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Abstract: Animal models are frequently used as surrogates to understand human disease. In the
fungal pathogen Cryptococcus species complex, several variations of a mouse model of disease were
developed that recapitulate different aspects of human disease. These mouse models have been
implemented using various inbred and outbred mouse backgrounds, many of which have genetic
differences that can influence host response and disease outcome. In this review, we will discuss the
most commonly used inbred mouse backgrounds in C. neoformans infection models.
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1. Introduction

The use of inbred laboratory mouse strains is essential for broadening our under-
standing of the host response to Cryptococcus infection. However, many of the common
mouse strains that are used for these studies have genetic variations that impact phenotype,
especially as it relates to immune response [1]. The accurate interpretation of experimental
results requires a comprehensive understanding of the impact a mouse genotypic back-
ground has on the overall host response during C. neoformans infections. While there
are numerous mouse strains that are currently being utilized in the research community,
we will focus our discussion on the commonly used inbred strains in C. neoformans re-
search: C57BL/6J, A/J, BALB/c, CBA/J, and DBA/2J. We will discuss key phenotypic and
genotypic variances in each inbred strain that may affect the host response to C. neofor-
mans infection. Finally, we will provide some general recommendations for choosing the
appropriate inbred strain(s) for a proposed study.

2. Mouse Models of Cryptococcus Disease and Their Relationship to the Damage-
Response Framework

First proposed by Casadevall and Pirofski in 1999, and then revisited in 2017 for
C. neoformans specifically, the damage-response framework is a parabola used to predict
disease outcome based on an individual’s immune status (Figure 1) [2,3]. In the clinical
setting, the damage-response framework is used to manage cryptococcal meningitis in
immunocompromised individuals, which is often a delicate balance between antifungal
therapy and immune-enhancing therapy [4]. From a research standpoint, we can also
use the principles set by the damage-response framework to postulate how the host im-
mune status can drive disease pathogenesis in C. neoformans, whereby a dysregulated
Th2-dominant response drives fungal dissemination and a dysregulated Th1-dominant
response drives rampant inflammation [4–6] (Figure 1). However, the pathophysiology
behind the progression from latent C. neoformans infection to cryptococcal meningitis to
cryptococcal immune reconstitution inflammatory syndrome (IRIS) remains limited and
reliant on clinical observations [6–8].

For many years, researchers relied on a mouse inhalation model of lethal C. neoformans
infection to study the host and pathogen dynamics in cryptococcal meningitis [9–16].
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Additional mouse models were later developed to study other aspects of the cryptococcal
damage response framework. To our knowledge, the study of cryptococcal IRIS is limited
to only two models; one involving the intravenous injection of a high inoculum dose of
C. deneoformans 52D into C57BL/6J mice [17] and the second involves the adoptive transfer
of CD4 T-cells into C. deneoformans 1841 [18] or C. neoformans H99 [19] infected RAG1-/-
mice. On the other hand, the development of latent mouse models was dependent on
genetically engineered C. neoformans strains to replicate certain aspects of latent infection,
such as an attenuated C. neoformans ∆gcs1 strain to study granuloma formation [20,21] or an
H99 strain expressing IFNγ to study fungal clearance [22–24]. In recent years, a latent mouse
model was also developed using clinical C. neoformans isolates [25]. Altogether, these mouse
models of Cryptococcus disease allow researchers to interrogate the pathophysiology of
C. neoformans infection in a comprehensive manner.
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Figure 1. Damage-response framework parabola in Cryptococcus infections. Y-axis shows disease
outcome and X-axis shows host immune status, whereby a dysregulated immune response and im-
munocompromised state is hypothesized to promote fungal dissemination (cryptococcal meningitis),
and dysregulated Th1 activity and immunocompetent state is hypothesized to promote pathogenic
host inflammation or immune reconstitution inflammatory syndrome (cryptococcal IRIS). And, a
balanced Th1/Th2 response is hypothesized to control C. neoformans infection (latency). Cryptococcal
meningitis can be modeled by lethal C. neoformans infection [9–16]; latency can be modeled by the
latent C. neoformans model using clinical isolates [25]; and cryptococcal IRIS can be modeled by either
intravenous injection of a high inoculum dose of C. deneoformans [17], or adoptive transfer of CD4
T-cells into C. deneoformans 1841 [18] or C. neoformans H99 [19] infected RAG1-/- mice. Figure adapted
from (Pirofski and Casadevall, 2017 [3]; Skipper et al., 2019 [4]).

3. C57BL/6J Inbred Mouse Strain

The C57BL/6J mouse strain originated from the Jackson Laboratory (JAX) and was
the first sequenced mouse genome [26,27]. A sub-strain of C57BL/6J mice are C57BL/6N
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mice, which originated from C57BL/6J breeders that were shipped to the National Insti-
tutes of Health [26]. There are key genetic and phenotypic differences between C57BL/6J
and C57BL/6N mice that make it inadvisable to use both interchangeably [28–30]. One
notable aspect of C57BL/6J mice is their impaired glucose tolerance, making this strain
a good model for studying type 2 diabetes [31]. These mice also have a high suscepti-
bility to diet-induced obesity and atherosclerosis [32]. In comparison to the other inbred
mouse strains discussed here, C57BL/6J mice have an intact complement pathway [33],
and have a full repertoire of neuronal apoptosis inhibitory proteins (NAIPs) that are in-
volved in anti-apoptosis, phagocytosis, and inflammasome activation [34] (Table 1). Finally,
C57BL/6J mice are also prone to hereditary hydrocephalus [35], which can be a potential
confounding factor for C. neoformans infection models. We recommend checking brain
fungal burden or blood cryptococcal antigen titers [25] in all C57BL/6J mice infected with
C. neoformans that develop a domed head (or focal neurological symptoms) to confirm
cryptococcal meningitis.

Table 1. Genetic mutations associated with immune response in C57BL/6J, A/J, BALB/c, CBA/J,
and DBA/2J mice.

Strains Complement C5 NOD-like Receptor Proteins Neuronal Apoptosis
Inhibitory Proteins (NAIPs)

C57BL/6J Sufficient Nlrp1bR/R—resistant to
anthrax lethal toxin

Intact Naip1, Naip2, Naip5,
and Naip6

A/J Hc0 Nlrp1bR/R—resistant to
anthrax lethal toxin Defective Naip5 allele

BALB/c Sufficient
Nlrp1bs/s—anthrax lethal

toxin induces caspase-1 and
macrophage lysis

No known
deficiencies/mutations;

intact Naip4

CBA/J Sufficient
Nlrp1bs/s—anthrax lethal

toxin induces caspase-1 and
macrophage lysis

No known
deficiencies/mutations

DBA/2J Hc0 Nlrp1bR/R—resistant to
anthrax lethal toxin

No known
deficiencies/mutations

Historically, the underlying immune background of the C57BL/6J strain was thought
to be Th1-skewed based on its splenocyte response to Concanavalin A (Con A) [36]. How-
ever, those initial findings may have contributed to an over-generalization of the host
response against diverse antigenic insults. For instance, in the allergic airway disease
model, C57BL/6J mice challenged and sensitized with ovalbumin (OVA) can generate
a Th2-skewed response, albeit weaker compared to that of BALB/c mice [37]. Indeed,
the host immune response in C57BL/6J mice is highly dependent on C. neoformans strain-
specific differences. One study found that C57BL/6J mice intratracheally infected with
C. deneoformans 52D had a Th2-skewed immune response with an increased production
of cytokines associated with the Th2 phenotype, pulmonary eosinophilia, and elevated
serum IgE [38]. Similarly, C. neoformans laboratory strains, such as KN99α, also elicit a
Th2-dominant response in C57BL/6J mice in the lethal model [10,11]. However, in the latent
C. neoformans infection model, C57BL/6J mice infected with the clinical isolate UgCl223
were able to survive for prolonged periods of time, contain yeast cells within pulmonary
granulomas, and had a Th1-skewed immune response [25]. Thus, C57BL/6J mice are a
unique mouse strain that has a Th2-skewed response to lethal C. neoformans infections, but
a Th1-skewed response to latent C. neoformans infections (Table 2).
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Table 2. Immune polarization against C. neoformans and C. deneoformans in C57BL/6J, A/J, BALB/c,
CBA/J, and DBA/2J mice and recommendations for future studies.

Strains
Immune

Polarization against
C. neoformans

Immune
Polarization against

C. deneoformans

Relative Survival When
Infected with

Cryptococcus Strains *
Recommended Studies

Th2 polarized
response against

KN99α

Survival
comparable to BALB/c against

KN99α at 104 CFUs **
C57BL/6J Th1 polarized

response against
UgCl223

Th2 polarized
response against 52D More susceptible to 52D at

104 CFUs compared to
BALB/c

Best for studying the host
immune response against

different Cryptococcus strains

A/J Unknown Unknown
“Sensitive” to

survival against B3502 at
5 × 106 CFUs intravenously

Best for studying the
influence of Cryptococcus
virulence and genotype on

disease outcome
Comparable to C57BL/6J and

BALB/c against KN99α at
104 CFUs

BALB/c
Th2 polarized

immune response
against H99

Th1 polarized against
52D More resistant

compared to C57BL/6J against
52D at 104 CFUs

Best for studying the host
immune response against

different Cryptococcus strains

More susceptible compared to
C57BL/6J and BALB/c against

KN99α ***
More resistant

compared to BALB/c against
52D at 104 CFUs

CBA/J Unknown Th1 polarized against
52D at 104 CFUs

More susceptible compared to
BALB/c against 52D at

105 CFUs

Best for studying host genes
that confer resistance versus

susceptibility against
Cryptococcus strains

DBA/2J Unknown Unknown
“Sensitive” to

survival against B3502 at
5 × 106 CFUs intravenously

Best for comparison against
A/J mice to isolate
host-specific factors

contributing to
Cryptococcus virulence

* Unless otherwise stated, all infections were performed either intranasally or intratracheally. ** When appropriate,
colony forming units (CFUs) were provided for comparison. *** CBA/J mice were infected with 105 CFUs, but
C57BL/6J and BALB/c mice were infected with 104 CFUs.

Of note, vaccine discovery and development studies have observed that the C57BL/6J
mouse strain has a tendency of generating a milder inflammatory response against C.
neoformans compared to other mouse strains. C57BL/6J mice vaccinated with a C. neofor-
mans cda1∆2∆3∆ chitosan-deficient strain have demonstrably reduced protection against
C. neoformans KN99α infection compared to BALB/c, A/J, and CBA/J mice [39], even
though unvaccinated C57BL/6J mice and BALB/c mice have comparable median sur-
vival times when infected with C. neoformans KN99α [40]. The same phenomenon is also
observed with glucan particle-based vaccines, where the efficacy against C. neoformans
KN99α infection in C57BL/6J mice is lower compared to BALB/c mice [41]. While these
findings suggest that the inflammatory response against C. neoformans infection in the
C57BL/6J mouse strain may be less robust compared to the BALB/c mouse strain, the
implications of this phenomenon are unclear. Regardless, based on their well-characterized
genetic background and diverse repertoire of available immunological tools, the inbred
C57BL/6J mouse strain remains an ideal model for studying the host immune response
against C. neoformans infection (Table 2).

4. A/J Inbred Mouse Strain

A/J mice are a widely used model in cancer and immunology research and were
the first inbred mouse strain used for the C. neoformans inhalation infection model [16].
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Unlike C57BL/6J mice, A/J mice are resistant to diabetes and obesity, exhibiting both
insulin resistance and glucose intolerance [42,43]. Since A/J mice are dysferlin-deficient,
they are also a suitable model for studying dysferlinopathies, such as Duchenne muscular
dystrophy [44,45]. From a pulmonary standpoint, A/J mice are uniquely susceptible to
lung tumorigens, such as those found in tobacco smoke, making them an ideal model
for studying lung tumorigenesis [46,47]. In addition, A/J mice are highly reactive to
methacholine in the absence of antigen sensitization and airway challenge, and have
been used to study the naïve airway hyperresponsiveness that is associated with asthma
development [48]. Interestingly, A/J mice that are sensitized and challenged with sheep red
blood cells or OVA prior to methacholine challenge will generate a Th2-skewed pulmonary
immune response [49]. The most unique aspect of A/J mice are their genetic background,
in that they have a loss-of-function frameshift mutation in their complement component 5
(C5) (Hc0) [33]. In addition, these mice have a defective NAIP5 allele (Naip5) and are
resistant to anthrax lethal toxin (Nlrp1bR/R) [34] (Table 1). Altogether, these aspects make
the inbred A/J mouse strain an enticing model for studying early innate immune responses.

Although the immune polarization of A/J mice in response to C. neoformans infection
is not well characterized (Table 2), many of the immunology studies that use A/J mice
have capitalized on their C5 complement deficiency. The majority of published studies
using A/J mice have focused on the protective effect of monoclonal antibodies against
C. neoformans infection [50–55], vaccine discovery with a heat killed C. neoformans fbp1∆ F-
box protein-deficient strain [56,57], a heat killed C. neoformans cda1∆2∆3∆ chitosan-deficient
strain [39], and glucuronoxylomannan-protein conjugates [58]. From a host response per-
spective, an early study looking at survival characteristics of different inbred mouse strains
categorized A/J mice as “sensitive” following intravenous infection with C. deneoformans
B3502 [59]. In comparison to other inbred mouse strains including C57BL/6J and BALB/c
mice, A/J mice also seem to have poor antibody responses to glucuronoxylomannan (GXM)
compared to other inbred mouse strains, possibly suggesting that the humoral response
generated against C. neoformans infection is different in A/J mice [58]. That being said, the
efficacy of different monoclonal antibody isotypes against GXM is comparable in terms
of survival for both A/J and C57BL/6J mice during C. neoformans infection [53]. Overall,
these findings demonstrate the utility of the inbred A/J mouse strain in C. neoformans
vaccination development.

Recently, a study used A/J mice to assess differential virulence in C. neoformans clinical
isolates and found that the inhalation infection model in A/J mice was able to recapitulate
patient outcomes [60]. A/J mice infected with different clinical isolates also had differential
median survival rates, showing that disease outcome in A/J mice depends on C. neoformans
strain-specific genotype. Thus, A/J may be ideal models for elucidating C. neoformans
virulence factors, as evidenced by studies on melanin production [61] and antiphagocytic
proteins [62]. We recommend that A/J mice be used to study the influence of the Crypto-
coccus genotype on disease outcomes, especially given their ability to recapitulate patient
outcomes (Table 2).

5. BALB/c Inbred Mouse Strain

BALB/c mice are well-known for their ability to form plasmacytomas following min-
eral oil injection, which is used in the production of monoclonal antibodies [63]. In addition,
BALB/c mice are predisposed to dystrophic cardiac calcinosis, which is the mineralization
of cardiac tissue, and are used as a model to study rare calcinotic diseases in humans [64].
Studies also found that BALB/c mice are susceptible to murine encephalomyelitis virus-
induced demyelinating disease [65]. From a pulmonary standpoint, BALB/c mice are
useful asthma models in antigen challenge experiments and develop a Th2-skewed re-
sponse [36,37,66].

Like with C57BL/6J mice, the immune response to C. neoformans infection has been
extensively studied in BALB/c mice. When infected with C. neoformans H99, BALB/c mice
develop a Th2-skewed pulmonary immune response with elevated Th2-associated cytokine
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production [13,67]. However, when infected with C. deneoformans 52D, BALB/c mice are
able to clear the infection and develop a Th1-skewed immune response with increased
production of cytokines associated with the Th1-phenotype, decreased IL-10 production,
and no significant elevation in systemic IgE production [38,68]. In addition, the fungal
burden in BALB/c mice infected with C. deneoformans 52D is significantly lower compared
to C57BL/6J mice, and these findings seem to correlate with an increased lymphocytic
CD4 response in BALB/c mice versus an increased granulocytic eosinophil response in
C57BL/6J mice [38]. It is intriguing that C. deneoformans infection in C57BL/6J mice causes a
Th2-skewed response, whereas the same infection in BALB/c mice results in a Th1-skewed
response. Thus, we can infer from the BALB/c mouse inhalation and intratracheal infection
models that Cryptococcus virulence and host survival outcome are dependent on both host
and pathogen-related factors.

One aspect of host immunity against C. neoformans in BALB/c mice that is well-studied
is IL-33 and its receptor ST2. IL-33 is a pleiotropic cytokine that is primarily produced by
alveolar epithelial cells during C. neoformans and C. deneoformans infection [69]. In BALB/c
mice, the IL-33 receptor ST2 is responsible for driving the Th2 response and is required for
IL-5 and IL-13 production [12,70,71]. In addition, regulatory CD4 T-cells (Tregs) expressing
ST2 are immunosuppressive and accumulate during the early phases of C. deneoformans
52D infection (up to 7 days post-infection), but are then replaced by more inflammatory
Tregs as the infection progresses (past 14 days post-infection) [72]. Interestingly, these
findings were only partially replicated in C57BL/6J mice, where only IL-33 deficiency, but
not ST2 deficiency, results in decreased fungal burden and a reduction in Th2 cytokines
during C. neoformans H99 infection [73]. While the differences in host response between
BALB/c and C57BL/6J mice are likely multifactorial, these studies suggest that IL-33 and
its receptor ST2 may be a key factor in driving the differential host response between
BALB/c and C57BL/6J mice and should be considered when choosing an appropriate
inbred mouse model.

From a genetic standpoint, BALB/c mice are C5 complement sufficient, are sensitive
to anthrax lethal toxin (Nlrp1bS/S), and do not have any known deficiencies or mutations
associated with the NAIP complex [33,34] (Table 1). Overall, the immune response to differ-
ent Cryptococcus species in BALB/c mice seems to depend on the host genetic background
and pathogen strain genotype. Like with C57BL/6J mice, BALB/c mice are an ideal strain
for studying the host immune response against different C. neoformans strains, and may
serve as a useful juxtaposition against C57BL/6J mice when delineating host-specific versus
pathogen-specific factors that affect Cryptococcus virulence (Table 2).

6. CBA/J Inbred Mouse Strain

When immunized with thyroglobulin emulsified in complete Freund’s adjuvant, CBA/J
mice develop experimental thyroiditis and are a well-characterized model for Hashimoto’s
disease or granulomatous experimental autoimmune thyroiditis (G-EAT) [74,75]. It has
been previously shown that G-EAT progression is characterized by a pro-inflammatory
cytokine response and G-EAT resolution required IL-10 [76]. CBA/J mice are also good
models for studying hearing and deafness, as they develop hearing loss as they age [77].

In CBA/J mice, Cryptococcus infection results in somewhat conflicting findings. In
one study, CBA/J mice were less resistant to intratracheal C. deneoformans 52D infection
(at starting inoculums of 105 or 106 colony forming units (CFUs)) compared to BALB/c
mice and infected CBA/J mice had higher brain fungal burden, and lower serum IgM
and IgG in response to GXM [68]. However, in a separate study, CBA/J mice were more
resistant to intratracheal C. deneoformans 52D infection when infected with a lower 104 CFU
inoculum dose compared to BALB/c mice, with diminished eosinophil recruitment [78].
These findings were also corroborated in another study where the intratracheal infection
of CBA/J mice with C. deneoformans 52D (at the same 104 CFU inoculum dose) resulted in
prolonged survival, pulmonary neutrophilia, and increased IFNγ and IL-17 production
in the lungs [79]. These somewhat conflicting results suggest that virulence outcomes
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in CBA/J mice may be dose-dependent and is based on the starting inoculum dose of
C. deneoformans. Interestingly, CBA/J mice intranasally infected with C. neoformans KN99α
at a starting inoculum dose of 105 CFUs also have a shorter median survival time compared
to C57BL/6J and BALB/c mice infected with 104 CFUs of KN99α [40]. Although, the
decreased median survival in CBA/J mice could also simply be due to the higher inoculum
dose of C. neoformans KN99α compared to C57BL/6J and BALB/c mice. Overall, these data
seem to suggest that CBA/J mice have a Th1-polarized response against C. deneoformans
52D infection when infected intratracheally at 104 CFUs (Table 2).

In terms of genetic polymorphisms, CBA/J mice are C5 complement sufficient, sensi-
tive to anthrax lethal toxin (Nlrp1bS/S), and do not have any known deficiencies or mutations
associated with the NAIP complex [34] (Table 1). Interestingly, researchers have identified
three chromosomal regions in CBA/J mice, Cnes1-3, which are associated with lung C. dene-
oformans 52D fungal control. In addition, the insertion of the CBA/J Cnes2 chromosomal
region into C57BL/6J mice results in a Th1-skewed response [80,81]. In a similar study,
another chromosomal region in CBA/J mice, Cnes4, confers resistance to C. deneoformans
52D infection [79]. However, it is still unclear what gene(s) within the Cnes2 or Cnes4
regions are responsible for resistance against Cryptococcus infection and the mechanisms
by which these regions promote a Th1-skewed response. Given its intrinsic resistance
against C. deneoformans 52D infection (albeit at a specific inoculum dose of 104 CFUs), the
CBA/J mouse strain could be used to study host resistance versus susceptibility against
other C. neoformans strains (Table 2). In addition, CBA/J mice might be an ideal model for
studying the damage-response framework, as evidenced by the differential host response
that is dependent on the starting inoculum dose for the same C. deneoformans strain.

7. DBA/2J Mouse Strain

DBA/2J mice are one of the oldest inbred strains of mice, and are widely used in car-
diovascular biology, neurobiology, and sensorineural research. The DBA/2J strain is also an
ideal model for glaucoma research, due to two mutations in Gpnmb and Tyrp genes for iris
pigment dispersion and iris stromal atrophy, respectively, which results in the age-related
elevation of intraocular pressure and development of glaucomatous pathology in about 70%
of mice [82]. Like in the other inbred mouse strains discussed in this review, the underlying
immune polarization of DBA/2J mice was also derived from an early study that demon-
strated a mixed Th1/Th2 phenotype based on splenocyte response to Con A [36]. In terms
of the pulmonary immune milieu, DBA/2J mice seem to have an increased susceptibility to
influenza virus compared to C57BL/6J mice, with increased pro-inflammatory cytokine
production and increased viral replication in respiratory cells [83–85]. The implications of
these findings on Cryptococcus infection in DBA/2J is unknown.

Out of all the inbred mouse strains discussed here, DBA/2J mice are the least character-
ized in terms of host response to Cryptococcus infection. An early study looking at survival
characteristics of different inbred mouse strains categorized DBA/2J mice as “sensitive” fol-
lowing intravenous infection with C. deneoformans B3502 [59]. Like A/J mice, DBA/2J mice
are C5 complement deficient (Hc0) and are resistant to anthrax lethal toxin (Nlrp1bR/R) [33].
However, DBA/2J mice are similar to C57BL/6J mice in that they have no known NAIP
deficiencies or mutations [34] (Table 1). As with A/J mice, the majority of studies utilize
DBA/2J mice to elucidate the role of C5 complement in the host immune response [86].
From that perspective it is unsurprising that DBA/2J, like A/J mice, are “poor respon-
ders” with low antibody titers against GXM [87]. Although, unlike A/J mice, DBA/2J
mice treated with monoclonal antibodies against GXM are more resistant to C. neoformans
infection compared to BALB/c and C57BL/6J mice [88]. Interestingly, DBA/2J mice treated
with a monoclonal antibody specific to GXM do not recruit phagocytes to the lung, whereas
C5-sufficient BALB/c mice did have local phagocytic recruitment during C. neoformans
infection [89]. Furthermore, a separate study found that peritoneal macrophages isolated
from DBA/2J mice had poor phagocytic and fungistasis activity against Cryptococcus yeast
cells [90]. These findings suggest that the early innate response to C. neoformans infection
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in DBA/2J mice is dependent on the C5 complement pathway, but can be overcome by
antibody-mediated opsonization [91].

Overall, the DBA/2J mouse strain could serve as a useful comparison to A/J in
future C. neoformans clinical isolate studies, since the replication of disease and immune
phenotypes in DBA/2J mice compared to A/J mice would confirm that complement and/or
Nlrp1bR/R resistance to anthrax lethal toxin is associated with C. neoformans virulence
(Table 2).

8. Recommendations for Inbred Mouse Strains Based on C. neoformans Immunology
Studies Published since 2015

Since 2015, the majority of murine model studies on innate and adaptive immunity
in C. neoformans (and C. deneoformans) infection have utilized C57BL/6J mice (Table 3). In
contrast, the number of studies using BALB/c mice are comparatively smaller and focus
mainly on innate immunity (Table 3). In addition, BALB/c and CBA/J mice have been
popular models in recent years for vaccine development and discovery, perhaps due to
the relatively stronger protective response against C. neoformans following vaccination
compared to C57BL/6J mice [39] (Table 3). DBA/J mice seem to have largely fallen out of
favor for studying the host inflammatory response (Table 3). Based on these trends, the
C57BL/6J mouse strain remains a popular choice for the study of the host response against
C. neoformans infection. However, the A/J, BALB/c, CBA/J, and even DBA/J mouse strains
can serve as a useful tool for identifying host factors that are absent or minimally elicited in
C57BL/6J mice.

Table 3. Murine infection studies on host immunity in C. neoformans and C. deneoformans published
since 2015.

Strains Innate Immune
Response *

Adaptive Immune
Response * Other

C57BL/6J 43 Publications
[73,92–133]

8 Publications
[9–11,17,134–137]

18 Publications
[18–20,25,39,41,56,57,81,138–146]

A/J 0 Publications 0 Publications 3 Publications
[39,56,57]

BALB/c 9 Publications
[69,71,72,147–152]

1 Publication
[153]

15 Publications
[18,39–41,56,138,142,143,154–160]

CBA/J 1 Publication
[161] 0 Publications 11 Publications

[20,39,40,56,81,140,144,145,162–164]
DBA/2J 0 Publications 0 Publications 0 Publications

* Studies were identified via PubMed using the key terms “(Cryptococcus neoformans) AND (mouse OR murine)
AND (immune or immunology)”. Of the 1300 results, only peer-reviewed primary research papers published in
2015 or later that used C57BL/6J, A/J, BALB/c, CBA/J, or DBA/2J inbred mouse strains for host immunity studies
were included. Studies that used hybrid mice (cross of two inbred strains) or had ambiguous characterization of
inbred sub-strains were excluded.

When choosing an appropriate mouse model, we recommend that researchers closely
align the key characteristics of each inbred mouse strain with the goals of their proposed
study. Compared to all other inbred mouse strains, the C57BL/6J mouse strain is the most
well-characterized in terms of host response against C. neoformans infection. Therefore,
proposed studies on the host immune response, especially those that aim to overturn
established dogma in the Cryptococcus field, should use the C57BL/6J strain, or include it
in addition to other models. The host response of the BALB/c strain against C. neoformans is
the second-most well characterized and this strain can often elicit a stronger inflammatory
response against C. neoformans compared to C57BL/6J mice. We would also recommend the
BALB/c strain for studying the host immune response against C. neoformans infection, and
this strain should be considered especially if researchers have difficulty eliciting a strong
inflammatory response in C57BL/6J mice. Historically, vaccine discovery and development
studies have used multiple inbred mouse strains to demonstrate efficacy. Based on the
differential immune polarization of the inbred mouse strains discussed in this review, we
would continue to recommend at least two inbred mouse strains be used in the initial
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characterization of vaccines or immunization strategies against C. neoformans. Proposed
studies that aim to compare host response between different clinical or environmental
C. neoformans isolates could consider using A/J mice, as this inbred mouse strain has been
found to reliably recapitulate patient outcomes. Although the use of the DBA/2J mouse
strain in C. neoformans research has declined significantly, its unique genetic background
may yield useful information when used in conjunction with other inbred mouse strains.
Finally, we recommend that all future Cryptococcus studies provide appropriate rationale
for (1) mouse strains, (2) C. neoformans strains, (3) starting inoculum dose, and (4) mode of
infection (i.e., intranasal vs. intratracheal vs. intravenous vs. intraperitoneal).

9. Outbred Mouse Strains

Outbred mouse strains are known for their genetic heterozygosity and variability
and are thought to be a better mimic of the variability seen in human populations. Many
outbred mouse strains have been derived; two of the more commonly used strains in
Cryptococcus research are the OF1 and CD-1 strains. The CD-1 strain is derived from
Lynch’s Swiss mice [165]. The OF1 strain is derived from the CF-1 outbred stock (which is
not descended from Swiss mice) and subsequently acquired by Charles River Laboratories
France, hence the name Oncine France 1 (OF1) [166]. Both the CD-1 and OF1 mouse
strains have been historically used to study a wide range of host- and pathogen-specific
aspects of C. neoformans virulence, including immunology, pathophysiology, pharmacology,
and toxicology.

While these studies have not yet been attempted in Cryptococcus research, outbred
mouse strains could potentially be used to selectively breed for phenotypes of interest,
such as a specific type of immune response or increased resistance against infection [167].
Unlike inbred mouse strains, outbred mouse strains also have polymorphic loci and are
ideal models for QTL mapping which could allow researchers to identify gene alleles that
affect survival versus susceptibility against C. neoformans infection [167,168]. Thus, the
value that outbred mouse strains bring to Cryptococcus research lies in their ability to
parse out the complex host genetic networks that influence pathogenesis, rather than the
characterization of host immune phenotypes that are easily affected by minute changes in
the host genetic background.

Therefore, we recommend extreme caution in using outbred mice to study the immune
response against Cryptococcus species or strains. Outbred strains by definition have labile
genetic backgrounds and the genotype of each individual mouse in a study is frequently
unknown [167], thus it would be extremely difficult to reproduce and precisely characterize
the host immune response to specific C. neoformans strains. Outbred strains are also at an
increased risk for genetic drift and bottleneck events, requiring stringent breeding schemes
to maintain an appropriate degree of genetic heterogeneity [169]. It is also important to
note that there are no standard genetic quality control methods for maintaining outbred
mouse colonies; commercial breeders often do not publish their methods for monitoring
genetic diversity in their outbred stocks and institutional outbred colonies are subject to a
high degree of variability in quality control [167].

Most critically, outbred strains require larger sample sizes in order to generate enough
statistical power compared to equivalent inbred mouse studies [167]. As such, the physio-
logical relevance of outbred strains to human genetic diversity should not be used as the
sole argument for their inclusion into an experimental study. Instead, many researchers
propose that an experimental study utilizing more than one inbred strain and a factorial
experimental design would require a smaller sample size and yield equivalent statistical
significance compared to a study with a single outbred strain [167,170]. Thus, it would be
cost-prohibitive, time-consuming, and unethical to use outbred strains without appropriate
rationale, stringent experimental design, and the careful monitoring of mouse colonies.
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10. Conclusions

While the C57BL/6J, A/J, BALB/c, CBA/J, and DBA/2J inbred mouse strains are
used extensively in Cryptococcus research, many of these mouse strains have yet to be
fully characterized in the context of C. neoformans infection. Thus, it is difficult to draw
definitive conclusions between studies that are performed with different mouse back-
grounds, especially as it relates to the host immune response. However, compared to
outbred mouse strains, inbred mouse strains are a more ideal model for studying the host
response to C. neoformans infections because the genetic homozygosity of these strains
allows researchers to better control for complex host variables.
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