

Article

Morphological and Phylogenetic Analyses Reveal Three New Species of Entomopathogenic Fungi Belonging to Clavicipitaceae (Hypocreales, Ascomycota)

Zhi-Qin Wang ^{1,2,†}^(b), Jin-Mei Ma ^{1,2,†}, Zhi-Li Yang ^{1,2}, Jing Zhao ^{1,2}^(b), Zhi-Yong Yu ³, Jian-Hong Li ³ and Hong Yu ^{1,2,*}^(b)

- ¹ Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; w18314560773@163.com (Z.-Q.W.); 12022230164@mail.ynu.edu.cn (J.-M.M.); 18287972774@163.com (Z.-L.Y.); zhaojing@mail.ynu.edu.cn (J.Z.)
- ² The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
- ³ Yunnan Jinping Fenshuiling National Nature Reserve, Honghe 661500, China; ynfsljp@163.com (Z.-Y.Y.); 15808802076@163.com (J.-H.L.)
- * Correspondence: hongyu@ynu.edu.cn or herbfish@163.com
- [†] These authors contributed equally to this work.

Abstract: This study aims to report three new species of *Conoideocrella* and *Moelleriella* from Yunnan Province, Southwestern China. Species of *Conoideocrella* and *Moelleriella* parasitize scale insects (Coccidae and Lecaniidae, Hemiptera) and whiteflies (Aleyrodidae, Hemiptera). Based on the phylogenetic analyses of the three-gene nrLSU, *tef-1a*, and *rpb1*, it showed one new record species (*Conoideocrella tenuis*) and one new species (*Conoideocrella fenshuilingensis* sp. nov.) in the genus *Conoideocrella*, and two new species, i.e., *Moelleriella longzhuensis* sp. nov. and *Moelleriella jinuoana* sp. nov. in the genus *Moelleriella*. The three new species were each clustered into separate clades that distinguished themselves from one another. All of them were distinguishable from their allied species based on their morphology. Morphological descriptions, illustrations, and comparisons of the allied taxa of the four species are provided in the present paper. In addition, calculations of intraspecific and interspecific genetic distances were performed for *Moelleriella* and *Conoideocrella*.

Keywords: Moelleriella; Conoideocrella; phylogenetic analyses; morphology; new taxa

1. Introduction

In the family Clavicipitaceae, there are some genera that have been found to parasitize scale insects or whiteflies, such as *Aschersonia* Mont., *Dussiella* Pat., *Helicocollum* Luangsaard, Mongkols., Noisrip. & Thanak, *Hyperdermium* J.F. White, R.F. Sullivan, Bills & Hywel-Jones, *Hypocrella* Sacc., *Moelleriella* Bres., *Orbiocrella* D. Johnson, G.H. Sung, Hywel-Jones & Spatafora, *Regiocrella* Chaverri & K.T. Hodge, and *Samuelsia* P. Chaverri & K.T. Hodge [1–5]. Among them, *Aschersonia*, *Hypocrella*, and *Moelleriella* are relatively old genera and have more species. A taxonomic revision was undertaken by Chaverri et al. (2008) for the species formerly belonging to *Hypocrella* Sacc. s. l. (anamorph *Aschersonia* Mont. s. l.). They used three-gene phylogenetic analyses and morphological characters to classify *Hypocrella* Sacc. s. l. into *Hypocrella* s. str. (anamorph *Aschersonia*), *Moelleriella* (anamorph aschersonia-like), and *Samuelsia* (anamorph aschersonia-like) [3]. *Moelleriella* was distinguished from *Hypocrella* s. str. and *Samuelsia* by the fact that their ascospores can be disarticulated at the septa within the ascus, whereas those of the latter two cannot [3].

The genus *Moelleriella* was erected by Bresadola in 1896 to accommodate the type species *M. sulphurea*, which is currently regarded as a synonym of *M. phyllogena* (Mont.) P. Chaverri & K.T. Hodge (basionym *Hypocrella phyllogena* (Mont.) Speg.) [3]. There are currently 65 species in this genus, all of which have brightly colored stromata; obpyriform to

Citation: Wang, Z.-Q.; Ma, J.-M.; Yang, Z.-L.; Zhao, J.; Yu, Z.-Y.; Li, J.-H.; Yu, H. Morphological and Phylogenetic Analyses Reveal Three New Species of Entomopathogenic Fungi Belonging to Clavicipitaceae (Hypocreales, Ascomycota). *J. Fungi* **2024**, *10*, 423. https://doi.org/10.3390/jof10060423

Academic Editor: Alberto Miguel Stchigel

Received: 24 January 2024 Revised: 11 June 2024 Accepted: 12 June 2024 Published: 14 June 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). subglobose perithecia; cylindrical asci; filiform multiseptate ascospores that disarticulate at the septa inside the ascus; and aschersonia-like anamorphs with fusoid conidia (according to the Index Fungorum, which is available online at http://www.indexfungorum.org; accessed on 11 December 2023 [6]). Among them, there are 30 species from the New World and 35 species from the Old World (according to the Index Fungorum, which is available online at http://www.indexfungorum.org; accessed on 29 August 2023 [3,6–15]). In China, four new species have been reported. Two species were reported in Yunnan Province, and another two were reported in Fujian Province [11,13–15]. In addition to these new published species, *Moelleriella* has also been distributed in other provinces in China. However, previous studies have primarily focused on morphology, with few molecular data available in public databases [16–19].

Torrubiella Boud. species infect a wide range of arthropods, mainly spiders and scale insects [4,20]. The genus currently has about 80 records in the index (according to the Index Fungorum, which is available online at http://www.indexfungorum.org; accessed on 11 December 2023). However, the fact that the previous studies identified species on the basis of their morphological characteristics resulted in a lack of molecular data for most species of Torrubiella. With the advent of molecular technology and the application of multigene phylogenetic analyses, species identification methods based on phylogenetic analyses combined with morphological characteristics have gradually gained recognition. Johnson et al. (2009) found that previous phylogenetic studies had shown that the genus Torrubiella was not monophyletic, but none of them had attempted to resolve this [4,21,22]. Subsequently, a multigene phylogenetic tree covering 10 species of *Torrubiella* was constructed by Johnson et al. to determine the phylogenetic position of these species [4]. Phylogenetic analyses showed that these species were distributed in Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae [4]. Torrubiella tenuis (Petch) D. Johnson, G.-H. Sung, Hywel-Jones & Spatafora and Torrubiella luteorostrata (Zimm.) D. Johnson, G.H. Sung, Hywel-Jones & Spatafora form a statistically well-supported clade in Clavicipitaceae. Therefore, a new genus, Conoideocrella, was proposed by Johnson et al. to accommodate the species T. tenuis and T. luteorostrata, and T. luteorostrata was designated as the type species [4]. The genus Conoideocrella was named thus for its perithecium with a conical shape that is similar to that of *Torrubiella* [4]. It currently contains three species, all of which have elongate, conical perithecia and planar stromata [23,24]. Conoideocrella luteorostrata was shown to be distributed in Seychelles, Sri Lanka, Java, Samoa, New Zealand, the far Eastern U.S.S.R., and Thailand [23,25]. Conoideocrella tenuis was known to be distributed in Sri Lanka and Thailand, and C. krungchingensis was known only to be in Thailand [23–25]. All three species have been reported to be able to parasitize scale insects [23,24].

Entomopathogenic fungi are widely distributed in China, and Yunnan Province is one of the richest provinces in China in terms of biodiversity. In this study, we collected some specimens with macro-morphological similarities to *Moelleriella* and *Conoideocrella* during an investigation of entomopathogenic fungi in Yunnan. A three-gene phylogenetic analysis revealed two new species of *Moelleriella*, one new species, and one known species of *Conoideocrella*. *Conoideocrella tenuis* is a recently newly recorded species in China.

2. Materials and Methods

2.1. Fungal Collection and Isolation

The specimens were collected from Bampo village, Jinuo Township, Jinghong City, and the Fenshuiling National Nature Reserve, Jinping County, Yunnan Province, China. In fields, whole leaves with stromata were collected, and some bark from branches with stromata was chipped off with a pocket knife. Then they were placed in sterilized plastic boxes and brought to the laboratory. The detailed procedure to obtain axenic cultures in this study was described in Yang et al. [15]. After the isolation of pure cultures, they were transplanted to PDA slant and grown for 10 days before being stored at 4 °C. The specimens were deposited in the Yunnan Herbal Herbarium (YHH) of Yunnan University,

China. The strains were deposited at the Yunnan Fungal Culture Collection (YFCC) of Yunnan University, China.

2.2. Morphological Observations

Because of the small size of the stromata, a dissecting microscope (SZ61, Olympus Corporation, Tokyo, Japan) was used to observe their macro-morphological characteristics and measure them. The stromata were sectioned with a thickness of 30~40 µm for observations of their micro-morphological features using a HM525NX freezing microtome (Thermo Fisher Scientific, Waltham, MA, USA). The sections were placed on slides dripping with water or lactic acid in cotton blue. The observations were made and measurements were taken using a light microscope (Olympus BX53, Olympus Corporation, Tokyo, Japan). In order to observe and record the color and texture of the colonies, several new plates were transferred from the purified colonies and incubated in a 25 °C incubator for three weeks. The growth rate of colonies was used according to the method of Liu and Hodge [26] and was categorized as follows: fast growing (30–35 mm in diameter), moderately growing (20–30 mm in diameter), and slow growing (<20 mm in diameter).

2.3. DNA Extraction, PCR, and Sequencing

The specimens were washed with 75% alcohol, and the genomic DNA was extracted using the Genomic DNA Purification Kit (Qiagen GmbH, Hilden, Germany). The DNA of the cultures was extracted using cetyltrimethyl ammonium bromide (CTAB) following the procedure described by Liu et al. [26]. Three genes (nrLSU, *tef-1* α , and *rpb1*) were sequenced, and the following primer pairs were used for PCR amplification. LR5 (5'-ATCCTGAGGGAAACTTC-3') and LR0R (5'-GTACCCGCTGAACTTAAGC-3') were used to amplify the nuclear ribosomal large subunit (nrLSU) [27,28]. EF1 α -EF (5'-GCTCCYGGHCAYCGTGAYTTYAT-3') and EF1 α -ER (5'-ATGACACCRACRGCRACRGTYTG-3') were used to amplify the translation elongation factor 1 α (*tef-1\alpha*) [22,29]. RPB1-5'F (5'-CAYCCWGGYTTYATCAAGAA-3') and RPB1-5'R (5'-CCNGCDATNTCRTTRTCCATRTA-3') were used to amplify the largest subunits of RNA polymerase II (*rpb1*) [22,29]. The polymerase chain reaction (PCR) matrix and the PCR reactions were performed as described by Wang et al. [30]. A BIORAD T100TM thermal cycler (BIO-RAD Laboratories, Hercules, CA, USA) was used to perform amplification reactions. Then the PCR products were sequenced by the Beijing Genomics Institute (Chongqing, China).

2.4. Phylogenetic Analyses

Datasets of three genes (nrLSU, *tef-1* α , and *rpb1*) used to construct a phylogenetic tree were downloaded from GenBank and combined with the newly generated data in this study. The sequences downloaded were based on previous studies by Mongkolsamrit et al. [24] and Yang et al. [15]. Names, voucher information, and corresponding GenBank accession numbers of the taxa are listed in Table 1. Sequences were aligned, and poorly aligned regions were removed with MEGA v.6.06 [31]. The aligned three-gene sequences were concatenated using Phylosuite v1.2.2 [32]. Phylogenetic analyses were performed using BI and ML methods [33,34]. A maximum likelihood (ML) tree was created using IQ-tree v.2.1.3, and a Bayesian inference (BI) tree was created using MrBayes v.3.2.2 [35,36]. Modelfinder was used to select the best-fitting likelihood model [37]. The optimal model for the ML analyses was the TIM2+F+I+G4 model, with 5000 rapid bootstraps in a single run [38]. The optimal model for the BI analysis was the GTR+F+I+G4 model. The four Markov chain Monte Carlo simulations ran for 2 million generations from a random start tree with a sampling frequency of 100 generations. Twenty-five percent of initial sampled data were discarded as burn-in. Phylogenetic trees were viewed and edited in Figtree v.1.4.3 and visualized in Adobe Illustrator CS6. The interspecies and intraspecies genetic distances for the three genes (tef- 1α , rpb1, and nrLSU) in Moelleriella and Conoideocrella were calculated using MEGAE v.6.06. Genetic distances were calculated by selecting the maximum composite likelihood model.

Species	Strain	Host	Origin	GenBar	1k Accession N	umbers
Conoideocrella	T		China, Yunnan, Jinning County, the Fenshuiling	nrLSU	tef-1a	rpb1
fenshuilingensis Conoideocrella	YHH CFFSL2310002 ¹	Scale insects	National Nature Reserve China, Yunnan, Jinping County, the Fenshuiling	PP178583	PP177168	PP177158
fenshuilingensis Conoideocrella		Scale insects	National Nature Reserve Thailand, Nakhon Si Thammarat Province, Khao Luang	FF1/0504	FF1//109	FF1//139
krungchingensis Conoideocrella	BCC 36100 ¹	Scale insect	National Park Thailand Nakhon Si Thammarat Province, Khao Luang	KJ435080	KJ435097	-
krungchingensis	BCC 36101	Scale insect	National Park	KJ435081	KJ435098	-
krungchingensis	BCC 53666	Scale insect	National Park	KJ435070	KJ435099	-
Conoideocrella krungchingensis	BCC 53667	Scale insect	Thailand, Nakhon Si Thammarat Province, Khao Luang National Park	KJ435071	KJ435100	-
Conoideocrella luteorostrata	NHJ 11343	Scale insect	-	EF468850	-	EF468906
Conoideocrella luteorostrata	NHJ 12516	Scale insect	-	EF468849	EF468800	EF468905
Conoideocrella tenuis Conoideocrella tenuis	NHJ 6293 NHJ 6791	Scale insect Scale insect	-	EU369044 EU369046	EU369029 EU369028	EU369068 EU369069
Conoideocrella tenuis	YHH CTPW23089310	Scale insects	China, Yunnan, Jinping County, the Fenshuiling National Nature Reserve	PP178581	PP177166	PP177156
Conoideocrella tenuis	YFCC CTBP22109315	Scale insects	China, Yunnan, Jinping County, the Fenshuiling National Nature Reserve	PP178582	PP177167	PP177157
Hypocrella calendulina	BCC 20309 ^T	Scale insect nymph	Thailand, Ranong, Khlong Naka study trail, Khlong Naka Wildlife Sanctuary Polizie, Data La Par, Son Joso da Labiniamonas	GU552154	-	-
Hypocrella citrina	P.C. 597	Scale insects or whiteflies	Madidi National Park, Chalalan, trail to mountain along Eslabon River	AY986905	AY986930	-
Hypocrella cf discoidea Hypocrella cf discoidea	193-901D 195-901D	-	Côte D'Ivoire Côte D'Ivoire	EU392567 EU392568	EU392646 EU392647	EU392700 EU392701
Hypocrella discoidea	BCC 2097	- Scale insects or	Thailand	-	AY986945	DQ000346
Hypocrella disciformis	P.C. 655	whiteflies Scale insects or	Honduras, Dpto. Copan, Copan Ruinas, nature trail	EU392560	EU392643	EU392697
Hypocrella disciformis	P.C. 676	whiteflies	Honduras, Dpto. Copan, Copan Kuinas, nature trail Mexico. Veracruz, Catemaco, town of Eiido Lopez-Mateo.	EU392566	EU392645	EU392699
Hypocrella hirsuta	P.C. 436.2	Scale insects or whiteflies	project "Cielo, Tierra y Selva", trail to the mountain	AY986922	AY986949	DQ000350
Hypocrella hirsuta	P.C. 543 ^T	Scale insects or whiteflies Scale insects or	Bolivia, Dpto. La Paz, San Jose de Uchipiamonas, Madidi National Park, Chalalan, near Chalalan lodge Honduras, Drich Atlantida, Tela Lancetila Natural	EU392569	EU392648	EU392702
Hypocrella viridans	P.C. 635	whiteflies	Honduras, Doto Copan Santa Rita Rio Amarillo Peña	EU392572	EU392651	EU392705
Hypocrella viridans	P.C. 670	whiteflies Soil under	Quemada Reserve	EU392574	EU392652	EU392706
Metacorayceps chlamydosporia Metacorayceps	JCM18603	Hibiscus rosa-sinensis	Japan, Tokyo, Hachijo Island	-	AB758464	AB758667
chlamydosporia	JCM18608	Soil	Japan, Hokkaido, Sapporo	-	AB758481	AB758684
Metapochonia bulbillosa	FKI-4395	son under Q. serrata	Japan, Nagano	AB709809	AB758460	AB758663
Metapochonia bulbillosa	CBS 145.70 T	abies	Denmark	AF339542	EF468796	EF468902
Metarhizium anisopliae	BUM_1900	Soil	China, Yunnan, Gaoligong Mountains	DQ518775 MH143820	DQ522352 MH143854	MH143869
Metarhizium baoshanense Metarhizium baoshanense	CCTCCM 2016589 ¹ BUM63.4	Soil Soil	China, Yunnan, Baoshan City, Taibao mountain China, Yunnan, Baoshan City, Taibao mountain	KY264174 KY264175	KY264169 KY264170	KY264180 KY264181
Metarhizium flavoviride Metarhizium flavoviride	CBS 125.65 CBS 700.74	-	-	MT078854 MT078855	MT078846 MT078847	MT078862 MT078863
Moelleriella africana	P.C. 736	- Whitefly	Ghana, Costa Rica, and Bolivia	AY986917	AY986943	DQ000344
Moelleriella alba	BCC49409 T	nymphs	Sanctuary	JQ269646	KX254423	JQ256906
Moelleriella alba	BCC49492	vvhitetly nymphs	Inailand, Narathiwat Province, Hala Bala Wildlife Sanctuary	JQ269645	KX254424	JQ256905
Moelleriella boliviensis	P.C. 603	Scale insects	Bolivia, Dpto. La Paz, San Jose de Uchipiamonas, Madidi National Park	AY986923	AY986950	DQ000351
Moelleriella basicystis	F183147 = CUP 067746	Scale insects and whiteflies	Panama, Chiriqui, Quebrada Hacha, San Juan Oriente, Besiko	EU392577	EU392653	-
Moelleriella basicystis	P.C. 374	Scale insects and whiteflies	Costa Rica, Guanacaste, Guanacaste Conservation Area, Rincon de la Vieja National Park	AY986903	AY986928	DQ000329
Moelleriella chaiangmaiensis	BCC18029 T	Scale insect	Thailand, Chiang Mai, Doi Inthanon National Park	MT659360	MW091560	-
Moelleriella chaiangmaiensis	BBH33051	Scale insect	Thailand, Krabi, Jiranan Techaprasan's house (Thap Prik)	MT659362	MT672277	MT672269
Moelleriella chaiangmaiensis	BCC60941	Scale insect	Thailand, Nakhon Ratchasima, Khao Yai National Park, Pha Kluaimai Waterfall Nature Trail	MT659361	MT672278	MT672270
Moelleriella chumphonensis	BCC47574 T	Whitefly	Thailand, Chumphon, Phato Watershed Conservation and Management Unit	JQ269647	KX254421	JQ256907
Moelleriella	BBC47575	Whitefly	Thailand, Chumphon, Phato Watershed Conservation	JQ269648	KX254422	JQ256908
Moelleriella disjuncta	J.B.205	Scale insects and	Panama, Fortuna, along trail 1 km west of STRI	EU392578	EU392654	-
, Moelleriella epiphylla	P.C. 545	Scale insects and whiteflies	Biological Station Bolivia, Dpto. La Paz, San Jose de Uchipiamonas, Madidi National Park Chalaan trail Tanacara	EU392585	EU392660	EU392711
Moelleriella epiphylla	193-813	Scale insects and	Guyana, Matthew's Ridge	EU392583	EU392656	EU392707
Moelleriella evansii	P.C. 627	Scale insects and	- Ecuador, Manabi. Y de la Laguna, Reserva Bilsa	AY986916	AY986942	DQ000343
Moelleriella flava	BCC60924 T	Scale insects	Thailand, Nakhon Ratchasima, Khao Yai National Park,	KF951146	KX254430	MT672271
Moelleriella flava	BCC60925	Scale insects	Thailand, Nakhon Ratchasima, Khao Yai National Park, Mo Sing To Nature Trail	KF951147	KX254431	MT672272

Table 1. Names, voucher information, and corresponding GenBank accession numbers of the taxa used in this study.

Table 1. Cont.

Species	Strain	Host	Origin	GenBar nrLSU	lk Accession N <i>tef-1α</i>	umbers rpb1
Moelleriella flava	BCC60929	Scale insects	Thailand, Nakhon Ratchasima, Khao Yai National Park, Mo Sing To Nature Trail	KX298238	KX254432	MT672273
Moelleriella gracilispora	CGMCC3.18989	Whitefly nymphs	China, Fujian Province, Wuyishan City, Wu Yi Mountain	KC964202	KC964191	KC964179
Moelleriella gracilispora	CGMCC3.18990	Whitefly nymphs	China, Fujian Province, Wuyishan City, Wu Yi Mountain	KC964203	KC964192	KC964180
Moelleriella insperata	ARSEF 2396 T	-	Philippines, Los Baños, Laguna, NNE slope of Mount Makiling	AY518374	DQ070029	EU392713
Moelleriella jinuoana	YHH MJBP2309031 ^T	Scale insects and whiteflies	China, Yunnan Province, Jinghong City, Jinuo Township, Banpo village	PP178643	PP177170	PP177160
Moelleriella jinuoana	YHH MJBP2309032	Scale insects	China, Yunnan Province, Jinghong City, Jinuo	PP178644	PP177171	PP177161
Moelleriella jinuoana	YFCC MJBP23099451	Scale insects	China, Yunnan Province, Jinghong City, Jinuo	PP178645	PP177172	PP177162
Moelleriella	BCC75979	Scale insects	Thailand, Kanchanaburi, Takhian Thong Waterfall	MT659363	MT672279	MT843900
Moelleriella	BCC75980	Scale insects	Thailand, Kanchanaburi, Takhian Thong Waterfall	MT659364	MT672280	MT843901
Moelleriella	BCC75981 T	Scale insects	Thailand, Kanchanaburi, Takhian Thong Waterfall	MT659365	MT672281	-
Kanchanaburiensis Moelleriella lihera	PC 444	Scale insects and	Nature Trail Mexico, Veracruz, Catemaco, Ejido Lopez Mateo town,	EI 1392591	EU392662	EU 392714
Moellevielle libere	DC 445	whiteflies Scale insects and	project 'Cielo, Tierra y Selva', trail to mountain Mexico, Veracruz, Catemaco, Ejido Lopez Mateo town,	AV08(000	AV08(025	DO00022
Moelleriella	r.C. 443	whiteflies Scale insects	project 'Cielo, Tierra y Selva', trail to mountain China, Yunnan Province, Jinping County, the	A1980900	A1980925	DQ000326
longzhuensis Moelleriella	YHH MLFSL2310012	and whiteflies Scale insects	Fenshuiling National Nature Reserve China, Yunnan Province, Jinping County, the	PP178646	PP17/173	PP177163
longzhuensis Moelleriella	YHH MLFSL2310013	and whiteflies Scale insects	Fenshuiling National Nature Reserve China, Yunnan Province, Jinping County, the	PP178647	PP177174	PP17/164
longzhuensis	YFCC MLFSL23109453	and whiteflies	Fenshuiling National Nature Reserve	-	PP17/175	PP17/165
Moelleriella macrostroma	J.B. 115	Scale insects	Station Bolivia, La Paz Department, Province Franz Tamavo, San	AY986920	AY986947	DQ000348
Moelleriella macrostroma	P.C. 605	Scale insects	José de Uchipiamonas, Madidi National Park Bolivia La Paz Department, Province Franz Tamayo, San	AY986919	AY986946	DQ000347
Moelleriella madidiensis	P.C. 569	Scale insects	José de Uchipiamonas, Madidi National Park Bolivia La Paz Department, Province Franz Tamayo, San	AY986915	AY986941	DQ000342
Moelleriella madidiensis	P.C. 594	Scale insects	José de Uchipiamonas, Madidi National Park	EU392595	EU392666	EU392718
Moelleriella mollii Moelleriella mollii	193-901A 193-901C	-	Côte D'Ivoire	EU392599 EU392600	EU392667 EU392668	EU392719 EU392720
Moelleriella nanensis Moelleriella nanensis	BCC66303 ¹ BCC66305	Scale insects Scale insects	Thailand, Nan, Doi Mongkhon Nature Trail Thailand, Nan, Doi Mongkhon Nature Trail	KX298236 MW080317	KX254427 KX254428	MW085940 MW085941
Moelleriella nivea	BCC60891 T	Scale insects	Thailand, Surat Thani, Khao Sok National Park, Wing Hin Waterfall Nature Trail	MW080318	MT672282	MW085942
Moelleriella nivea	BCC58543	Scale insects	Thailand, Surat Thani, Khao Sok National Park, Wing Hin Waterfall Nature Trail	MT659366	MT672283	MT672274
Moelleriella nivea	BCC58544	Scale insects	Thailand, Surat Thani, Khao Sok National Park, Wing Hin Waterfall Nature Trail	MT659367	MT672284	MT843898
Moelleriella ochracea	P.C. 626	Scale insects and whiteflies	Ecuador, Manabi. Y de la Laguna, Reserva Bilsa, primary	EU392604	EU392670	EU392722
Moelleriella ochracea	IE 1308 = P.C. 726	Scale insects and whiteflies	Mexico, Veracruz. Emiliano Zapata Municipality, Plan Chico	EU392601	EU392669	EU392721
Moelleriella phukhiaoensis	BCC19769	Scale insect nymphs	Thailand, Chaiyaphum Province, Bueng Pan Protect Forest Unit, Phy Khiao Wildlife Sanctuary	KT880502	-	KT880506
Moelleriella phukhiaoensis	BCC19773	Scale insect	Thailand, Chaiyaphum Province, Bueng Pan Protect	KT880503	-	KT880507
Moelleriella phyllogena	P.C. 555	Scale insects and	Bolivia, Dpto. La Paz, San Jose de Uchipiamonas,	EU392610	EU392674	EU392726
Moelleriella phyllogena	J.B. 130	Scale insects and	Panama, Fortuna, on leaf of Costa	EU392608	EU392672	EU392724
Moelleriella	BCC31787	Scale insect	Thailand, Chiang Mai Province, Pong Dueat Pa Pae	KT880500	KX254433	KT880504
Moelleriella	BCC31788	Scale insect	Thailand, Chiang Mai Province, Pong Dueat Pa Pae	KT880501	KX254434	KT880505
Moelleriella puerensis	YFCC 8615 ^T	Whiteflies	China, Yunnan Province, Puer City, Simao District,	MW786748	MW815596	MW815595
, Moelleriella puerensis	YFCC 8626	Whiteflies	Xinfang Reservoir China, Yunnan Province, Puer City, Simao District, Xinfang Reservoir	MW786750	MW815598	MW815594
Moelleriella raciborskii	AFR28	-	Ghana, Central Region, Jukua District, Kakum National	DQ070113	EU392675	EU392727
Moelleriella raciborskii	193-901	-	Côte D'Ivoire	EU392611	EU392676	EU392728
Moelleriella rhombispora	P.C. 467	Scale insects and whiteflies	Costa Rica, Heredia, La Selva Biological Station, Camino Cantarrana	AY986908	AY986933	DQ000334
Moelleriella rhombispora	P.C. 696	Scale insects and whiteflies	National Park	EU392618	EU392680	EU392732
Moelleriella schizostachyi	CBS 100067	-	Thailand Thailand, Chiang Mai, Doi Inthanon National Park, Mae	AY986921	AY986948	DQ000349
Nioelleriellu sinensis	BCC69128	Scale Insects	Chaem Junction (KM.38) Nature Trail Thailand, Chiang Mai, Doi Inthanon National Park, Mae	KA296234	KA254425	M1043099
Moelleriella sinensis	BCC69129	Scale insects Whitefly	Chaem Junction (KM.38) Nature Trail	КХ298235	KX254426	M16/22/5
Moelleriella sinensis	CGMCC 3.18911	nymphs	China, Fujian Province, Wu Yi Mountain China, Yunnan Province, Puor City, Simao District	MK412091	-	MK412101
Moelleriella simaoensis	YHH 2210015 ^T	Whiteflies	China Yunnan Province, Fuer City, Sinitab District, China Yunnan Province District, Since District, Sinitab	OQ621807	OQ623179	OQ616915
Moelleriella simaoensis	YHH 2210016	Whiteflies	Xinfang Reservoir	OQ621808	OQ623180	OQ616916
Moelleriella sloaneae	I94-920	Scale insects or whiteflies	Guatemala, Tikal	EU392621	EU392682	EU392734
Moelleriella sloaneae	I94-922C	whiteflies	Belize, Cayo, Rio Frio	EU392622	EU392683	EU392735
thanathonensis	MFLU:16-2922	insect	orchard	-	KY646200	-

Table 1. Cont.

Species	Strain	Host	Origin	GenBan nrLSU	k Accession Ν tef-1α	umbers rpb1
Moelleriella turbinata	IMI 352838	Scale insects and whiteflies	Mexico, Estado Veracruz, Xalapa	EU392625	EU392685	EU392737
Moelleriella turbinata	P.C. 678	Scale insects and whiteflies	Honduras, Dpt. of Atlántida, Tela, Pico Bonito National Park	EU392627	EU392687	EU392739
Moelleriella umbospora	P.C. 461	Scale insects or whiteflies	Mexico, Chiapas, Palenque	EU392628	EU392688	EU392740
Moelleriella umbospora	P.C. 457	Scale insects or whiteflies	Mexico, Chiapas, Palenque	AY986904	AY986929	DQ000330
Moelleriella zhongdongii	P.C. 504	Scale insects or whiteflies	Costa Rica, Heredia, La Selva Biological Station, Sendero Cantarrana	EU392631	EU392689	EU392741
Moelleriella zhongdongii	P.C. 549	Scale insects or whiteflies	Bolivia, Yungas	EU392632	EU392690	EU392742
Neoaraneomyces araneicola	DY101711 T	Spider	China, Guizhou, Duyun City, Qiannan Buyi and Miao Autonomous Prefecture	MW730609	MW753033	-
Neoaraneomyces araneicola	DY101712	Spider	China, Guizhou, Duyun City, Qiannan Buyi and Miao Autonomous Prefecture	MW730610	MW753034	-
Orbiocrella petchii	NHJ 5318	Scale insect	Thailand, Kaeng Krachan National Park, trail to Tor Tip Waterfall	EU369040	EU369021	EU369062
Orbiocrella petchii	NHJ 6209	Scale insect	Thailand	EU369039	EU369023	EU369061
Parametarhizium	SGSF125 T	On litter of forest	China, Jilin Province, Changbai Mountains	MN589994	MN908589	-
Parametarhizium hingganense	SGSF355 T	On litter of forest	China, Heilongjiang Province, Greater Hinggan mountains	MN061635	MN065770	-
Paraneoaraneomyces sinensis	ZY 22.006 T	Soil	China, Guizhou Province, Kaili City	OQ709260	OQ719626	-
Paraneoaraneomyces sinensis	ZY 22.007	Soil	China, Guizhou Province, Kaili City	OQ709261	OQ719627	-
Paraneoaraneomyces sinensis	ZY 22.008	Soil	China, Guizhou Province, Kaili City	OQ709262	OQ719628	-
Pleurocordyceps aurantiaca	MFLUCC 17-2113 T	Larvae (Coleopteran)	Thailand, Prachuap Khiri Khan	MG136910	MG136875	MG136866
Pleurocordyceps	MFLU 17-1582	Cossidae larvae	Thailand, Chiang Mai, Te Mushroom Research Center	-	MG136878	MG136869
Pochonia sinensis Pochonia sinensis	ZY 22.009 ZY 22.010	Soil Soil	China, Guizhou Province, Kaili City China, Guizhou Province, Kaili City	OQ709263 OO709264	OQ719629 OO719630	:
Pseudometarbizium araneogenum	DY101741	Spider	China, Guizhou, Duyun City, Qiannan Buyi and Miao Autonomous Prefecture	MW730618	MW753037	-
Pseudometarbizium araneogenum	DY101801 ^T	Spider	China, Guizhou, Duyun City, Qiannan Buyi and Miao Autonomous Prefecture	MW730623	MW753039	-
Purpureocillium lavendulum	FMR 10376 ^T	Soil	Venezuela, Caracas	FR775489	FR775516	FR775512
Purpureocillium lilacinum Purpureocillium lilacinum	CBS 284.36 ^T CBS 431.87	Soil Meloidogyne sp.	-	FR775484 EF468844	FR734156 EF468791	FR775507 EF468897
Samuelsia geonomis	P.C. 614	Scale insects or whiteflies	Bolivia, Dpt. of La Paz, San Jose de Uchipiamonas, Madidi National Park, Chalalan, trail to mountain along Eslabon River	EU392638	EU392692	EU392744
Samuelsia sheikhii	P.C. 686	Scale insects or whiteflies	Honduras, Yojoa, Los Pinos, Cerro Azul Meambar National Park	EU392639	EU392693	EU392745
Samuelsia chalalensis	P.C. 560	Whiteflies	Bolivia, Dpt. of La Paz, San Jose de Uchipiamonas, Madidi National Park	EU392637	EU392691	EU392743
Samuelsia mundiveteris	BCC40021	Scale insect nymphs	Thailand, Chiang Mai Province, Mae Chaem Junction (km 38), Doi Inthanon National Park	GU552152	GU552145	-
Samuelsia mundiveteris	BCC40022	Scale insect nymphs	Thailand, Chiang Mai Province, Mae Chaem Junction (km 38), Doi Inthanon National Park	GU552153	GU552146	-
Samuelsia rufobrunnea	P.C. 613	Insects	Bolivia, Dpt. ot La Paz, San Jose de Uchipiamonas, Madidi National Park, Chalalan, trail to mountain along Eslabon River	AY986918	AY986944	-

New species are shown in bold. ^T ex-type material. ARSEF: ARS Collection of Entomopathogenic Fungal Cultures, New York, U.S.A; BBH: the BIOTEC Culture Herbarium; BCC: the BIOTEC Culture Collection; CBS: Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre, Utrecht, the Netherlands; CCTCC: China Center for Type Culture Collection; CGMCC: the China General Microbiological Culture Collection Center; CUP: the Cornell University Plant Pathology Herbarium; FKI: Fungal Collection of Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan; FMR: the culture collection of the Faculty of Medicine in Reus; JB: Joseph Bischoff, personal collection; JCM: Japan Collection of Microorganisms, Wako, Japan; MFLU: Mae Fah Luang University; MFLUCC: the Mae Fah Luang University Culture Collection; NHJ: Nigel Hywel-Jones, personal collection; P.C: Herbier Cryptogamique, Dépt. Systématique et Évolution, Muséum National d'Histoire Naturelle; YFCC: the Yunnan Fungal Culture Collection of Yunnan University, China; YHH: the Yunnan Herbal Herbarium of Yunnan University, China.

3. Results

3.1. Sequencing and Phylogenetic Analyses

Three-gene (nrLSU, *tef-1a*, and *rpb1*) sequences were generated from eight specimens and two living cultures (see Table 1). Three-gene sequences of 129 samples from 14 genera in the family Clavicipitaceae were used for the ML and BI phylogenetic analyses. *Pleurocordyceps aurantiaca* MFLUCC 17-2113 and *Pleurocordyceps marginaliradians* MFLU 17-1582 were used as the outgroups. The concatenated three-gene sequences contained 2726 bp (nrLSU: 935 bp, *tef-1a*: 1024 bp, and *rpb1*: 767 bp). Both the ML and BI analyses exhibited nearly consistent overall topologies. The results of the phylogenetic analysis showed three highly supported clades, viz., the Pulvinate clade (BP = 100%, PP = 1), the Globose clade (BP = 100%, PP = 1), and the Effuse clade (BP = 100%, PP = 1) (Figure 1). The Effuse clade was segregated into two sister clades, subclade I and subclade II. *Moelleriella* contains the Effuse clade and the Globose clade. Two new species of *Moelleriella* were distributed in the Effuse clade (*M. longzhuensis*) and the Globose clade (*M. jinuoana*). Three samples of *M. longzhuensis* were clustered closely with *M. rhombispora* (M. Liu & K.T. Hodge) M. Liu & P. Chaverri and formed a monophyletic clade in the Effuse clade with a high level of statistical support (BP = 100%, PP = 1). Three samples of *M. jinuoana* formed a monophyletic clade in the Globose clade with a high level of statistical support (BP = 91%, PP = 0.8). The genus *Conoideocrella* was clustered with *Orbiocrella* and had a new species (*C. fenshuilingensis*) and one known species (*C. tenuis*). Two samples of *C. fenshuilingensis* formed a monophyletic clade in *Conoideocrella* with a high level of statistical support (BP = 100%, PP = 1).

The genetic distances calculated based on the three genes (nrLSU, *tef-1* α , and *rpb1*) among interspecies and intraspecies in *Moelleriella* and *Conoideocrella* are shown in Tables S1–S6. The intraspecific genetic distances for nrLSU, *tef-1* α , and *rpb1* in *Moelleriella* were 0–0.0276, 0–0.0428, and 0–0.0168, respectively. The interspecific genetic distances for nrLSU, *tef-1* α , and *rpb1* between the known species and *M. longzhuensis* were 0.03–0.08, 0.09–0.16, and 0.08–0.24, respectively, and those between the known species and *M. jinuoana* were 0.04–0.08, 0.10–0.15, and 0.15–0.25, respectively. In *Conoideocrella*, the intraspecific genetic distances of nrLSU, *tef-1* α , and *rpb1* were 0–0.0028, 0–0.0052, and 0.0019–0.0027, respectively, and the genetic distances between *C. fenshuilingensis* and the known species were 0.01–0.02, 0.06–0.09, and 0.08, respectively.

DICHOTOMOUS KEYS TO CONOIDEOCRELLA SPECIES

1a.Stromata flattened pulvinate to discoid, planar, pulvinate, almost planar	2
1b.Stromata scutate or hemi-globose	C. fenshuilingensis
2a.Perithecia < 600 μm long	3
2b.Perithecia > 600 μm long	C. luteorostrata
3a.Stromata pale yellow, orange to reddish brown; Asci < 180 μm long;	Conidia 8–15 × 2–4
μm	C. krungchingensis
3b.Stromata white to orangish-pink; Asci > 180 µm long; Conidia	6.1–12.5 × 1.3–2.3
μm	C. tenuis

DICHOTOMOUS KEYS TO MOELLERIELLA SPECIES

Based on teleomorphic characters	
1a.Part-ascospores > 16 μm long	2
1b.Part-ascospores < 16 μm long	
2a.Perithecia embedded in stroma and scattered	4
2b.Perithecia embedded in top part of stroma, number perithecia per stroma > 30	M. phyllogena
3a.Part-ascospores with rounded, blunt, or acute ends	5
3b.Part-ascospores with truncated ends	M. flava
4a.Part-ascospores ventricose cylindrical or curved with rounded ends and usually inflated in	the middle; Part-
ascospores < 20 μm long	M. basicystis
4b.Part-ascospores ventricose cylindrical or curved with rounded ends and usually inflated in	the middle; Part-
ascospores > 20 μm long	M. umbospora

5a.Stromata not thin-umbonate	6
5b.Stromata thin-umbonate, raised, with globose to subglobose base	M. chiangmaiensis
6a.Part-ascospores 5–10 μm long	7
6b.Part-ascospores 7–16 μm long	8
7a.Stromata size < 2 mm	9
7b.Stromata size > 2 mm	
8a.Part-ascospores < 3.5 μm width	
8b.Part-ascospores > 3.5 μm width	M. colliculosa
9a.Stromata surface roughened	M. castanea
9b.Stromata surface not roughened	
10a.Stromata suface tomentose	M. nivea
10b.Stromata suface smooth	
11a.Stromata yellowish white to white, pale yellow	
11b.Stromata greyish yellow or reddish brown or dark brown almost black	
12a.Stromata globose with head markedly constricted at base	
12b.Stromata pulvinate, base slightly constricted	M. zhongdongii
13a.Stromata greyish yellow and reddish brown	M. epiphylla
13b.Stromata dark brown almost black	M. guaranitica
14a.Hypothallus present	M. disjuncta
14b.Hypothallus absent	M. boliviensis
15a.Stromata obconical	M. cornuta
15b.Stromata globose or subglose	
16a.Stromata buff to pale greenish	M. gaertneriana
16b.Stromata brownish orange, greyish brown, bark brown almost black	
17a.Stromata subglose	M. palmae
17b.Stromata globose	M. globosa
18a.Part-ascospores not ventricose	19
18b.Part-ascospores ventricose with rounded or acute ends	M. rhombispora
19a.Part-ascospores fusoid	
19b.Part-ascospores cylindrical with round or blunt ends	
20a.Stromata surface tomentose	
20b.Stromata surface not tomentose	
21a.Perithecia embedded in stroma, scattered	
21b.Perithecia in gregarious but well-separated tubercles or gregarious tubercles	
22a.Perithecia in gregarious but well-separated tubercles	M. simaoensis
22b.Perithecia embedded in stroma, scattered	M. puerensis
23a.Part-ascospores > 3 μm width	M. turbinata
23b.Part-ascospores < 3 μm width	
24a.Stromata yellowish white to white, pale yellow	
24b.Stromata yellow	M. macrostroma
25a.Hypothallus present	M. libera

25b.Hypothallus absent	M. evansii
26a.Part-ascospores < 2 μm width	M. sinensis
26b.Part-ascospores > 2 μm width	
27a.Hypothallus present	
27b.Hypothallus absent	M. nanensis
28a.Stromata thin pulvinate with pronounced tubercles or pulvinate with sloping	side, tubercles half-
embedded	M. sloaneae
28b.Stromata flat pulvinate	M. phukhiaoensis
29a.Stromata pulvinate with sloping sides or base slightly constricted	M. ochracea
29b.Stromata flat pulvinate	
30a.Stromata white, pale yellow to orange	M. chumphonensis
30b.Stromata white	M. alba

Based on anamorphic characters

1a.Conidia > 4 μm width	2
1b.Conidia < 4 μm width	3
2a.Conidiomata number fewer than ten	4
2b.Conidiomata number more than ten	5
3a.Conidia < 6 μm long	7
3b.Conidia > 6 μm long	8
4a.Conidiomata locules simple depressions of surface without distinct rims	M. epiphylla
4b.Conidiomata locules pezizoid	M. turbinata
5a.Conidiomata scattered in stroma	M. globosa
5b.Conidiomata circular in stroma	6
6a.Conidia ventricose with acute ends	M. basicystis
6b.Conidia ventricose almost rhomboid with acute ends	M. umbospora
7a.Stromata greyish brown; thick pulvinate, obconical pulvinate	M. castanea
7b.Stromata pale yellow; discoid with distinct stud shape	M. pongdueatensis
8a.Conidiomata scattered or circular in stroma	9
8b.Conidiomata arrangement in the central of stroma	
9a.Stromata flat pulvinate, dark orange to golden yellow	M. phukhiaoensis
9b.Stromata not as above	
10a.Conidia < 16.5 μm long	
10b.Conidia > 16.5 μm long	M. chumphonensis
11a.Conidia > 3 μm width	
11b.Conidia < 3 μm width	
12a.Stromata dark brown, black	M. guaranitica
12b.Stromata yellowish white to white, pale yellow	M. phyllogena
13a.Conidia ventricose	M. rhombispora
13b.Conidia fusoid	14
14a.Conidia >2 μm width	
14b.Conidia < 2 μm width	

15a.Conidiomata circular in stroma	M. disjuncta
15b.Conidiomata scattered in stroma	
16a.Conidiomata circular in stroma	M. libera
16b.Conidiomata scattered in stroma	
17a.Conidiomata fewer than ten	
17b.Conidiomata more than ten	
18a.Stromata yellowish white to white, pale yellow	M. madidiensis
18b.Stromata yellow, orange yellow to orange	M. jinuoana
19a.Stromata yellow	M. macrostroma
19b.Stromata yellowish white to white, pale yellow	M. sloaneae
20a.Cultural on PDA compact, leathery	M. ochracea
20b.Cultural on PDA compact, floccose/tomentose	
21a.Stromata yellowish white to white, pale yellow	
21b.Stromata brown	M. thanathonensis
22a.Stromata tuberculate, thick pulvinate, obconical pulvinate	M. zhongdongii
22b.Stromata flat or raised, globose to subglobose	
23a.Paraphyses present in conidioma	M. chiangmaiensis
23b.Paraphyses absent in conidioma	M. nanensis
24a.Paraphyses present in conidioma	
24b.Paraphyses absent in conidioma	
25a.Stromata yellowish white to white, pale yellow	
25b.Stromata whitish to pale brown	M. chumphonensis
26a.Conidiomata more than ten	
26b.Conidiomata fewer than ten	
27a.Stromata thin pulvinate, almost effuse	
27b.Stromata flat to umbonate, globose to subglobose	M. sinensis
28a.Conidia 8.8–14 × 1.6–3 μm	M. simaoensis
28b.Conidia 9.7–13.4 × 1.3–2.3 μm	M. puerensis
29a.Stromata scutate (a hemisphaerical central region abruptly attenuating	and extending to the
edge)	M. evansii
29b.Stromata flat to umbonate, globose to subglobose	M. kanchanaburiensis
30a.Stromata yellowish white to white, whitish to pale yellow, pale yellow, yellow	
30b.Stromata white	M. alba
31a.Conidia < 2 μm width	
31b.Conidia > 2 μ m width	M. longzhuensis
32a.Stromata flat or raised, globose to subglobose; conidia 9–14 \times 1–2 μm	M. flava
32b.Stromata flat to umbonate, subglobose; conidia 7–10 × 1–2 μ m	M. nivea

Figure 1. Phylogenetic relationships of 14 genera in Clavicipitaceae are based on the maximum likelihood (ML) and the Bayesian inference (BI) analyses using nrLSU, *tef-1* α , and *rpb1* sequences. Statistical support values greater than 70% are shown at the nodes for the BI posterior probabilities/the ML bootstrap proportions. The new taxa are highlighted in bold and ^T for ex-type material.

3.2. Taxonomy

Conoideocrella tenuis (Petch) D. Johnson, G.H. Sung, Hywel-Jones & Spatafora, Mycol. Res. 113(3): 286 (2009), Figure 2.

Figure 2. Morphology of *Conoideocrella tenuis*. (**A**,**B**) Telemorphic stroma containing perithecia; (**C**) Perithecium; (**D**–**H**) Mature asci with developing asci; (**I**) Obverse of colonies on PDA at 25 °C after 21 days; (**J**) Reverse of colonies on PDA at 25 °C after 21 days; (**K**–**O**) Conidia of hirsutella-like asexual stage on PDA. Scale bars: 1 mm (**A**,**B**); 200 μ m (**C**); 50 μ m (**D**,**E**); 25 μ m (**F**); 50 μ m (**G**); 20 μ m (**H**); 1 cm (**I**,**J**); 10 μ m (**K**–**M**); and 5 μ m (**N**,**O**).

≡Torrubiella tenuis Petch, Ann. Perad. 7, 323 (1923).

MycoBank No: MB 512029.

Description. Sexual morph: Teleomorphic stromata pulvinate, flattened pulvinate or almost planar, 2–4 mm in diam, white to orangish-pink, tomentose, rather loose internally, surrounded by a broad, fibrillose margin or hypothallus. Perithecia mostly distributed at the margin of the stroma or on the hypothallus, scattered or clustered, color deepens from the bottom to the top, white to pale brown, covered with hyphae up to two-thirds their height in mature perithecia, dozens of perithecia per stroma, elongated flask shape or elongated conic shape, 190–500 × 160–270 μ m. Asci cylindrical, eight-spored,

190–480 \times 3.3–5.5 μm , caps 2.5–3.5 μm thick. Ascospores whole, filiform, septate. As exual morph: Not known.

Culture characteristics. Colonies grow slowly on PDA at 25 °C, attaining a diam of 15–17 mm in 21 days, greyish-white to cream-white mycelium at first, turning lilac with age. Colonies are loose on the surface and compact at the bottom. Hyphae smooth, septate, hyaline, 1.1–3.6 µm wide. Hirsutella-like asexual state arises from hyphae, conidiogenous structures with slender base tapering more or less evenly to a neck, hyaline, produced directly on hyphae of the stromatic colonies from ca. 5 wk onwards, 16.3–149.4 × 0.6–2.4 µm, and 0.3–1.3 µm wide at the apex. Conidia hyaline, smooth, fusiform and slightly curved, produced singly or in a group of two at the neck apex, $6.1–12.5 \times 1.3–2.3$ µm.

Habitat. Parasitic on Aspidiotus destructor on a jungle tree; on a black Aleyrodes on Sarcococca pruniformis; on a scale on Hedyotis lessertianan; on Aleyrodes on Lasianthus walkerianus and Psychotria elongata.

Distribution. Sri Lanka (type locality) and Thailand, China.

Other material examined. China, Yunnan Province, Jinghong City, Jinuo Township, Banpo village, 100°98′ E, 22°06′ N, alt. 1035 m, found on the underside of living leaves of dicotyledonous plants, 2 October 2022. Hong Yu and Zhi-Qin Wang (YHH CTBP221012, YHH CTBP221013, YHH CTBP22109315; YFCC CTBP22109316, living culture). Yunnan Province, Puwen Town, 100°97′ E, 22°52′ N, alt. 1020 m, found on the underside of living leaves of dicotyledonous plants, 3 August 2023, Hong Yu and Zhi-Qin Wang (YHH CTPW2308031; YHH CTPW23089310).

Commentary. The species *C. tenuis*, formerly in the genus *Torrubiella*, was reclassified by Johnson et al. [4] to *Conoideocrella*. In 1923, Petch described the morphological characteristics of *T. tenuis*, as well as its distribution sites and host insects. But there was no record of the size of the asci or ascospores. Hywel-Jones [23] collected specimens of *T. tenuis* in Thailand. They recorded the size of the asci and ascospores and isolated pure cultures. In our study, specimens of this species were collected in Yunnan, China, and it was found to be distributed in China. Its macromorphology and micromorphology were generally consistent with those described by Petch and Hywel-Jones and Evens, with one difference being that the materials used in this study extend the perithecium (190–900 × 160–270 µm) and asci (190–500 × 3.3–7.0 µm) size range of this species. Noteworthy, a hirsutella-like asexual state was observed on the stromatic colonies in the present study, which has not yet been observed in other studies. Unfortunately, as in the case of the Thai material, part-spores were not seen in the Chinese collection.

Conoideocrella fenshuilingensis Hong Yu bis, Z.L. Yang, Z.Q. Wang & J.M. Ma, sp. nov. Figure 3.

Mycobank No: 851868.

Etymology. Named after the Fenshuiling National Nature Reserve where the species was collected.

Type. China, Yunnan, Jinping County, the Fenshuiling National Nature Reserve. 103°49′ E, 22°82′ N, alt. 519 m, found on the underside of living leaves of dicotyledonous plants. 24 October 2023, Hong Yu (YHH CFFSL2310002, holotype).

Description. Sexual morph: Teleomorphic stromata scutate or hemi-globose, 3.0–3.4 mm in diam, snow-white, surrounded by a snow-white hypothallus. Perithecia densely distributed on stroma, a few distributed on hypothallus, scattered or clustered, color deepens from the bottom to the top, pale brown to black, dozens of perithecia per mature stroma, covered with hyphae up to two-thirds their height in mature perithecia, elongated flask shape or elongated conic shape, 259–795 × 144–242 µm. Asci cylindrical, eight-spored, 246–685 × 3.8–6.9 µm, caps 1.2–2.3 µm thick. Ascospores whole, filiform, septate. No anamorph was found with these stromata in nature. Asexual morph: Undetermined.

Figure 3. Morphology of *Conoideocrella fenshuilingensis*. (**A**,**B**) Telemorphic stroma containing perithecia; (**C**,**D**) Perithecium; (**E**–**L**) Mature asci with developing asci. Scale bars: 1 mm (**A**,**B**); 200 µm (**C**–**G**); 100 µm (**H**); 150 µm (**I**); 100 µm (**J**); 30 µm (**K**); and 20 µm (**L**).

Habitat. Parasitic on scale insects (Coccidae, Sternorrhyncha, Hemiptera), found on the underside of living leaves of dicotyledonous plants.

Distribution. China, Yunnan Province, Jinping County.

Other Material Examined. China, Yunnan, Jinping County, the Fenshuiling National Nature Reserve. 103°49′ E, 22°82′ N, alt. 519 m, found on the underside of living leaves of dicotyledonous plants. 24 October 2023, Hong Yu and Zhi-Qin Wang (YHH CFFSL2310003, YHH CFFSL2310004, YHH CFFSL2310005, YHH CFFSL2310006, YHH CFFSL2310007, YHH CFFSL2310008, YHH CFFSL2310009, YHH CFFSL2310010, YHH CFFSL2310011, paratype).

Commentary. The phylogenetic analyses revealed that two samples of *C. fenshuilingensis* were grouped together and formed a separate clade in the genus *Conoideocrella*. Currently, only three species of *Conoideocrella* have been reported [4,24]. *Conoideocrella fenshuilingensis* was similar to the other three species in its elongated, conical perithecium and cylindrical asci. However, *C. fenshuilingensis* was particularly easy to distinguish from other species by the location of the perithecia on the stromata. Its perithecia was almost always grown on a hemispherical stroma, while that of *C. krungchingensis* was grown on a slight weft of

hyphae, and that of *C. luteorostrata* was more commonly grown on the hypothallus [23,24]. Although the perithecium of *C. tenuis* was usually on the thicker part of the stroma, *C. fenshuilingensis* can be distinguished from *C. tenuis* by its hemispherical stroma, while *C. tenuis* has a flattened pulvinate or almost planar stroma [23].

Moelleriella jinuoana Hong Yu bis, Z.L. Yang, Z.Q. Wang & J.M. Ma, sp. nov. Figure 4.

Figure 4. Morphology of *Moelleriella jinuoana*. (**A**–**C**) Anamorphic stromata containing conidiomata; (**D**,**E**) Section of stromata showing conidiomata; (**F**,**G**) Phialides with conidia at the tips; (**H**) Conidia; (**I**) Obverse of colonies on PDA at 25 °C after 21 days; (**J**) Reverse of colonies on PDA at 25 °C after 21 days; (**J**) Reverse of colonies on PDA at 25 °C after 21 days. Scale bars: 1 mm (**A**); 0.5 mm (**B**,**C**); 100 µm (**D**,**E**); 20 µm (**F**,**G**); 10 µm (**H**); and 2 mm (**I**,**J**).

Mycobank No: 851869.

Etymology. Moelleriella jinuoana was named after the Jinuo nationality, one of the 56 ethnic groups in China.

Type. China, Yunnan Province, Jinghong City, Jinuo Township, Banpo village, 100°98′ E, 22°06′ N, alt. 1046 m, found on trunks of dicotyledonous plants. 26 October 2023, Hong Yu (YHH MJBP2309031, holotype; YFCC MJBP23099451, ex-holotype living culture).

Description. Sexual morph: Not known. Asexual morph: Anamorphic stromata on natural substrate globose, surface smooth, yellow, orangish-yellow to orange, 1.2–2.3 mm diam, often with narrow hypothallus. Hyphae of stromata form compact textura epidermoidea. Conidiomata simple depressions of surface, producing grayish-yellow copious slime, several conidiomata per stroma, U-shaped or irregular shape, 110–373 × 181–286 µm. Phialides formed in a thick, compact palisade or cylindrical shape, 11.8–29.5 × 1–1.9 µm. Conidia unicellular, hyaline, smooth, fusoid with rounded ends, 8–11.5 × 2.1–2.9 µm. No praphyses were observed.

Culture characteristics. Colonies on PDA slow-growing, attaining a diam of 9–11 mm in 21 days at 25 °C. Stromatic colonies compact pulvinate, surface wrinkled, pale orange to orange. Conidial masses usually abundant, orange. Reverse of colony brownish.

Habitat. Parasitic on scale insects (Coccidae, Sternorrhyncha, Hemiptera) or whiteflies (Aleyrodidae, Sternorrhyncha, Hemiptera), on trunks of dicotyledonous plants.

Distribution. China, Yunnan Province, Jinghong City.

Other Material examined. China, Yunnan Province, Jinghong City, Jinuo Township, Bapo village, 100°98′ E, 22°06′ N, alt. 1046 m, found on trunks of dicotyledonous plants. 26 October 2023, Hong Yu and Zhi-Qin Wang (YHH MJBP2309032, paratype; YFCC MJBP23099452, ex-paratype living culture); Ibid., (YHH MJBP2309033, YHH MJBP2309034, YHH MJBP2309035).

Commentary. The three-gene phylogenetic analyses showed that the three samples of *M. jinuoana* were clustered in the Globe clade and closely related to *M. boliviensis* P. Chaverri & K.T. Hodge, *M. insperata* (Rombach, M. Liu, Humber, and K.T. Hodge) P. Chaverri & K.T. Hodge, and *M. macrostroma* (P. Chaverri and K.T. Hodge) P. Chaverri & K.T. Hodge. Morphologically, the stromata shape, texture, and color of *M. jinuoana* was significantly different from those of *M. boliviensis*, *M. insperata*, and *M. macrostroma* [3,39]. Ecologically, *M. jinuoana* was found on the trunk of dicotyledonous plants, while *M. boliviensis* and *M. insperata* were found on the underside of leaves, and *M. macrostroma* was found on the living vines of dicotyledonous plants [3,39].

Moelleriella longzhuensis Hong Yu bis, Z.L. Yang & Z.Q. Wang, sp. nov. Figure 5.

Figure 5. Morphology of *Moelleriella longzhuensis*. (**A**–**C**) Anamorphic stromata containing conidiomata; (**D**,**E**) Section of stromata showing conidiomata; (**F**) Phialides with conidia at the tips; (**G**) Conidia; (**H**) Obverse of colonies on PDA at 25 °C after 21 days; (**I**) Reverse of colonies on PDA at 25 °C after 21 days; (**I**) Reverse of colonies on PDA at 25 °C after 21 days. Scale bars: 1 mm (**A**); 0.5 mm (**B**,**C**); 50 μ m (**D**); 100 μ m (**E**); 20 μ m (**F**,**G**); and 2 mm (**H**,**I**).

Mycobank No: 851870.

Etymology. Named after the Chinese name "Longzhu" of the plant *Dendrocalamus giganteus* Wall. ex Munro, to which the stromata were attached.

Type. China, Yunnan Province, Jinping County, the Fenshuiling National Nature Reserve, 103°22′ E, 22°78′ N, alt. 1436 m, found on the underside of the living leaves of *D. giganteus*. 22 October 2023, Hong Yu (YHH MLFSL2310012, holotype; YFCC MLFSL23109453, ex-holotype living culture).

Description. Sexual morph: Not known. Asexual morph: Anamorphic stromata with a subglobose head and constricted base (stud-shaped), white to pale yellow when immature becoming pale yellow to yellow when mature, 1–1.9 mm diam, surface pruinose or tomentose, with hypothallus 0.1–1.1 mm. Hyphae of stromata forming loose textura intricata to epidermoidea. Conidiomata simple depressions of surface, 319–481 × 237–448 µm, several conidiomata per stroma, but difficult to count because some of them are confluent with neighboring ones. Conidial masses pale yellow to yellow. In section, the Conidioma subglobose to globose. Phialides not observed. Conidia unicellular, hyaline, smooth, inflated at midpoint and tapering at both ends, $12–16.1 \times 2.6–3.9$ µm. No paraphyses observed.

Culture characteristics. Colonies on PDA slow-growing, attaining a diam of 6–7 mm in 21 days at 25 °C. Colonies pale yellow to pale yellowish brown, compact, forming a subglobose structure. Conidial masses usually abundant, usually forming several gushing bands, pale yellow to pale orange. Reverse of colony pale yellow to yellowish brown.

Habitat. Parasitic on scale insects (Coccidae, Sternorrhyncha, Hemiptera) and whiteflies (Aleyrodidae, Sternorrhyncha, Hemiptera), found on the underside of the living leaves of *D. giganteus*.

Distribution. China, Yunnan Province, Jinping County.

Other material examined. China, Yunnan Province, Jinping County, the Fenshuiling National Nature Reserve, 103°22′ E, 22°78′ N, alt. 1436 m, found on the underside of the living leaves of *D. giganteus.* 22 October 2023, Hong Yu and Zhi-Qin Wang (YHH MLFSL2310013, paratype; YFCC MLFSL23109454, ex-paratype living culture); Ibid., (YHH MLFSL2310014, YHH MLFSL2310015, YHH MLFSL2310016, YHH MLFSL2310017, YHH MLFSL2310018).

Commentary. Phylogenetically, the three samples of *M. longzhuensis* were grouped together in subclade II of the Effuse clade and formed a monophyletic group. It was sister to *M. rhombispora*, with a high level of statistical support in terms of the BI posterior probabilities (PP = 1) and the ML bootstrap proportions (BP = 100%). Morphologically, *M. longzhuensis* was similar to *M. rhombispora* in that its conidia were inflated at the midpoint and tapered at both ends [3]. However, *M. longzhuensis* exhibits significant morphological differences from *M. rhombispora* due to its color and the shape of its anamorphic stromata. The conidiomata of the former could be confluent with their neighbors but the those of the latter were not confluent. The former also had larger conidia (12–16.1 × 2.6–3.9 vs. 9–14 × 2.5–3 µm) and no paraphyses were observed [3].

4. Discussion

The calculation of genetic distances for the three genes showed that the interspecific genetic distances between the new species in this study and other species of the genus were greater than the intraspecific genetic distances (see Tables S1–S6). This study resulted in the discovery of two new species of *Moelleriella* and one new species of *Conoideocrella* through phylogenetic analyses, morphological observations, and calculations of inter- and intraspecific genetic distances within genera.

The genus *Moelleriella* was divided into the Effuse clade and the Globose clade by Chaverri et al. [3]. The Effuse clade is composed of two sister clades, i.e., subclade I and subclade II [6]. Currently, subclade I includes 13 species, and subclade II includes 13 species [15]. The Effuse clade species were characterized as having effuse to thin, pulvinate stromata of loose hyphal tissue. Many species had hypothalli (e.g., *M. basicystis* P. Chaverri & K.T. Hodge; *M. disjuncta* (Seaver) P. Chaverri & K.T. Hodge; *M. libera* (Syd. and

P. Syd.) P. Chaverri & M. Liu; *M. madidiensis* P. Chaverri & K.T. Hodge; *M. ochracea* (Massee) M. Liu & P. Chaverri; *M. phyllogena* (Mont.) P. Chaverri & K.T. Hodge; *M. pongdueatensis* Mongkols., Thanakitp. & Luangsa-ard; *M. raciborskii* (Zimm.) P. Chaverri, M. Liu & K.T. Hodge; *M. rhombispora* (M. Liu & K.T. Hodge) M. Liu & P. Chaverri; *M. thanathonensis* Y.P. Xiao, T.C. Wen & K.D. Hyde; *M. umbospora* P. Chaverri & K.T. Hodge; and *M. zhongdongii* (M. Liu & K.T. Hodge) M. Liu & R. T. Hodge) M. Liu & R. T. Hodge; M. thanathonensis Y.P. Xiao, T.C. Wen & K.D. Hyde; *M. umbospora* P. Chaverri & K.T. Hodge; and *M. zhongdongii* (M. Liu & K.T. Hodge) M. Liu & P. Chaverri). These species had mostly whitish coloration and occasionally their stromata were pale yellow to orange (e.g., *M. basicystis*) [3,7–10,13–15]. The Globose clade species had globose and darker stromata, compact tissue, were hard or coriaceous, did not have hypothalli (except *M. sloaneae* (Pat.) P. Chaverri & K.T. Hodge), and had stromata that were usually 1–2 mm (except for *M. macrostroma* (P. Chaverri & K.T. Hodge) P. Chaverri & K.T. Hodge) [3]. However, these characteristics were not unique to each clade, and overlap could be found between the clades [3].

All three reported species of *Conoideocrella* were present in the field as telemorphic stromata with elongated flask-shaped or elongated conic-shaped perithecia [23,24]. In this way, it could be easily distinguished from *Moelleriella*, although it was in good agreement with *Moelleriella* in terms of growing environment and host category. Two genera, *Moelleriella* and *Conoideocrella*, were parasitic on whiteflies (Aleyrodidae, Hemiptera) or scale insects (Coccidae and Lecaniidae, Hemiptera) [3,23,24]. The fungus always completely obliterated the host, making it nearly impossible to identify the insect [3,23].

Scale insects and whiteflies are tiny, widely distributed parasites that suck plant sap, and many of these species are serious agricultural pests and act as vectors for viral plant diseases [40–43]. In the face of severe crop infestation by whiteflies, pesticides have been used mainly to suppress the whitefly population [44]. However, the overuse of pesticides has led to a certain degree of resistance to pesticides and harmful effects on non-target organisms and the environment [45]. The ability of *Moelleriella* and *Conoideocrella* species to parasitize large populations of whiteflies and scale insects in the wild gives these species the potential to be developed as green and non-polluting biological control agents. *Moelleriella libera* (anamorph *A. aleyrodis*) was the first species of *Moelleriella* to be applied to control whiteflies in Florida, U.S.A. [46]. Subsequently, there have been an increasing number of studies on the control of pests with *M. libera* [47–51]. Relatively few studies have been conducted on other species of *Molleriella* for biocontrol materials.

Hypocrella s. str. (anamorph *Aschersonia*) and *Molleriella* species are not only important biocontrol agents, but their metabolites also possess a wide range of biological activities, such as anti-tumor, anti-malarial, anti-bacterial, and insecticidal properties, and have great value within applications for biopesticides and pharmaceuticals [52–55]. Various compounds have been reported in studies of the metabolites of *Moelleriella*, such as benzophenones, terpenoids, cyclopeptides, steroids, and carotenoids [52,56–60]. In the studies of the metabolites of *Conoideocrella*, depsipeptides, bioxanthracenes and their monomers, conoideoxime A, hopane triterpenoid (zeorin), xanthone glycoside and naphthopyrone glycoside, phenolic glucosides, and chromane analogues have been reported [61–67]. In this paper, three new species of *Moelleriella* and *Conoideocrella* have been identified. This discovery provides valuable insights to facilitate further research, exploitation, and utilization of their metabolites and entomopathogenic fungi for effective biological control of scale insects or whiteflies.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/jof10060423/s1, Table S1: Interspecific genetic distance matrix and intragroup genetic distances for nrLSU sequences of *Moelleriella*. Table S2: Interspecific genetic distance matrix and intragroup genetic distances for *tef-1* α sequences of *Moelleriella*. Table S3: Interspecific genetic distance matrix and intragroup genetic distances for *rpb1* sequences of *Moelleriella*. Table S4: Interspecific genetic distance matrix and intragroup genetic distances for nrLSU sequences of *Conoideocrella*. Table S5: Interspecific genetic distance matrix and intragroup genetic distances for *tef-1* α sequences of *Conoideocrella*. Table S6: Interspecific genetic distance matrix and intragroup genetic distance matrix and intragroup genetic distances matrix and intragroup genetic distances for *rpb1* sequences of *Conoideocrella*. Author Contributions: Conceptualization, Z.-Q.W. and J.-M.M.; methodology, Z.-Q.W.; software, J.-M.M.; validation, Z.-L.Y. and J.Z.; formal analysis, Z.-Q.W.; investigation, Z.-Q.W., J.-M.M., Z.-L.Y., J.Z., Z.-Y.Y., J.-H.L. and H.Y.; resources, H.Y.; data curation, Z.-L.Y.; writing—original draft preparation, Z.-Q.W.; writing—review and editing, H.Y.; visualization, Z.-Q.W.; supervision, H.Y.; project administration, H.Y.; funding acquisition, H.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (grant number 31870017).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The DNA sequence data obtained in this study have been deposited in GenBank. The accession numbers can be found in the article (Table 1).

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Sullivan, R.F.; Bills, G.F.; Hywel-Jones, N.L.; White, J.F., Jr. *Hyperdermium*: A new clavicipitalean genus for some tropical epibionts of dicotyledonous plants. *Mycologia* 2000, *92*, 908–918. [CrossRef]
- Chaverri, P.; Bischoff, J.F.; Evan, H.C.; Hodge, K.T. Regiocrella, a newentomopathogenic genus with a pycnidial anamorph and its phylogenetic placement in the Clavicipitaceae. Mycologia 2005, 97, 1225–1237. [CrossRef] [PubMed]
- Chaverri, P.; Liu, M.; Hodge, K.T. A monograph of the entomopathogenic genera *Hypocrella*, *Moelleriella*, and *Samuelsia* gen. nov. (Ascomycota, Hypocreales, Clavicipitaceae), and their aschersonia-like anamorphs in the Neotropics. *Stud. Mycol.* 2008, 60, 1–66. [CrossRef] [PubMed]
- 4. Johnson, D.; Sung, G.H.; Hywel-Jones, N.L.; Luangsa-ard, J.J.; Bischoff, J.F.; Kepler, R.M.; Spatafora, J.W. Systematics and evolution of the genus *Torrubiella* (Hypocreales, Ascomycota). *Mycol. Res.* **2009**, *113*, 279–289. [CrossRef]
- 5. Luangsa-ard, J.J.; Mongkolsamrit, S.; Noisripoom, W.; Thanakitpipattana, D.; Khonsanit, A.; Wutikhun, T. *Helicocollum*, a new clavicipitalean genus pathogenic to scale insects (Hemiptera) in Thailand. *Mycol. Prog.* **2017**, *16*, 419–431. [CrossRef]
- Khonsanit, A.; Noisripoom, W.; Mongkolsamrit, S.; Phosrithong, N.; Luangsa-ard, J.J. Five new species of *Moelleriella* infecting scale insects (Coccidae) in Thailand. *Mycol. Prog.* 2021, 20, 847–867. [CrossRef]
- Mongkolsamrit, S.; Nguyen, T.T.; Tran, N.L.; Luangsa-ard, J.J. Moelleriella pumatensis, a new entomogenous species from Vietnam. Mycotaxon 2011, 17, 45–51. [CrossRef]
- Mongkolsamrit, S.; Khonsanit, A.; Noisripoom, W.; Luangsa-ard, J.J. Two new entomogenous species of *Moelleriella* with perithecia in tubercles from Thailand. *Mycoscience* 2015, 56, 66–74. [CrossRef]
- Li, G.J.; Hyde, K.D.; Zhao, R.L.; Hongsanan, S.; Abdel-Aziz, F.A.; Abdel-Wahab, M.A.; Alvarado, P.; Alves-Silva, G.; Ammirati, J.F.; Ariyawansa, H.A.; et al. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 2016, *78*, 1–237. [CrossRef]
- Tibpromma, S.; Hyde, K.D.; Jeewon, R.; Maharachchikumbura, S.S.N.; Liu, J.K.; Bhat, D.J.; Jones, E.B.G.; McKenzie, E.H.C.; Camporesi, E.; Bulgakov, T.S.; et al. Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 2017, *83*, 1–261. [CrossRef]
- 11. Chen, Y.X.; Xue, Q.L.; Xie, Y.X.; Keyhani, N.O.; Guan, X.Y.; Wei, X.Y.; Zhao, J.; Yan, Z.; Chen, H.; Qiu, J.Z.; et al. *Moelleriella sinensis* sp. nov. (Clavicipitaceae, Ascomycota) from southeast China. *Phytotaxa* **2020**, 429, 22. [CrossRef]
- 12. Crous, P.W.; Cowan, D.A.; Maggs-Kölling, G.; Yilmaz, N.; Larsson, E.; Angelini, C.; Brandrud, T.E.; Dearnaley, J.D.W.; Dima, B.; Dovana, F.; et al. Fungal Planet description sheets: 1112–1181. *Persoonia* **2020**, *45*, 251–409. [CrossRef] [PubMed]
- 13. Yuan, H.S.; Lu, X.; Dai, Y.C.; Hyde, K.D.; Kan, Y.H.; Kušan, I.; He, S.H.; Liu, N.G.; Sarma, V.V.; Zhao, C.L.; et al. Fungal diversity notes 1277–1386: Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* **2020**, *104*, 1–266. [CrossRef]
- Wang, Z.Q.; Wang, Y.; Wang, Y.B.; Yu, H. A new species of *Moelleriella* from Yunnan Province in Southwestern China. *Phytotaxa* 2022, 555, 187–194. [CrossRef]
- 15. Yang, Z.L.; Wang, Z.Q.; Ma, J.M.; Yu, H. *Moelleriella simaoensis*, a new entomogenous species of *Moelleriella* (Clavicipitaceae, Hypocreales) from Southwestern China. *Phytotaxa* **2023**, *603*, 060–068. [CrossRef]
- 16. Ma, H.F. Resource Survey and Phylogenetic Study on *Aschersonia*. Master's Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2008.
- 17. Wang, Y.Y. Resource Survey and Genetic Diversity Analysis of *Aschersonia* spp. and Their Telemorph Stage. Master's Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2009.
- Qiu, J.Z.; Chen, Y.; Wang, Y.Y.; Guan, X. The finding of *Moelleriella ochracea* (Ascomycota, Clavicipitaceae) in China. *Mycosystema* 2009, 28, 148–150.
- 19. Qiu, Y.F. Molecular Systematics and DNA Barcode of *Aschersonia*. Master's Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2013.

- 20. Kobayasi, Y.; Shimizu, D. Monograph of the genus Torrubiella. Bull. Natl. Sci. Mus. Tokyo 1982, 8, 43-78.
- Artjariyasripong, S.; Mitchell, J.I.; Hywel-Jones, N.L.; Jones, E.B.G. Relationship of the genus *Cordyceps* and related genera, based on parsimony and spectral analysis of partial 18S and 28S ribosomal gene sequences. *Mycoscience* 2001, 42, 503–517. [CrossRef]
- 22. Sung, G.H.; Hywel-Jones, N.L.; Sung, J.M.; Luangsa-Ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. *Stud. Mycol.* **2007**, *57*, 5–59. [CrossRef]
- 23. Hywel-Jones, N.L. *Torrubiella luteorostrata*: A pathogen of scale insects and its association with *Paecilomyces cinnamomeus* with a note on *Torrubiella tenuis*. *Mycol. Res.* **1993**, *97*, 1126–1130. [CrossRef]
- 24. Mongkolsamrit, S.; Thanakitpipattana, D.; Khonsanit, A.; Promharn, R.; Luangsa-ard, J.J. *Conoideocrella krungchingensis* sp. nov., an entomopathogenic fungus from Thailand. *Mycoscience* **2016**, *57*, 264–270. [CrossRef]
- 25. Petch, T. Studies in entomogenous fungi. III. Torrubiella. Trans. Br. Mycol. Soc. 1923, 9, 108–128. [CrossRef]
- Liu, M.; Hodge, K.T. Hypocrella zhongdongii sp. nov., the teleomorph of Aschersonia incrassata. Mycol. Res. 2005, 109, 818–824. [CrossRef] [PubMed]
- 27. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplifed ribosomal DNA from several Cryptococcus species. *J. Bacteriol.* **1990**, *172*, 4238–4246. [CrossRef] [PubMed]
- Rehner, S.A.; Samuels, G.J. Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. *Mycol. Res.* 1994, 98, 625–634. [CrossRef]
- Bischof, J.F.; Rehner, S.A.; Humber, R.A. Metarhizium frigidum sp. nov.: A cryptic species of M. anisopliae and a member of the M. favoviride Complex. Mycologia 2006, 98, 737–745. [CrossRef]
- Wang, Z.Q.; Wang, Y.; Dong, Q.Y.; Fan, Q.; Dao, V.M.; Yu, H. Morphological and Phylogenetic Characterization Reveals Five New Species of *Samsoniella* (Cordycipitaceae, Hypocreales). J. Fungi 2022, 8, 747. [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. *Mol. Biol. Evol.* 2013, 30, 2725–2729. [CrossRef]
- Zhang, D.; Gao, F.L.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol. Ecol. Resour.* 2020, 20, 348–355. [CrossRef]
- 33. Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 2003, *19*, 1572–1574. [CrossRef]
- 34. Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the raxml web servers. *Syst. Biol.* **2008**, *57*, 758–771. [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efcient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 2012, *61*, 539–542. [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. *Mol. Biol. Evol.* 2015, 32, 268–274. [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nat. Methods* 2017, 14, 587–589. [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. *Mol. Biol. Evol.* 2017, 35, 518–522. [CrossRef]
- Liu, M.; Rombach, M. What's in a name? Aschersonia insperata: A new pleoanamorphic fungus with characteristics of Aschersonia and Hirsutella. *Mycologia* 2005, 97, 246–253. [CrossRef] [PubMed]
- 40. Oliveira, M.R.V.; Henneberry, T.J.; Anderson, P. History, current status, and collaborative research projects for *Bemisia tabaci*. *Crop Prot.* **2001**, *20*, 709–723. [CrossRef]
- 41. Xiong, J.; Zheng, W.J.; Yao, S.L. Research situations of occurrence, damage of *Pealius mori* (Homoptera: Aleyrodidae) and its integrated pest management in China. *Guizhou Sci.* **2011**, *29*, 85–91.
- 42. Wang, J.R.; Song, Z.Q.; Du, Y.Z. Six New Record Species of Whiteflies (Hemiptera: Aleyrodidae) Infesting *Morus alba* in China. *J. Insect Sci.* **2014**, *14*, 274. [CrossRef]
- Arias-Corpuz, S.; Romero-Nápoles, J.; Hernández-Fuentes, L.M.; González-Hernández, H.; Illescas-Riquelme, C.P.; Lomeli-Flores, J.R.; Montalvo-González, E.; Nolasco-González, Y.; Velázquez-Monreal, J.J.; García-Magaña, M.d.L. Scale Insects (Hemiptera: Coccomorpha) on Jackfruit (Moraceae) in Nayarit, Mexico. J. Entomol. Sci. 2021, 57, 82–95. [CrossRef]
- 44. Liang, P.; Tian, Y.A.; Biondi, A.; Desneux, N.; Gao, X.W. Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. *Ecotoxicology* **2012**, *21*, 889–1898. [CrossRef]
- Gerling, D.; Alomar, O.; Arnò, J. Biological control of *Bemisia tabaci* using predators and parasitoids. *Crop Prot.* 2001, 20, 779–799. [CrossRef]
- 46. Berger, E.W. Natural enemies of scale insects and whiteflies in Florida. Fla. State Plant Board Q. Bull. 1921, 5, 141–154.
- 47. Zhang, C.; Ali, S.; Musa, P.D.; Wang, X.M.; Qiu, B.L. Evaluation of the pathogenicity of *Aschersonia aleyrodis* on *Bemisia tabaci* in the laboratory and greenhouse. *Biocontrol Sci. Technol.* **2016**, 27, 210–221. [CrossRef]
- 48. Lima, B.M.F.V.; Almeida, J.E.M.; Moreira, J.O.T.; Santos, L.C.; Bittencourt, M.A.L. Entomopathogenic fungi associated with citrus blackfly (*Aleurocanthus woglumi* Ashby) in southern Bahia. *Arq. Inst. Biol.* **2017**, *84*, 1–3. [CrossRef]

- 49. Zhang, C.; Shao, Z.F.; Han, Y.Y.; Wang, X.M.; Wang, Z.Q.; Peter, D.M.; Qiu, B.L.; Shaukat, A. Effects of *Aschersonia aleyrodis* on the life table and demographic parameters of *Bemisia tabaci. J. Integr. Agric.* **2018**, *17*, 389–396. [CrossRef]
- Ingle, Y.V.; Bhosale, D.N.; Paithankar, D.H.; Mane, S.S.; Lande, G.K. Natural occurrence of *Aschersonia aleyrodis* on citrus black fly in Vidarbha region of maharashtra. J. Plant Dis. 2019, 14, 147–150.
- Qasim, M.; Ronliang, J.; Islam, W.; Ali, H.; Khan, K.A.; Dash, C.K.; Jamal, Z.A.; Wang, L.D. Comparative pathogenicity of four entomopathogenic fungal species against nymphs and adults of citrus red mite on the citrus plantation. *Int. J. Trop. Insect Sci.* 2020, 41, 737–749. [CrossRef]
- 52. Fu, D.L.; Chen, Y.X.; Guo, Q.F.; Mao, L.H.; Fei, J.; Qiu, J.Z. Research progress on metabolites from *Aschersonia* and its teleomorph (Ascomycota). *Mycosystema* **2018**, *37*, 541–554. [CrossRef]
- 53. Guo, Q.F.; Dong, L.L.; Zang, X.Y.; Gu, Z.J.; He, X.Y.; Yao, L.D.; Cao, L.P.; Qiu, J.Z.; Guan, X. A new azaphilone from the entomopathogenic fungus *Hypocrella* sp. *Nat. Prod. Res* 2015, *29*, 2000–2006. [CrossRef]
- 54. Sadorn, K.; Saepua, S.; Punyain, W.; Saortep, W.; Choowong, W.; Rachtawee, P.; Pittayakhajonwut, P. Chromanones and aryl glucoside analogs from the entomopathogenic fungus *Aschersonia confluens* BCC53152. *Fitoterapia* **2020**, *144*, 104606. [CrossRef] [PubMed]
- 55. Aragão, T.M.S.; dos Santos, J.V.F.C.; Santos, T.S.; Souto, E.B.; Severino, P.; Jain, S.; Mendonça, M.C. Scientific-technological analysis and biological aspects of entomopathogenic fungus *Aschersonia*. *Sustain*. *Chem. Pharm.* **2021**, *24*, 100562. [CrossRef]
- 56. van Eijk, G.W.; Mummery, R.S.; Roeymans, H.J.; Valadon, L.R.G. A comparative study of carotenoids of *Aschersonia aleyrodis* and *Aspergillus giganteus*. *Antonie Van Leeuwenhoek* **1979**, 45, 417–422. [CrossRef] [PubMed]
- van Eijk, G.W.; Roeijmans, H.J.; Seykens, D. Hopanoins from the entomogenous fungus Aschersonia aleyrodis. Tetrahedron Lett. 1986, 27, 2533–2534. [CrossRef]
- 58. Krasnoff, S.B.; Gibson, D.M.; Belofsky, G.N.; Gloer, J.B. New destruxins from the entomopathogenic fungus *Aschersonia* sp. J. Nat. *Prod.* **1996**, *59*, 485–489. [CrossRef]
- Boonphong, S.; Kittakoop, P.; Isaka, M.; Palittapongarnpim, P.; Jaturapat, A.; Danwisetkanjana, K.; Tanticharoen, M.; Thebtaranonth, Y. A new antimycobacterial, 3β-acetoxy-15α, 22-dihydroxyhopane, from the insect pathogenic fungus *Aschersonia tubulata*. *Planta Med.* 2001, 67, 279–281. [CrossRef] [PubMed]
- 60. Isaka, M.; Hywel-Jones, N.L.; Sappan, M.; Mongkolsamrit, S.; Saidaengkham, S. Hopane triterpenes as chemotaxonomic markers for the scale insect pathogens *Hypocrella* s. lat. and *Aschersonia*. *Mycol. Res.* **2009**, *113*, 491–497. [CrossRef]
- Isaka, M.; Sappan, M.; Luangsa-ard, J.J.; Hywel-Jones, N.L.; Mongkolsamrit, S.; Chunhametha, S. Chemical taxonomy of *Torrubiella* s. lat.: Zeorin as a marker of *Conoideocrella*. *Fungal Biol.* 2011, 115, 401–405. [CrossRef]
- 62. Saepua, S.; Kornsakulkarn, J.; Choowong, W.; Supothina, S.; Thongpanchang, C. Bioxanthracenes and monomeric analogues from insect pathogenic fungus *Conoideocrella luteorostrata* Zimm. BCC 31648. *Tetrahedron* 2015, *71*, 2400–2408. [CrossRef]
- 63. Saepua, S.; Kornsakulkarn, J.; Somyong, W.; Laksanacharoen, P.; Isaka, M.; Thongpanchang, C. Bioactive compounds from the scale insect fungus *Conoideocrella tenuis* BCC 44534. *Tetrahedron* **2018**, *74*, 859–866. [CrossRef]
- 64. Isaka, M.; Palasarn, S.; Choowong, W.; Mongkolsamrit, S. Conoideoxime A, antibacterial bis-oxime prenyl-tryptophan dimer from the whitefly pathogenic fungus *Conoideocrella luteorostrata* BCC 76664. *Tetrahedron Lett.* **2019**, *60*, 154–156. [CrossRef]
- 65. Isaka, M.; Palasarn, S.; Rachtawee, P.; Srichomthong, K.; Mongkolsamrit, S. Paecilodepsipeptide D, a cyclohexadepsipeptide from cultures of the whitefly pathogenic fungus *Conoideocrella luteorostrata* BCC 76664. *Phytochem. Lett.* **2019**, *34*, 65–67. [CrossRef]
- 66. Sadorn, K.; Saepua, S.; Boonyuen, N.; Komwijit, S.; Rachtawee, P.; Pittayakhajonwut, P. Phenolic glucosides and chromane analogs from the insect fungus *Conoideocrella krungchingensis* BCC53666. *Tetrahedron* **2019**, *75*, 3463–3471. [CrossRef]
- 67. Yoneyama, T.; Iguchi, M.; Yoshii, K.; Elshamy, A.I.; Ban, S.; Noji, M.; Umeyama, A. Xanthone glucoside from an insect pathogenic fungus Conoideocrella luteorostrata NBRC106950. Nat. Prod. Res. 2022, 36, 3701–3704. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.