selenite tolerance was screened and obtained by laboratory adaptive evolution
from G. lucidum CGMCC 5.26. Physiological and molecular responses to high selenite levels
were compared in G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200. Transcriptome-wide
difference analysis revealed gene expression changes in both strains under control and
selenite-cultured conditions while identifying key genes conferring selenite tolerance on a
large scale, and it also elucidated the metabolic adaption of G. lucidum JNUSE-200 under
selenite stress. This present study deepens the understanding of fungal tolerance towards
selenite, thereby benefiting bioprocesses involving fungal selenite transformation and
offering theoretical guidance for its application in bioremediation processes.

2. Materials and Methods
2.1. Strains and Culture Conditions

G. lucidum CGMCC 5.26 was purchased from the China General Microbiological
Culture Collection Center (CGMCC) and preserved on potato dextrose agar slants at 4 ◦C.
G. lucidum JNUSE-200 was obtained by laboratory adaptive evolution with selenite culture
and preserved on potato dextrose agar (PDA) slants at 4 ◦C.

The seed liquid culture medium was composed of glucose (20 g/L), yeast nitrogen
base without amino acids (5 g/L), tryptone (5 g/L), KH2PO4 (4.5 g/L), and MgSO4·7H2O
(2 g/L) at the initial pH. The fermentation liquid culture medium was composed of glucose
(20 g/L), yeast nitrogen base without amino acids (5 g/L), tryptone (5 g/L), KH2PO4
(4.5 g/L), MgSO4·7H2O (2 g/L), and 200 mg/kg Na2SeO3 at the initial pH.
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2.2. Laboratory Adaptive Evolution

Enhanced selenite-tolerant strains of G. lucidum were continuously screened through
adaptive evolution using a gradient concentration of Na2SeO3 in solid PDA plates and
liquid culture derived from the original G. lucidum CGMCC 5.26 strain. The initial Na2SeO3
concentration (200 mg/kg) was chosen based on the strain’s maximum tolerance to these
conditions. The concentration of Na2SeO3 was increased twofold after 10 generations of
culture. For nearly two years, a G. lucidum strain capable of tolerating 200 mg/kg Na2SeO3
in liquid culture was selected and designated as G. lucidum JNUSE-200, which has been
preserved at the China Center for Type Culture Collection (CCTCC).

2.3. Biomass, Extracellular Polysaccharides (EPS) and Intracellular Polysaccharides (IPS)

The mycelia were obtained by centrifugation at 10,000 rpm for 10 min, followed
by three washes with distilled water and subsequent lyophilization. The biomass was
determined at room temperature using a gravimetric method.

Extracellular polymeric substances (EPS) and internal polymeric substances (IPS) were
quantified using the phenol-sulfuric acid method [22]. EPS was precipitated from the
fermentation supernatant with 95% (v/v) ethanol (4 times), then stored at a temperature
of 4 ◦C for 8 h. Crudes were obtained through centrifugation, washed three times with
75% (v/v) ethanol, and further dried at room temperature to eliminate residual ethanol.
They were subsequently dissolved in water, and their concentrations were determined.
Mycelia powder weighing 20.0 mg was suspended in 10 mL H2O at a temperature of 100 ◦C
for a duration of 3 h. The resulting supernatant was collected via centrifugation and its
volume was recorded. The same method used for extracting EPS from the supernatant was
employed for obtaining IPS.

2.4. Se Accumulation Capacity Determination

The total Se accumulated in the mycelia was measured using an inductively coupled
plasma mass spectrometer (ICP-MS; Agilent 7700, Agilent Technologies, Waldbronn, Ger-
many) [23]. The bioconcentration factor (BCF) was used to compare the Se accumulation
efficiency. The BCF was defined as the ratio of the concentration of Se accumulated in the
mycelia to that in the corresponding media.

2.5. Macroscopic and Microscopic Morphology

Macroscopic mycelial morphology was examined and imaged using a Nikon SMZ25
microscope (Tokyo, Japan). Microscopic mycelial cell ultrastructures were observed using a
HITACHI H-7650 microscope (HITACHI, Tokyo, Japan) [22].

2.6. Selenite Uptake Kinetics

G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 were both cultured with selenite
concentrations ranging from 25 to 200 mg/kg in liquid media on the 4th day. The samples
were obtained by centrifugation, cleaned three washes with deionized water, and frozen.
The total Se content was determined by ICP-MS.

2.7. X-ray Photoelectron Spectroscopy (XPS)

XPS detection was conducted using an AXIS Supra spectrometer by Kratos Analytical
Inc. (Manchester, UK), equipped with monochromatized Al Kα radiation (hv = 1486.6 eV,
150 W) as the X-ray source, and operated under a base pressure of 10-9 Torr. Survey
scan spectra were acquired with a pass energy of 160 eV and a step size of 1 eV. Narrow-
region scans were obtained with a pass energy of 40 eV and a step size of 0.1 eV. The
hybrid lens mode was employed in both cases. The examined area for XPS spectra was
set at 300 × 700 µm2. A charge neutralizer was consistently used throughout the detection
process to ensure electrical isolation from the sample bar. All spectra were calibrated using
C 1 s (284.8 eV).
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2.8. Transcriptome Profiling Analysis

Mycelia cultured with and without 200 mg/kg selenite were collected on the 4th, 5th,
6th and 8th day for transcriptome sequencing. Three biological replicates were prepared
for each experiment. RNA extraction, library construction, sequencing, and data processing
were conducted with the help of the Applied Protein Technology Company (Shanghai,
China). Differentially expressed genes (DEGs) between the two comparative samples were
identified using the DEseq2 package (1.10.1), with a p value (FDR) < 0.05, and |log2 (fold
change)| > 1 was set as the cut-off for identifying DEGs. Enrichment analysis of the DEGs
was performed using GO and KEGG databases to obtain a detailed description of the DEGs.
Principal component analysis (PCA) was used to assess differences between groups.

The samples used in this study were G. lucidum CGMCC 5.26 cultured without selenite
(C-0), G. lucidum CGMCC 5.26 cultured with 200 mg/kg selenite (C-200), G. lucidum JNUSE-
200 cultured without selenite (H-0), and G. lucidum JNUSE-200 cultured with 200 mg/kg
selenite (H-200).

2.9. Gene Expression Analysis by RT-qPCR

The Plant/Fungi Total RNA Purification Kit (Norgen Biotek Corp., Thorold, ON,
Canada) was used for RNA extraction. RNA quality and quantity were measured with a
Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA).
RNA samples were stored at −80 ◦C.

RT-qPCR was performed to confirm the results of the RNA-Seq analysis. cDNA was
synthesized from extracted total RNA using a GoTaq® 2-Step RT-qPCR kit (PROMEGA,
Madison, WI, USA). PCR reactions were carried out in the LightCycler®480 Instrument
II (Roche, Basel, Switzerland). Four transcripts were selected for validation. Transcript-
specific primers were designed using BlastPrimer +2.15.0 (Supplementary Table S1). Three
biological and technical replicates were performed for both the control and stress sam-
ples. RNS was used as the internal reference gene for normalization. Relative changes in
expression levels were calculated using the 2−∆∆CT method [24].

2.10. Statistical Analysis

Data were presented as the mean ± standard deviation (SD) from three replicates for
each assay. Statistical significance was analyzed by one-way analysis of variance (ANOVA)
using SPSS 20.0 software. Comparison with p < 0.05 was statistically significant.

3. Results and Discussion
3.1. G. lucidum JNUSE-200 Exhibited Enhanced Selenite Tolerance

Selenite tolerance is defined as the ability to survive and grow normally at high
levels of Se. The growth status of the two Ganoderma spp. was investigated during liquid
culture. During the 10-day culture of G. lucidum CGMCC 5.26 grown in 200 mg/kg selenite,
symptoms became apparent from the fifth day, as indicated by red mycelia, a pungent
odor, and declining biomass. However, G. lucidum JNUSE-200 growth was stimulated with
no signs of toxicity and displayed the same phenotype as G. lucidum JNUSE-200 grown
without selenite (Figure 1a). Therefore, G. lucidum JNUSE-200 exhibited enhanced selenite
tolerance compared with G. lucidum CGMCC 5.26.

Selenite stress adversely affected G. lucidum CGMCC 5.26 growth but positively in-
fluenced G. lucidum JNUSE-200 growth. The addition of selenite resulted in an increasing
trend in biomass for G. lucidum JNUSE-200 while causing a decreasing trend in biomass
for G. lucidum CGMCC 5.26. Specifically, G. lucidum JNUSE-200 cultured with 200 mg/kg
selenite accumulated a biomass similar to that of G. lucidum CGMCC 5.26 cultured without
selenite (Figure 1b). The maximal specific growth rate of G. lucidum JNUSE-200 mycelia
was 0.467 d−1, while the growth rate of G. lucidum CGMCC 5.26 exhibited negative values
as a result of the detrimental impact caused by high concentrations of sodium selenite
(Supplementary Figure S1). Thus, it could be concluded that G. lucidum JNUSE-200 was
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completely tolerant to, and even benefited from, 200 mg/kg selenite, while G. lucidum
CGMCC 5.26 was sensitive to and negatively affected by the same concentration of selenite.
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Figure 1. (a) The growth phenotype of G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 in liquid
culture; (b) biomass, EPS and IPS of G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200. * indicates a
significant difference at p < 0.05 between G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 cultured
without selenite; * indicates a significant difference at p < 0.05 between G. lucidum CGMCC 5.26 and
G. lucidum JNUSE-200 cultured with 200 mg/kg selenite.

As an important bioactive metabolite of G. lucidum, polysaccharides were used to
explore the effects of selenite on secondary metabolism. Selenite application affected the
polysaccharides in both G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200. In particular,
200 mg/kg selenite increased the G. lucidum JNUSE-200 extracellular polysaccharide (EPS)
and intracellular polysaccharide (IPS) yields and decreased the IPS and EPS yields in
G. lucidum CGMCC 5.26 (Figure 1b). Selenite stress adversely affects the growth and
productivity of plants and microorganisms. It is generally believed that at the same
concentration, Se can promote the growth of Se-accumulating plants but has toxic effects
on non-Se-accumulating plants. These findings indicated that the highly selenite-tolerant
G. lucidum JNUSE-200 relied on selenite to promote the growth and production of major
bioactive metabolites.
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3.2. G. lucidum JNUSE-200 Exhibited Macroscopic and Microscopic Morphological Differences

There were also significant macro-morphological differences observed between the
two strains. In the absence of selenite, G. lucidum CGMCC 5.26 formed compact mycelia
pellets, while G. lucidum JNUSE-200 exhibited feathery, flake-like and irregular growth
patterns before forming rough-edged pellets that lacked internal density or compactness
(Figure 2a). In the presence of selenite, G. lucidum CGMCC 5.26 displayed a color change
from white to orange and red, with loose and easily breakable mycelia formations. On
the other hand, G. lucidum JNUSE-200 gradually transformed from irregular sheets into
tightly packed pellets with smooth edges and dense interiors (Figure 2b). The clustering
of G. lucidum JNUSE-200 mycelia into pellets was dependent on selenite stimulation for
growth as it required selenite for this process to occur effectively at high concentrations of
selenite levels.

J. Fungi 2024, 10, x FOR PEER REVIEW 6 of 23 
 

 

lucidum CGMCC 5.26 (Figure 1b). Selenite stress adversely affects the growth and produc-
tivity of plants and microorganisms. It is generally believed that at the same concentration, 
Se can promote the growth of Se-accumulating plants but has toxic effects on non-Se-ac-
cumulating plants. These findings indicated that the highly selenite-tolerant G. lucidum 
JNUSE-200 relied on selenite to promote the growth and production of major bioactive 
metabolites. 

3.2. G. lucidum JNUSE-200 Exhibited Macroscopic and Microscopic Morphological Differences 
There were also significant macro-morphological differences observed between the 

two strains. In the absence of selenite, G. lucidum CGMCC 5.26 formed compact mycelia 
pellets, while G. lucidum JNUSE-200 exhibited feathery, flake-like and irregular growth 
patterns before forming rough-edged pellets that lacked internal density or compactness 
(Figure 2a). In the presence of selenite, G. lucidum CGMCC 5.26 displayed a color change 
from white to orange and red, with loose and easily breakable mycelia formations. On the 
other hand, G. lucidum JNUSE-200 gradually transformed from irregular sheets into 
tightly packed pellets with smooth edges and dense interiors (Figure 2b). The clustering 
of G. lucidum JNUSE-200 mycelia into pellets was dependent on selenite stimulation for 
growth as it required selenite for this process to occur effectively at high concentrations of 
selenite levels. 

 
Figure 2. The apparent forms of G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 mycelium pel-
lets (a) cultured without selenite and (b) cultured with 200 mg/kg selenite. 
Figure 2. The apparent forms of G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 mycelium pellets
(a) cultured without selenite and (b) cultured with 200 mg/kg selenite.

Moreover, there were variations in micro-morphology particularly in terms of cell walls
among the mycelial cells, which play a crucial role in pellet morphology and changes related
to assimilation of selenite by fungi cells. Transmission electron microscopy (TEM) analysis
revealed that without exposure to selenite, the cell wall thicknesses decreased over time
for G. lucidum CGMCC 5.26 from 0.089 ± 0.006 µm on the fourth day to 0.073 ± 0.006 µm
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on the eighth day; for G. lucidum JNUSE-200, they increased from 0.062 ± 0.017 µm on the
fourth day to 0.107 ± 0.019 µm on the eighth day, respectively (Figure 3).
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Morphological engineering has recently been proposed as a novel strategy for con-
structing efficient microbial cell factories to control cell shape and division patterns [25].
There were significant differences in the macroscopic mycelial morphology and micro-
scopic cell structures between G. lucidum JNUSE-200 and G. lucidum CGMCC 5.26. This
indicates that during the adaptive evolution process, G. lucidum JNUSE-200 could effec-
tively counteract negative effects associated with elevated levels of selenite by enhancing
its cell wall thickness.

3.3. Total Se Accumulated in G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200

Accumulators were classified based on the amounts of elements they accumulated or
their capacity to accumulate elements under a normal growth status [13]. These Se levels
in G. lucidum confirmed that this specie was a Se hyper-accumulator, with the maximum
Se accumulated in G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 cultured with
200 mg/kg selenite being 1398.41 mg/kg and 2290.06 mg/kg in liquid culture (Figure 4a).
Moreover, compared to G. lucidum CGMCC 5.26, G. lucidum JNUSE-200 showed a decreased
selenite uptake on the 4th–5th day.

The Se BCF values in G. lucidum JNUSE-200 mycelia increased during the liquid culture
process, reaching a maximum value of 23.01% on the eighth day; for G. lucidum CGMCC
5.26, the BCF values were under 10% (Figure 4b).
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3.4. Uptake Dynamics of Selenite in G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200

The selenite uptake rate varied between G. lucidum CGMCC 5.26 and G. lucidum
JNUSE-200. The influx of selenite into the mycelia could be accurately described by the
Michaelis–Menten equation, and linear equations were fitted to the data with regression
coefficients of 0.9728 and 0.9552, respectively (Figure 4c,d). G. lucidum CGMCC 5.26
exhibited higher Vmax and Km values compared to G. lucidum JNUSE-200, indicating a
greater capacity for selenite uptake in G. lucidum CGMCC 5.26 than in G. lucidum JNUSE-200.
The Vmax of selenite uptake decreased by 51% in G. lucidum JNUSE-200, suggesting that it
has a lower efficiency in absorbing selenite compared to G. lucidum CGMCC 5.26. G. lucidum
JNUSE-200 also demonstrated a higher affinity for selenite than G. lucidum CGMCC 5.26.
Furthermore, the substrate specificity for selenite was calculated from Vmax/Km, and G.
lucidum JNUSE-200 displayed a higher specificity for selenite than G. lucidum CGMCC 5.26.
This observation is consistent with Se-hyperaccumulating plants, which preferentially take
up Se [26].

3.5. XPS Analysis of Se in G. lucidum JNUSE-200 Mycelia

The X-ray photoelectron spectroscopy (XPS) analysis of G. lucidum JNUSE-200 mycelia
cultured without and with 200 mg/kg selenite on the eighth day is presented in Figure 5.
The control mycelia exhibited two prominent elemental peaks, namely O at 531.12 eV and
C at 283.38 eV. The C1S spectrum was fitted into three components at 286.39 (14.18%),
284.78 (39.94%) and 283.31 (45.88%) eV, corresponding to C=O, C-OH, C-H and C-C bonds
respectively. The O-1s spectrum appeared at a binding energy of 531.12 eV (100%). The
XPS spectra did not include any entries for selenium.
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Figure 5. XPS spectra of the G. lucidum JNUSE-200 mycelia (a) cultured without selenite and (b) cul-
tured with 200 mg/kg selenite. The red curve represents a high-resolution XPS full spectrum; The
black line represents the original XPS spectra of element C, O and Se; and the color line represents a
finely-tuned fitting curve of the C, O and Se.

Similarly, the XPS spectra of the cultured mycelia also exhibited two prominent
elemental peaks: O at 531.15 eV and C at 283.37 eV. The fitting analysis of the C1S spectrum
revealed three distinct components located at binding energies of 286.37 (14.70%), 284.74
(43.56%), and 283.28 (41.73%) eV, respectively. A weaker signal at 283.28 eV was attributed
to a reduction in C-H and C-C bonds, while a stronger signal at 284.74 eV indicated an
increase in C-OH bonds, suggesting that substitution by hydroxyl groups occurred. The
O-1s spectrum appeared at a binding energy of 531.15 eV (100%). In particular, a newly
formed Se3d peak centered at 54.58 eV was observed in the survey spectra corresponding
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to selenide species, demonstrating that G. lucidum JNUSE-200 actively converted selenite
(IV) into bioavailable selenides (-II) [27].

3.6. Transcriptome Analysis of G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 in Response
to Selenite

A comprehensive understanding of the molecular mechanisms underlying selenite
tolerance and accumulation is essential for fully harnessing the potential of fungi as biore-
mediation sources. Therefore, G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 were
cultured in liquid medium with 200 mg/kg selenite, while a control group was cultured
without selenite. Forty-two cDNA libraries were prepared from three replicates per selenite
culture condition and sequenced to gain insights into the transcriptome of G. lucidum and
identify key genes responsive to selenite (Supplementary Table S2). Figure 6a–d provides
an overview of gene expression changes in response to selenite exposure.
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Figure 6. DEGs in G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200: (a) C-0 vs. H-0, (b) C-200
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G. lucidum CGMCC 5.26 cultured without selenite; H-0: G. lucidum JNUSE-200 cultured without
selenite; H-200: G. lucidum JNUSE-200 cultured without selenite.

Pairwise comparison analysis was conducted between G. lucidum CGMCC 5.26 and
G. lucidum JNUSE-200 (C-0 vs. H-0 and C-200 vs. H-200), as well as between control samples
and those cultured with selenite within each strain (C-0 vs. C-200 and H-0 vs. H-200).
Under the conditions of culturing with 200 mg/kg selenite, there was a significantly lower
number of differentially expressed genes (DEGs) in G. lucidum JNUSE-200 compared to
G. lucidum CGMCC 5.26, indicating that G. lucidum CGMCC 5.26 exhibited higher sensitivity
towards elevated levels of selenite, requiring more genetic responses to mitigate its negative
impact on mycelial growth.

Principal component analysis (PCA) based on DEGs revealed distinct clustering
patterns for G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 in two-dimensional spatial
areas (Figure 6e), suggesting that these two strains displayed differences at the genetic level
during their adaptive evolution process, resulting in inconsistent growth phenotypes for
G. lucidum JNUSE-200 and enhanced tolerance towards selenite.

3.6.1. Modulation Selenite Tolerance via the Cell Wall

The cell wall is a vital extracellular structure in fungi that provides protection against
osmotic pressure and mechanical forces. As an important core component of the cell wall,
chitin content varies greatly among different species, and the chitin content of the same
species also changes with the physiological state. Chitin synthase is a key enzyme involved
in chitin synthesis [28]. Compared to G. lucidum CGMCC 5.26, G. lucidum JNUSE-200
upregulated the expression of putative chitin synthase 7, 5, 2, and 3 genes, particularly
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putative chitin synthase 5 and chitin synthase 7 genes, which may regulate selenite absorp-
tion and enhance selenite tolerance by increasing cell wall thickness. Furthermore, there
were distinct expression patterns observed for five fungal hydrophobin genes between
G. lucidum JNUSE-200 and G. lucidum CGMCC 5.26 (Supplementary Table S3). Notably,
the expression levels of two fungal hydrophobin genes, GL30893-G and GL24177-G, were
higher in G. lucidum JNUSE-200 compared to those in G. lucidum CGMCC 5.26. The ex-
pression levels of hydrophobins GL16371-G and GL15943-G were increased by selenite
treatment in G. lucidum JNUSE-200. Fungal hydrophobins coat the fungal surface and
interact with the chitinous cell wall closely related to hydrophobicity while influencing the
carbohydrate type distribution, thus protecting cell wall integrity. Fungal hydrophobins
have been reported to play a role in heat stress resistance, protecting fungi from harsh
environments [29].

Currently, no reports have been published on the correlation between morphology
and selenite tolerance. However, a few studies have reported a correlation between plant
morphology and tolerance towards environmental factors such as cold [30] and salt [31].
Therefore, it is of high practical significance to investigate novel or expanded parameters
to depict micro-morphological and physiological characteristics associated with selenite
tolerance in plants and microorganisms. This may pave new avenues for elucidating
critical mechanisms.

3.6.2. Modulation Selenite Tolerance via Membrane Channels

The regulation of transporters involved in selenite transportation is presumably re-
sponsible for Se accumulation in G. lucidum. Based on studies on Se metabolism in plants,
inorganic Se is transported to cells by sulfate and phosphate transporters [26]. There-
fore, the transcript levels of putative sulfur (S) and phosphate (P) transporter genes were
analyzed.

In the absence of selenite, the expression levels of sulfite efflux pump genes (GL25356-
G/GL19873-G) and inorganic P transporter genes (GL23411-G) in G. lucidum JNUSE-200
were significantly higher than in G. lucidum CGMCC 5.26. In the presence of selenite, the
sulfite efflux pump gene (GL19873-G), two sulfate transporter genes, and five inorganic P
transporter genes were differentially expressed in G. lucidum CGMCC 5.26 and G. lucidum
JNUSE-200; G. lucidum JNUSE-200 upregulated six transporter genes and downregulated
two transporter genes (Supplementary Table S4). Moreover, the expression of permease
genes in G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 was largely discrepant with
and without selenite. In particular, the expression of the high-affinity methionine permease
gene (GL20912-G) in G. lucidum JNUSE-200 was higher than that in G. lucidum CGMCC
5.26, regardless of the addition of selenite.

The sulfite efflux pump, which belongs to the Tellurite-resistance/Dicarboxylate
Transporter (TDT) family, binds to the cell membrane and regulates sulfite excretion [32],
and its expression is associated with selenite tolerance in Saccharomyces cerevisiae [33,34].
Met is an essential amino acid required for a variety of processes in organisms; however,
excess Met drives proteotoxicity [35]. The high-affinity methionine permease gene is
a key gene for growth and amino acid transport, particularly that of Met. The raised
expression could expel excess Met from the cell and prevent its non-specific metabolism
to SeMet, so the high-affinity methionine permease gene is important for its potential to
minimize or eliminate Met and SeMet toxicity in G. lucidum JNUSE-200. Plants take up
selenite via phosphate transporters [36], and membrane phosphate transporters are vital for
enhancing selenite tolerance in well-studied plants. Increased expression of the phosphate
transporter gene OsPT8 improves Se content in Nicotiana tabacum [37]. In Arabidopsis thaliana,
terpenoid synthase (TPS22) mediates Se tolerance through the reduction in Se absorption
and activation of metabolic detoxification, which decreases the expression of high-affinity
transporters PHT1;1, PHT1;8, and PHT1;9 [38]. Therefore, we considered that the high
expression of the sulfite efflux pump, inorganic P transporter, and high-affinity methionine
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permease genes might exert a direct influence on mediating G. lucidum JNUSE-200 selenite
tolerance under high selenite conditions.

3.6.3. Modulation Selenite Tolerance via Internal Metabolic Occurrence

Identifying the metabolic pathways directly influenced by selenite remains a major
challenge in exploring selenite tolerance and accumulation. KEGG pathway analyses
revealed that genes involved in Se compound metabolism (Supplementary Table S5),
sulfur metabolism (Supplementary Table S6), metabolism of the xenobiotics pathway
(Supplementary Tables S7–S9), and antioxidant system (Supplementary Table S10) exhibited
distinct expression patterns between G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200.

(1) Se compound metabolism

In G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 cultured without selenite, only
G. lucidum JNUSE-200 increased the attachment of selenomethionine to tRNA (Met) on
the eighth day by increasing the methionyl-tRNA synthetase (MARS) gene expression by
1.753-fold (Figure 7a).
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without selenite; H-200: G. lucidum JNUSE-200 cultured without selenite.

In G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200 cultured with 200 mg/kg selenite
on the fifth day, G. lucidum JNUSE-200 prominently down-regulated the gene expression
levels of cystathionine gamma-lyase 1,2 and 3 (CTH 1,2,3), thioredoxin reductase (NADPH)
(trxB), and 3′-phosphoadenosine 5′-phosphosulfate synthase (sat) by 7.614-, 2.239-, 1.215-,
5.948-, and 3.991-fold, respectively, and upregulated homocysteine methyltransferase (MET)
and cystathionine gamma-synthase (CGS) by 1.308- and 1.152-fold, respectively (Figure 7b).

In comparison with G. lucidum CGMCC 5.26 cultured without selenite, 200 mg/kg of
selenite-cultured G. lucidum CGMCC 5.26 showed normal growth on the fourth day, and
only MARS gene expression was upregulated; on the fifth day (abnormal growth), five
upregulated genes and one downregulated gene in the Se compound metabolism pathway
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were identified. For G. lucidum JNUSE-200, mycelia grew normally under the two culture
conditions throughout the process, and no DEGs in the Se compound metabolism pathway
were identified for G. lucidum JNUSE-200.

Selenocysteine (SeCys) and selenomethionine (SeMet) can nonspecifically replace
cysteine (Cys) and methionine (Met) in proteins, leading to protein dysfunction and tox-
icity [39]. Non-specific accumulation of SeMet is found to be less adverse than that of
SeCys [40]. Puccinellia distans increases Se by decreasing the expression of methionyl-
tRNA synthetase and cystathionine gamma-lyase to inhibit the nonspecific incorporation of
Se into proteins [17]. The formation of organic MeSeCys and volatile Se species contributes
to Se tolerance and hyperaccumulation in Cardamine enshiensis [41], and our results con-
firmed that selenation is an important mechanism for Se detoxification [42]. In the condition
of selenite culture, compared to G. lucidum CGMCC 5.26, G. lucidum JNUSE-200 increased
CGS and MET gene expression, enhancing the transformation of SeCys to SeMet, and
G. lucidum JNUSE-200 decreased the gene expression of CTH 1,2,3 and trxB, maintaining
methyl-selenocysteine (MeSeCys) and methyl-selenomethionine (MeSeMet) in the form of
a methyl compound, consequently decreasing the amount of available SeCys and SeMet for
incorporation into proteins [43]. These gene expression changes indicated that 200 mg/kg
selenite had no negative effects on G. lucidum JNUSE-200, and it was not necessary to acti-
vate the expression of these genes to overcome adversity. G. lucidum CGMCC 5.26 needed
to activate the high expression of these genes to transform selenite to a lower valence state
of Se, reducing its toxic effect (Supplementary Figure S2) [44].

(2) Sulfur metabolism

As shown in Figure 8, the transcript levels of S metabolism pathway genes differed
greatly between the two G. lucidum species. Notably, the application of selenite affected
S metabolism in G. lucidum CGMCC 5.26, whereas for G. lucidum JNUSE-200, only the
transcript levels of CysI (sulfite reductase (NADPH) hemoprotein subunit) and CysJ (sulfite
reductase flavoprotein subunit) genes were downregulated by selenite.

Compared to G. lucidum CGMCC 5.26 cultured without selenite, G. lucidum JNUSE-200
downregulated MET17 (O-acetylhomoserine/O-acetylserine sulfhydrylase) expression at
the 5th–6th day by 1.639- and 1.016-fold, respectively, while CysI, CysJ, and CysK (cysteine
synthase 1) genes were downregulated much more significantly, with Log2 (fold change)
values of 1.639, 1.744 and 1.258 on the eighth day.

In comparison with G. lucidum CGMCC 5.26 cultured with 200 mg/kg selenite, G. lu-
cidum JNUSE-200 downregulated the expression of sat, CysC (adenylyl-sulfate kinase),
CysQ (3′(2′), 5′-bisphosphate nucleotidase), CysH (phosphoadenosine phosphosulfate
reductase), metB (cystathionine gamma-synthase), CysJ, CysK1 and metX (homoserine
O-succinyltransferase/O-acetyltransferase) genes, and upregulated MET17 and CysK2
expression (Supplementary Figure S3).

One reason for Se toxicity in plants is its interference with sulfur (S) metabolism,
leading to the formation of Se analogs in S-containing organic compounds. The incor-
poration of Se into proteins results in altered protein structures and ultimately leads to
metabolic abnormalities. Se hyperaccumulators can tolerate high levels of Se by either
preventing the incorporation of Se into proteins or enhancing the repair capabilities of
incorporated proteins [12,45,46]. Addressing the interactions between Se and S is crucial for
understanding Se toxicity [47]. In the hyperaccumulator Stanleya pinnata, selenate uptake
was less affected by high-S pretreatment compared to non-hyperaccumulators Stanleya
elata and Brassica juncea [48]. Active O-acetylserine-(thiol) lyases A and B degrade l-Cys
and l-SeCys while conferring improved resistance against Se in Arabidopsis [49]. CpNifS
catalyzes the conversion of both Cys into alanine and elemental S, as well as converting
SeCys into alanine and elemental Se; increased expression of AtCpNifS enhances tolerance
towards and accumulation of Se in Arabidopsis [50]. These results demonstrated that the S
metabolism pathway was activated in large quantities only when selenite caused growth
inhibition and toxicity to mycelia. Sulfite reductases CysJ and CysI catalyze the reduc-
tion of sulfite/selenite to sulfide/selenide, whereas CysK catalyzes the reduction from
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sulfide/selenide to Cys/SeCys. Finally, toxic selenite is reduced to selenide by sulfite re-
ductase. However, regardless of the addition of selenite, differences were observed in gene
expression patterns for CysJ and CysI: G. lucidum JNUSE-200 showed decreased expression
with selenite culture while G. lucidum CGMCC 5.26 exhibited increased expression with
selenite culture. These findings indicated that enhanced resistance against selenite mainly
depend on different gene expression patterns for CysJ and CysI, which regulate synthesis
pathways for both Cys and SeCys, thereby regulating their non-specific incorporation
into proteins.
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p < 0.05. (a) C-0 vs. H-0, (b) C-200 vs. H-200. Note: C-0: G. lucidum CGMCC 5.26 cultured without
selenite; C-200: G. lucidum CGMCC 5.26 cultured without selenite; H-0: G. lucidum JNUSE-200
cultured without selenite; H-200: G. lucidum JNUSE-200 cultured without selenite.

(3) Metabolism of xenobiotics

To cope with environmental stress and regulate high selenite levels, various gene
families are involved in sensing and responding to such stress, including cytochrome
P450 (CYP450), glutathione S transferase (GSTs), and ATP-binding cassette (ABC) trans-
porter gene families. These gene families play a role in modifying, binding, and secreting
exogenous substances [51–53]. The expression of CYP450, GSTs, and ABC transporter
superfamily genes was specifically induced by selenite, indicating their involvement in
abiotic stress resistance in G. lucidum (Supplementary Tables S7–S9).

In the comparison of gene expression between G. lucidum CGMCC 5.26 and G. lucidum
JNUSE-200, 162 CYP450 genes, 28 GSTs genes, and 32 ABC transporter genes were identified
differently. A total of 56 CYP450 genes, 19 GSTs, and 8 ABC transporter genes were not
induced differently by selenite in G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200; 131
CYP450 genes, 22 GSTs genes, and 23 ABC transporter genes were induced differently by
selenite in G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200.

For G. lucidum CGMCC 5.26, the expression of 121 CYP450 genes, 23 GSTs genes,
and 25 ABC transporter genes was found to differ with selenite addition, whereas for
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G. lucidum JNUSE-200 alone, only 41 CYP450 genes, 6 GSTs genes, and 9 ABC transporter
genes were found to be altered with selenite addition. The metabolism of xenobiotic-
related genes activated by G. lucidum JNUSE-200 was significantly lower than that of the
original G. lucidum CGMCC 5.26, indicating that 200 mg/kg of selenite had a lower effect
on G. lucidum JNUSE-200 than on G. lucidum CGMCC 5.26.

(4) Antioxidant defense system

The transcript of genes encoding antioxidant enzymes exhibited differential expression
in G. lucidum CGMCC 5.26 (Supplementary Table S10). Elevated concentrations of selenite
exerted a toxic effect on G. lucidum CGMCC 5.26, leading to the significant upregulation
of antioxidant system genes, including manganese superoxide dismutase/superoxide dis-
mutase/glutathione peroxidase (GPX)/ascorbate peroxidase (APX)/peroxin 7/peroxin
10, except for manganese peroxidase, which was downregulated by selenite exposure.
Conversely, G. lucidum JNUSE-200 did not experience any negative impact or oxidative
stress under the same concentration of selenite treatment, with no discernible alteration
in the expression patterns of these enzyme-related genes observed, thus indicating that
G. lucidum JNUSE-200 could fully tolerate this high selenite concentration without compro-
mising its physiological state. Consequently, APX gene expression was found to be higher
in G. lucidum JNUSE-200 compared to G. lucidum CGMCC 5.26 cultured without selenite
and remained consistently elevated during the growth process, suggesting that adaptive
evolution has endowed G. lucidum JNUSE-200 with enhanced antioxidant capacity. It is
crucial for microorganisms to maintain a delicate balance between their antioxidant defense
system and environmental stress. Defense-related genes were constitutively upregulated in
Se hyperaccumulator plants; however, their direct mechanism of hyperaccumulation needs
in-depth study [17].

3.6.4. Transcription Factors

Transcription factors (TFs) play a crucial role in regulating the expression of multiple
genes involved in the stress response mechanism, enabling plants and microorganisms to
tolerate adversity and adapt to abiotic stress. Specifically, WRKY47, ERF96 and RAP2.6
have been found to be vital for plant response to Se stress in Arabidopsis [39,54,55]. The
transcriptome data revealed 33 DEGs belonging to 15 TF families, including zf-C2H2, zf-
C5HC2, zf-GRF, zf-NF-X1, HLH, GATA, bZIP_2, TEA, Fork_head, Homeobox, HSF_DNA-
bind, CBFB_NFYA, SART-1, SRF-TF, and SGT1 (Supplementary Table S11). This significant
enrichment of TFs highlighted their essential role in the evolution of selenite resistance.

Among these 15 TFs, zf-C2H2, zf-C5HC2, GATA, bZIP_2, TEA, Fork_head, Homeobox,
and HSF_DNA-bind showed higher expressions in G. lucidum JNUSE-200 compared to
G. lucidum CGMCC 5.26 grown without selenite; only the expression of one, HLH, was
lower in G. lucidum JNUSE-200 than G. lucidum CGMCC 5.26. For both G. lucidum JNUSE-
200 and G. lucidum CGMCC 5.26 grown with selenite, the expression levels of 25 TF genes
varied remarkably: unigenes homologous to zf-C2H2, zf-C5HC2, GATA, TEA, Fork_head,
and homeobox exhibited higher expression levels in G. lucidum JNUSE-200. These TFs
might regulate the expression of key genes and contribute to selenite tolerance.

3.7. Correlation Coefficients: Transcription Factor–Key Gene–Se Bioaccmulation Capacity

Based on the aforementioned analysis, we chose the inorganic P transporter, sulfite
efflux pump, CysJ, CysI, CysK, high-affinity methionine permease, fungal hydrophobin,
putative chitin synthase 5, and APX as key target genes, and co-expression correlation
coefficients with 33 TFs were calculated. Subsequently, five TFs that might regulate the five
target genes were screened (Supplementary Table S12).

Further correlation coefficient analysis was conducted based on key genes and Se accu-
mulation ability. The inorganic P transporter (GL23411-G), sulfite efflux pump (GL19873-G),
CysI (GL18754-G), and high-affinity methionine permease (GL20912-G) were positively
correlated with the Se accumulation capacity of G. lucidum JNUSE-200 mycelia, with R
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square values of 0.8246, 0.8287, 0.8279, and 0.9811, respectively (Figure 9). These four
crucial genes may play a regulatory role in selenite tolerance in G. lucidum JNUSE-200.
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3.8. RT-qPCR Verification of Differential Expression Genes

The expression patterns of the DEGs in our transcriptome data were validated by
comparing the relative expression values of four key genes in G. lucidum JNUSE-200 with
those in G. lucidum CGMCC 5.26 under two culture conditions. Consistent gene expression
was observed for the sulfite efflux pump (GL19873-G), inorganic phosphate transporter
(GL23411-G), high-affinity methionine permease (GL20912-G), and CysI (GL18754-G) be-
tween RT-qPCR and RNA-Seq data under both culture conditions, as shown in Supplemen-
tary Figure S4. These findings further support the reliability of our RNA-Seq data.

3.9. Mechanism of Enhanced Selenite Tolerance in G. lucidum JNUSE-200

Selenite stress has a detrimental impact on the growth and productivity of plants and
microorganisms. It is widely accepted that, at equivalent concentrations, Se can stimulate



J. Fungi 2024, 10, 415 17 of 22

the growth of Se-accumulating species while exerting toxic effects on non-Se-accumulating
species. The primary mechanisms underlying Se toxicity in plants have been extensively
investigated and summarized, including the competition between Se and S in both primary
and secondary metabolism, incorporation of SeCys and SeMet into functional proteins,
as well as metabolic disturbances and disruption of cell structure induced by oxidative
stress [49]. Nature harbors several plant species with tolerance to selenite, such as A.
thaliana, S. pinnata, and Cardamine violifolia [16,50,56]. Detailed mechanisms conferring
selenite tolerance in well-studied plants are summarized in Table 1.

Table 1. Summary of Se tolerance and accumulation mechanism.

Plant Target Gene Mechanism Reference

Arabidopsis

Transporter gene Sultr1;2 mutation conferred Se tolerance [57]

Metabolism related gene

O-acetylserine-(thiol) lyase A and B degrade L-Cys
and L-SeCys and confer improved resistance [49]

APR2 mutant exhibited decreased selenate
tolerance through disruption glutathione
biosynthesis

[58]

Increased AtCpNifS expression enhanced selenite
tolerance [50]

Loss of function of terpenoid synthase (TPS22)
enhanced Se tolerance [38]

Antioxidant gene Loss of function of ascorbate peroxidase (APX1)
enhanced selenite tolerance [59]

Signaling pathway gene Ethylene and jasmonic acid signaling regulated
selenite resistance [60]

Transcription factor gene

Gain- and loss-of-function mutations in WRKY47
enhanced the sensitivity to Se stress [54]

Increased ERF96 expression enhanced Se tolerance [55]

Increased RAP2.6 expression improved resistance
to Se [39]

Metabolites Glutathione [61]

Stanleya pinnata

Metabolism related gene
The high ATP sulfurylase 2 activity in the cytosol
and concomitant reduced ATPS activity in the
plastids diverted Se fluxes

[56]

Metabolism related gene

Up-regulated JA, SA and ethylene-mediated
defense systems, elevated expression of genes in
sulphate/selenate uptake and assimilation or in
antioxidant activity

[13]

Antioxidant gene Increased antioxidants and up-regulated sulfur
assimilation [12]

Cardamine violifolia

Metabolism related gene The downregulation of cysteine-rich kinases and
calcium proteins enhanced Se tolerance [62]

Metabolites
Flavonoid, glutathione, and lignin [15]

Selenolanthionine [16]

Arachis hypogaea L. Antioxidant gene Activating the antioxidant enzymes and mediating
the ascorbate-glutathione cycle [63]

Nicotiana tabacum Transporter gene Increased Pi transporter OsPT8 gene expression
improved Se content [37]

Rice ZH11 Metabolism related gene
Increased selenocysteine lyase and selenocysteine
methyltransferase gene expressions enhanced
selenate and selenite tolerance

[64]
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In this study, G. lucidum JNUSE-200 exhibited a triple defense mechanism during
adaptive evolution (Figure 10). The first line of defense involves dispersed mycelial mor-
phology and thickened cell walls. The second line of defense consists of three crucial
cell membrane channels regulating selenite absorption. Lastly, the internal mechanism
difference encompasses metabolic pathway shunting along with synergistically enhanced
antioxidant mechanisms. Understanding the mechanisms responsible for selenite tolerance
and identifying heritable properties are pivotal for enhancing the viability of improved
sources for Se bioremediation purposes—a matter greatly significant for developing effec-
tive environmental treatments against Se pollution.
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3.10. Implication

The concentrations of selenium in soils exhibit wide variations globally, ranging from
0 to 100 µg/g, with certain regions even reaching levels as high as 1200 µg/g. Excessive
intake of Se can have detrimental effects on human health, emphasizing the significance
of mitigating Se pollution in recent decades. Hyperaccumulating plants such as Allium
cepa, B. juncea, and S. pinnata have been extensively utilized for environmental remediation
of Se [2]. Mushrooms also possess remarkable capacity to accumulate Se due to their
tolerance capabilities and serve as significant bioremediation resources for addressing this
concern. In this study, G. lucidum JNUSE-200 was obtained through adaptive evolution
from G. lucidum CGMCC 5.26, exhibiting enhanced selenite tolerance. Physiological and
molecular responses to high levels of selenite were compared between the two strains of
G. lucidum to elucidate the mechanism underlying their tolerance. These findings contribute
to a better understanding of fungal Se tolerance and accumulation, provide theoretical
guidance for breeding varieties that accumulate Se, and offer potential applications in
bioremediation efforts targeting Se contamination.

4. Conclusions

Our study represents the first comprehensive analysis of mycelial physiological and
transcriptomic changes in two strains of G. lucidum with varying capacities for selenite
tolerance. G. lucidum JNUSE-200 has developed a triple defense mechanism to protect itself
against high levels of selenite during adaptive evolution. The dispersion of mycelia and
thickening of cell walls contribute to enhanced selenite tolerance in G. lucidum JNUSE-200.
Furthermore, we have identified three membrane channel genes, including an Inorganic P
transporter, a sulfite efflux pump, and high-affinity methionine permease genes, which play
a crucial role in reducing selenite uptake and improving tolerance. Differences in internal
mechanisms, particularly related to Se metabolism and sulfur metabolism, significantly
influence the diversion of selenite to prevent non-specific incorporation of SeCys and SeMet
into protein synthesis as a means to mitigate Se toxicity. This study provides novel insights
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into the molecular responses associated with selenite tolerance and accumulation in fungi,
offering theoretical guidance for breeding and cultivating varieties that accumulate Se
while also facilitating the application of fungal-mediated transformations for efficient, eco-
friendly, and cost-effective methods for the remediation of Se-contaminated soil, sediments,
and wastewater.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/jof10060415/s1: Figure S1: The nonlinear curve fit of growth
curve related to Se in both G.lucidum CGMCC5.26 and G.lucidum JNUSE-200; Figure S2: DEGs of the
Se-compound metabolism pathway in C-200-5d vs. H-200-5d; Figure S3: DEGs of the S metabolism
pathway in C-200-5d vs. H-200-5d; Figure S4: RT-qPCR of 4 transcripts. The data represent the mean
± SD values of three replicates (t-test). The fold change is denoted as the ratio of the transcription
level in the G. lucidum JNUSE-200 to that in G. lucidum CGMCC 5.26 with the same culture condition.
Table S1: Primers used in this study; Table S2: Overview of raw and clean reads in two G. lucidum
exposed to 0 or 200 mg/kg selenite; Table S3: DEGs related to mycelia cell wall; Table S4: DEGs
related to membrane channels in G. lucidum CGMCC 5.26 and G. lucidum JNUSE-200; Table S5: DEGs
in Se compound metabolism pathway; Table S6: DEGs in sulfur metabolism pathway; Table S7: DEGs
of CYPs in G. lucidum; Table S8: DEGs of GSTs in G. lucidum; Table S9: DEGs of ABC transporters in G.
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transcription factors.
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