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Abstract: Candidemia is a major cause of morbidity and mortality in health care settings, and its
epidemiology is changing. In the last two decades, the proportion of non-albicans Candida (NAC)
yeasts in candidemia has increased. These yeasts more often display resistance to common antifungals.
In many western countries, candidemia is mainly caused by susceptible C. albicans, while in resource-
limited countries, including Iran, the candidemia species distribution is studied less often. Here, we
investigated the species distribution, resistance levels, and characteristics of patients with candidemia
in five hospitals in Mashhad (northeast Iran) for two years (2019–2021). Yeast isolates from blood
were identified with MALDI-TOF MS and subjected to antifungal susceptibility testing (AFST) using
the broth microdilution method, while molecular genotyping was applied to Candida parapsilosis
isolates. In total, 160 yeast isolates were recovered from 160 patients, of which the majority were
adults (60%). Candidemia was almost equally detected in men (48%) and women (52%). Almost
half of patients (n = 67, 49%) were from intensive care units (ICUs). C. parapsilosis (n = 58, 36%) was
the most common causative agent, surpassing C. albicans (n = 52, 33%). The all-cause mortality rate
was 53%, with C. albicans candidemia displaying the lowest mortality with 39%, in contrast to a
mortality rate of 59% for NAC candidemia. With microbroth AFST, nearly all tested isolates were
found to be susceptible, except for one C. albicans isolate that was resistant to anidulafungin. By
applying short tandem repeat (STR) genotyping to C. parapsilosis, multiple clusters were found. To
summarize, candidemia in Mashhad, Iran, from 2019 to 2021, is characterized by common yeast
species, in particular C. parapsilosis, for which STR typing indicates potential nosocomial transmission.
The overall mortality is high, while resistance rates were found to be low, suggesting that the high
mortality is linked to limited diagnostic options and insufficient medical care, including the restricted
use of echinocandins as the first treatment option.

Keywords: candidemia; Candida albicans; antifungal resistance; genotyping; short tandem repeats;
Candida parapsilosis
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1. Introduction

Candidemia is a growing concern in hospital settings, posing every year a serious
health threat to hundreds of thousands of patients worldwide [1,2]. It is one of the most
common bloodstream infections, both in adult and pediatric patients. The species Candida
albicans, C. glabrata (also known as Nakaseomyces glabrata), C. parapsilosis, C. tropicalis, and
C. krusei (also known as Pichia kudriavzevii) are the five leading causative agents of can-
didemia, accounting for approximately 85–90% of candidemia [1,3]. However, these five
most common species display notable regional differences. C. albicans is the most common
etiological agent of candidemia in the United States and most European countries, although
its proportion as compared to other Candida species is decreasing in the last decade [4–6].
Among these five common species, C. albicans, together with C. tropicalis, is regarded as
the most virulent species, while it shows the lowest rate of antifungal resistance [1,7–9].
C. glabrata is the second most common cause of candidemia in the USA and many North
and West European countries [4,5,10]. Moreover, it is the first cause of candidemia in inten-
sive care units and in patients with hematological malignancies and solid tumors [11]. The
third most common yeast species is C. parapsilosis, especially prevalent in South European
countries [12]. This yeast can easily spread through the hands of healthcare workers, and
azole resistance is frequently observed. Additionally, C. parapsilosis has shown prolonged
survival within hospital wards and can be the source of clonal outbreaks [13]. Another
common Candida species is C. tropicalis, which is associated with the highest mortality
rates among Candida species and is the first or second cause of candidemia in developing
countries, such as India and Brazil, with resistance steadily increasing [9,14,15]. In Iran, the
majority of studies report C. albicans as most common in candidemia, although other yeasts
are emerging, as well as antifungal resistance [16–18].

Depending on the species, the mortality rate may vary from approximately 30 to
70% [1]. The increase in mortality is associated with an increase in non-albicans Candida
(NAC) yeast species. A likely explanation is resistance to the limited number of antifungal
drugs available to treat candidemia in developing countries [6]. Especially the reduced
susceptibility of the NAC yeast species C. glabrata, C. tropicalis, and C. parapsilosis to flucona-
zole, the most inexpensive and readily available antifungal agent used to treat candidemia,
is highly problematic in these countries [19]. Moreover, azole-resistant C. parapsilosis often
spread clonally and are persistent within healthcare environments [20]. This problem is
further aggravated by the limited use of accurate identification techniques in Iran, such as
sequencing or matrix-assisted laser desorption ionization time-of-flight mass spectrometry
(MALDI-TOF MS), which leads to an unselective application of antifungals, inducing the
development and persistence of resistant species [1,6].

These issues emphasize the importance of conducting epidemiological studies to
explore species distribution, the burden of antifungal resistance, and to characterize the
clinical profile of patients with candidemia. Considering the limited number of studies on
candidemia in Iran, we performed a two-year retrospective candidemia study in Mashhad,
Iran, in which we collected clinical data of patients, assessed species distribution by MALDI-
TOF, and determined their antifungal susceptibility pattern, along with short tandem repeat
(STR) genotyping of C. parapsilosis, to improve our insights on candidemia.

2. Materials and Methods
2.1. Study Design and Sample Processing

This study retrospectively included patients with candidemia admitted to five hos-
pitals in Mashhad, Iran, including Ghaem (800 beds), Emam Reza (948 beds), 22 Bahman
(175 beds), Arya (100 beds), and Dr. Sheikh (150 beds), during July 2019 to July 2021. All
centers were multi-specialty hospitals, except for Dr. Sheikh, which is a pediatric hospital.
Blood samples were inoculated in Bactec 9120 blood culture bottles (Becton Dickinson,
Spark, MD, USA). From positive bottles, 150 µL was streaked on Sabouraud dextrose
agar (SDA, Merck, Darmstadt, Germany) and CHROMagar Candida (CHROMagar, Paris,
France) plates, which were subsequently incubated at 37 ◦C for 24–48 h. Colony mor-
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phology (color, shape, and size) was visually inspected to identify samples potentially
harboring more than one species. Colonies with different morphologies were transferred
to SDA plates, incubated at 37 ◦C for 24–48 h, and subjected to further analyses. All yeast
isolates were identified using a microflex LT MALDI-TOF MS system (Bruker Daltonics,
Bremen, Germany) and a full extraction method according to manufacturer instructions [21].
Candidemia or invasive candidiasis was diagnosed when blood cultures yielded yeast. Mor-
tality was reported as the all-cause mortality rate during study period. Patients < 16 years
were considered children and ≥16 years adults. Therapeutic failure according to expert
opinion was defined as persistent positive blood cultures (with yeasts) despite antifun-
gal treatment for 7 days. This study was approved by the ethic committee of Mashhad
University of Medical Sciences (ethical approval number IR.NIMAD.REC.1398.103).

2.2. In Vitro Antifungal Susceptibility Testing (AFST)

AFST was performed using the broth microdilution method according to the Clinical
and Laboratory Standards Institute (CLSI) protocol (CLSI M27, 4th editon) [22]. The follow-
ing antifungal drugs were tested: fluconazole (FLU), amphotericin B (AMB) (both from
Sigma Chemical Corporation, St. Louis, MO, USA), voriconazole (VOR; Pfizer, New York,
NY, USA), micafungin (MFG; Astellas Pharma, Ibaraki, Japan), and anidulafungin (AFG,
Pfizer, New York, NY, USA). Plates were incubated at 37 ◦C for 24 h and minimum in-
hibitory concentrations (MICs) were recorded after visual examination. Reference strains
of C. parapsilosis (ATCC 22019) and C. krusei (ATCC 6258) were used for quality control.
The MIC data were categorized according to clinical breakpoints. Isolates were classified as
susceptible (S), susceptible dose-dependent (SDD) or intermediate (I), and resistant (R). If
clinical breakpoints were not available, MICs were interpreted according to epidemiological
cut-off values (ECVs) and isolates were classified as wild-type (WT) at MIC ≤ ECV or
non-wild type (NWT) at MIC > ECV, according to the CLSI M57 document [23].

2.3. Multiplex Short Tandem Repeat (STR) Genotyping

C. parapsilosis DNA was extracted and purified with the MagNA Pure and Viral NA
Small volume kit, and the MagNA Pure 96 instrument (All Roche Diagnostics GmbH,
Mannheim, Germany), as previously described [23]. STR multiplex PCR genotyping was
performed on a thermocycler (Biometra, Göttingen, Germany) using 1× FastStart Taq
polymerase buffer without MgCl2, deoxynucleotide triphosphates (dNTPs) (0.2 mM),
MgCl2 (3 mM), forward and reverse primers (10 µM), 1 U FastStart Taq polymerase (Roche
Diagnostics), and isolated DNA [24]. STRs were amplified with a thermal protocol of
denaturation at 95 ◦C for 10 min, followed by 30 cycles consisting of annealing at 60 ◦C for
30 s, extension at 72 ◦C for 1 min, and a final incubation for 10 min at 72 ◦C. Amplicons
were diluted 1:200 in water and 10 µL of diluted amplicon in addition to 0.12 µL of Orange
500 DNA size standard (Nimagen, Nijmegen, The Netherlands) were incubated for 1 min
at 95 ◦C and analyzed on a 3500 XL genetic analyzer (Applied Biosystems, Foster City,
CA, USA). Copy numbers of STR markers were determined using the Genemapper 5 soft-
ware (Applied Biosystems), and relatedness between isolates was analyzed as previously
described [25].

3. Results
3.1. Patients’ Characteristics and Species Distribution

A total of 160 yeast isolates were collected during two years from 160 patients of
whom, a majority were adults (n = 96, 60%) (Table 1). Candidemia was almost equally
detected in men (n = 83, 52%) and women (n = 77, 48%), and almost half of the yeast
isolates were recovered from ICUs (n = 79, 49%). Using MALDI-TOF MS identification,
C. parapsilosis sensu stricto (n = 58, 36%) was the most common causative agent, followed by
C. albicans (n = 52, 33%), while no coinfections were observed. For 156 patients, outcomes
were known, showing an all-cause mortality rate of 53%. C. albicans candidemia coincided
with a relative low mortality rate of 39% as compared to NAC candidemia, which had a
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mortality rate of 59%. In the current study, the most commonly used antifungals included
fluconazole (n = 48, 30%) and liposomal amphotericin B (n = 40, 25%). More than one
antifungal drug was administered to 12 patients (8%), while 54 patients (34%) received no
antifungal therapy. Remarkably, patients with C. albicans were virtually all treated with an
antifungal, while most patients with C. parapsilosis were not treated.

Table 1. Patients’ characteristics and epidemiology are divided between multiple Candida species. In
parentheses, the percentages within each species are displayed.

Characteristic Overall
(n = 160, 100%)

C. parapsilosis
(n = 58, 36%)

C. albicans
(n = 52, 33%)

C. tropicalis
(n = 20, 13%)

C. glabrata
(n = 15, 10%)

C. krusei
(n = 7, 4%)

Other Yeasts 1

(n = 8, 5%)

Age
<16 years 63 (39) 28 (48) 23 (44) 5 (25) 3 (20) - 4 (50)
≥16 years 96 (60) 30 (52) 29 (56) 15 (75) 12 (80) 7 (100) 3 (38)
Unknown 1 (1) - - - - - 1 (13)

Sex
Male 83 (52) 28 (48) 33 (63) 7 (35) 8 (53) 4 (57) 3 (38)

Female 77 (48) 30 (52) 19 (37) 13 (65) 7 (47) 3 (43) 5 (63)
Hospital

Emam Reza 96 (60) 41 (70) 27 (52) 8 (40) 13 (87) 4 (57) 3 (38)
Doctor Sheikh 42 (26) 14 (24) 20 (38) 4 (20) 1 (7) - 3 (38)

Ghaem 15 (9) - 5 (10) 5 (25) - 3 (42) 2 (25)
22 Bahman 5 (3) 2 (3) - 2 (10) 1 (7) - -

Arya 2 (1) 1 (2) - 1 (5) - - -
Wards

ICU 79 (49) 25 (43) 30 (58) 6 (30) 9 (60) 6 (86) 3 (38)
Internal 51 (32) 24 (41) 16 (30) 3 (15) 4 (27) - 4 (50)

Emergency 13 (8) 5 (9) 4 (8) 1 (5) 2 (13) 1 (14) -
Surgery 5 (3) 3 (5) 1 (2) 1 (5) - - -
Other 12 (8) 1 (2) 1 (2) 9 (45) - - 1 (13)

Underlying conditions
Cardiovascular
complications 13 (8) 5 (9) 3 (6) 4 (20) - - 1 (14)

Malignancy 25 (16) 8 (14) 10 (19) 4 (20) 2 (13) 1 (14) -
Diabetes 35 (22) 13 (22) 9 (17) 4 (20) 5 (33) 3 (43) 1 (14)
Internal

complications 67 (42) 26 (45) 20 (38) 8 (20) 7 (47) 2 (29) 4 (57)

Cerebrospinal
complications 5 (3) 1 (2) 3 (6) - - 1 (14) -

None 14 (9) 5 (9) 7 (13) - 1 (7) - 1 (14)
Antifungal treatment

Fluconazole 48 (30) 10 (17) 16 (31) 3 (15) 12 (80) 3 (43) 4 (50)
Liposomal

Amphotericin B 40 (25) 7 (12) 20 (38) 9 (45) 1 (7) 3 (43) -

Caspofungin 3 (2) 1 (2) 1 (2) 1 (5) - - -
Clotrimazole 3 (2) - 3 (6) - - - -

Nystatin 2 (1) 2 (3) - - - -
Fluconazole and

nystatin 2 (1) 2 (3) - - - - -

Fluconazole and
amphotericin B 7 (4) 2 (3) 3 (6) - - 1 (14) 1 (13)

Fluconazole and
caspofungin 1 (1) - 1 (2) - - - -

Not treated 54 (34) 34 (59) 8 (15) 7 (35) 2 (13) - 3 (38)
Outcome

Died 82 (51) 33 (57) 20 (39) 12 (60) 10 (67) 5 (61) 2 (25)
Survived 74 (46) 25 (43) 31 (60) 8 (40) 5 (33) 1 (14) 4 (50)
Unknown 4 (3) - 1 (2) - - 1 (14) 2 (25)

1 Other species comprise six Candida lusitaniae, one Candida dubliniensis, and one Meyerozyma guilliermondii. ICU,
intensive care unit.

3.2. Resistance Investigation

In vitro AFST was performed on 131 Candida isolates according to the CLSI M27
guidelines. Overall, the tested antifungals demonstrated potent activity with only few
cases of resistance (Table 2). For fluconazole, one C. lusitaniae isolate was NWT, while
for amphotericin B, one NWT C. albicans isolate was found, according to CLSI M59 ECVs
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(Table S1). For echinocandins only a few C. albicans isolates showed elevated MICs. For
anidulafungin one isolate demonstrated a MIC of 1 µg/mL, while there were also three
intermediate susceptible isolates. From the latter three, two isolates were also intermediate
susceptible for micafungin (Table S1). The less echinocandin susceptible C. albicans were
isolated from patients who were not treated with echinocandins.

Table 2. In vitro antifungal susceptibility profile (µg/mL) of 131 Candida isolates, comprising 48 C.
albicans, 43 C. parapsilosis, 16 C. tropicalis, 11 C. glabrata, 7 C. krusei, and 6 C. lusitaniae, according to
CLSI M27 guidelines.

Antifungal Drug Species Range GM MIC50 MIC90 n Resistant/Non-WT (%)

Amphotericin B

C. albicans 0.125–4 0.545 0.5 1 1 (2)
C. parapsilosis 0.031–1 0.500 0.5 1 0
C. tropicalis 0.25–1 0.569 0.5 1 0
C. glabrata 0.5–1 0.730 1 1 0
C. krusei 1 1 1 N/A 0
C. lusitaniae 0.5–1 0.630 0.5 N/A 0

Fluconazole

C. albicans 0.125–4 0.380 0.25 1 0
C. parapsilosis 0.125–4 0.412 0.5 1 0
C. tropicalis 0.25–1 0.595 1 1 0
C. glabrata 0.25–4 2.416 4 4 0
C. krusei 8–32 17.665 16 N/A N/A
C. lusitaniae 0.5–2 0.707 0.5 N/A 1 (17)

Voriconazole

C. albicans 0.032–0.125 0.036 0.032 0.064 0
C. parapsilosis 0.032–0.125 0.035 0.032 0.064 0
C. tropicalis 0.032–0.125 0.051 0.064 0.125 0
C. glabrata 0.032–0.125 0.050 0.064 0.125 0
C. krusei 0.064–0.25 0.125 0.125 N/A 0
C. lusitaniae 0.032 0.032 0.032 N/A N/A

Micafungin

C. albicans 0.016–0.5 0.022 0.016 0.064 0
C. parapsilosis 0.016–1 0.255 0.5 1 0
C. tropicalis 0.016–0.032 0.017 0.016 0.032 0
C. glabrata 0.016 0.016 0.016 0.016 0
C. krusei 0.064–0.125 0.103 0.125 N/A 0
C. lusitaniae 0.016–0.064 0.029 0.032 N/A 0

Anidulafungin

C. albicans 0.016–1 0.027 0.016 0.25 1 (2)
C. parapsilosis 0.016–2 0.376 1 1 0
C. tropicalis 0.016–0.064 0.029 0.032 0.064 0
C. glabrata 0.016–0.064 0.032 0.032 0.064 0
C. krusei 0.032–0.125 0.070 0.064 N/A 0
C. lusitaniae 0.032–0.064 0.057 0.064 N/A 0

GM, geometric mean; MIC, minimum inhibitory concentration; N/A, non-available.

3.3. C. parapsilosis STR Genotyping Shows Clusters

To further investigate the high incidence of C. parapsilosis and the potential role
of nosocomial transmission, we determined the phylogenetic relatedness between the
57 C. parapsilosis isolates by amplifying six microsatellite markers using multiplex PCR. The
STR genotyping yielded 19 different genotypes, containing one to ten isolates (Figure S1).
Isolates differed in four markers at most between each other. A total of seven clusters
(≥3 isolates) were found, of which four spanned isolates from two or three hospitals
(Figure 1). Many of these clusters were closely related to each other, like genotypes 7 to
8, and 14 to 16, differing only in the ploidy of one or two markers, respectively. Only
the genotype 9 cluster was restricted to one hospital and not closely related (>2 markers
difference) to any other cluster. Within all clusters, isolates originated from two to eight
departments (Figure 2). For example, the largest cluster of ten isolates contained isolates
from three hospitals, totaling eight different departments.
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Branch lengths indicate relatedness according to STR markers with thick solid lines (variation in
one marker), thin solid lines (variation in two markers), thin dashed lines (variation in three alleles)
and thin dotted lines (variation in four or more markers). Isolates are colored after the hospital and
the number of isolates per hospital is shown in the color key. Genotype numbers correspond with
Figure S1.
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Figure 2. Minimum spanning tree of 57 C. parapsilosis isolates marked after the hospital with ward of
origin. Branch lengths indicate relatedness according to STR markers with thick solid lines (variation
in one marker), thin solid lines (variation in two markers), thin dashed lines (variation in three alleles)
and thin dotted lines (variation in four or more markers). Isolates are colored after the hospital and
ward and the number of isolates per hospital with ward is shown in the color key. Genotype numbers
correspond with Figure S1. ICU, intensive care unit; NICU, neonatal intensive care unit.

4. Discussion
4.1. Epidemiology

In the present study, we investigated the epidemiology of candidemia in five hospitals
in Mashhad for a limited period of two years. The male-female ratio was overall comparable,
which is in line with previous studies [6]. We found that C. parapsilosis (36%) was the
leading candidemia agent, followed by C. albicans (33%). While the majority of Iranian
studies identified C. albicans as most common species, a small nationwide study also found
C. parapsilosis as most common [26,27]. Interestingly, some centers reported a C. glabrata
frequency of 20–23% [28–30], which is higher than the 10% we found. Probably these
differences in species distribution are to some extent due to different patient populations,
as the average age of our patients was much lower. Previous epidemiological studies
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demonstrated that in elderly patients C. glabrata candidemia occurs more often, while
pediatric or neonatal patients are more prone to C. albicans and C. parapsilosis candidemia
episodes [3,6]. Nonetheless, the proportion of C. albicans in pediatric patients in our study
(37%) was still much lower than the 57% found in the study from Kord et al., which was
performed in neonatal and pediatric intensive care units in Tehran [29]. This difference
might indicate a changing epidemiology, as the Tehran study was conducted between 2014
to 2016, while recent studies report more NAC yeasts [3].

Another factor influencing species distribution can be antifungal prophylaxis. Patients
that underwent fluconazole prophylaxis are known to experience more C. krusei candidemia,
as this species has intrinsic elevated MICs to this agent [31]. However, in the previously
mentioned Iranian studies [27–30], the proportion of C. krusei is low, possibly attributable
to the restricted use of antifungal prophylaxis. Additionally, whereas C. tropicalis is the
most frequent species in some countries, the proportion in this and previous Iranian studies
was relatively low (<15%) [27–30]. Among the other yeast species, we found C. lusitaniae
and Meyerozyma guilliermondii (former Candida guilliermondii), which are known for intrinsic
antifungal resistance, potentially limiting antifungal options that could result in treatment
failure [32].

The overall mortality of 53% was a bit lower than worldwide estimations (64%),
but higher than previous Iranian and European studies, which ranged from 28% to
48% [2,10,27–30]. We found that the mortality rate of C. albicans candidemia was lower
when compared to other species, while C. albicans and C. tropicalis are considered as the
Candida species with the highest virulence [6]. This is likely attributable to the antifungal
treatment in our cohort, as most of patients with C. albicans were treated with one or more
antifungals, while more than half of patients with C. parapsilosis and one third of patients
with C. tropicalis was not treated with any antifungal. The high mortality rates of patients
with C. glabrata and C. krusei, whom were also almost all treated with antifungals, might
be explained by the usage of fluconazole despite both species are intrinsically resistant or
display naturally elevated MICs for this drug [33]. These findings emphasize the impor-
tance of broad candidemia surveillance, rapid and accurate identification and adequate
antifungal treatment guided by susceptibility results. Of note, all candidemia episodes
were detected using blood cultures. Molecular methods were not employed for diagnosing
candidemia in this study.

4.2. Resistance Investigation

With microbroth AFST, resistance was in general rarely observed in this study, es-
pecially for azoles and amphotericin B. Previous resistance investigations from Iran also
demonstrated limited resistance [13,28], which could be due to the limited administration
of antifungals drugs in routine clinical use in Iran. Nonetheless, antifungal resistance is
globally increasing, warranting continued surveillance. Among the isolates with reduced
susceptibility, one C. lusitaniae was resistant to fluconazole. While most strains are sus-
ceptible, this species is known to rapidly acquire antifungal resistance, which could result
in treatment failure [34]. Furthermore, elevated MICs were observed for some C. albicans
isolates for echinocandins, with a single isolate resistant for anidulafungin. Although
resistance in yeasts against this antifungal class is rarely found, resistant isolates are often
from patients who underwent echinocandin treatment, indicating the resistance is possibly
therapy-induced [35,36]. In this study none of the patients from whom the C. albicans
strains with elevated MICs were isolated, were treated with echinocandins. Although
transmission of echinocandin-resistant isolates cannot be ruled out, it is rarely reported,
making prior colonization with these echinocandin-resistant isolates more likely.

4.3. Outbreak Investigation with STR Genotyping

With STR genotyping, multiple clusters were found that frequently consisted of iso-
lates from multiple hospitals. Within these clusters, isolates originated from multiple
departments and hospitals, suggesting potential intra-hospital nosocomial transmission.
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This potential nosocomial transmission needs to be further investigated with a whole
genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. We previ-
ously found for other yeast species that STR analyses cannot distinguish isolates differing
less than 150 SNPs, which are not clonal but closely related nonetheless [37,38]. For
C. parapsilosis, numerous nosocomial outbreaks have been reported, frequently caused by
fluconazole-resistant strains [12,39,40]. In most reported outbreaks, the source is unknown,
but some studies suggest the hands of health care workers or contaminated nosocomial
surfaces and equipment [12,41]. Nonetheless, C. parapsilosis strains are known to persist
despite infection control measures in healthcare settings [42,43]. Recently, transmission
of fluconazole-resistant C. parapsilosis between two hospitals was reported in Canada,
highlighting the need for adequate genomic surveillance [44].

Study limitations include the restriction of genotyping to C. parapsilosis, while potential
nosocomial transmission of other species is also possible. In addition, to confirm the
suspected clonal transmission within the hospitals, WGS analysis would have been required.
Furthermore, the current study did not determine whether enforced hand hygiene followed
by genotyping of C. parapsilosis candidemia episodes is effective to halt clonal transmission
within these hospitals and to what extent. Finally, the current study was conducted over a
period of two years, which only provides a limited view of the candidemia epidemiology
in Iran. For a comprehensive overview, long-term follow-up studies should be conducted
to determine whether the species composition further moves from C. albicans to NAC yeast
species, as this can rapidly shift.

To conclude, the current study demonstrates a high proportion of NAC yeasts causing
candidemia in Mashhad, Iran, with a high mortality rate. This emphasis the importance
of adequate diagnosis and appropriate antifungal treatment based on AFST data. Addi-
tionally, the finding of multiple STR clusters might be caused by nosocomial transmission,
which, if confirmed by WGS SNP analysis, would suggest the need for additional infection
prevention measures.
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to CLSI M27 guidelines for Candida isolates.
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