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Abstract: The present era has witnessed an unprecedented scenario with extreme climate changes,
depleting natural resources and rising global food demands and its widespread societal impact.
From providing bio-based resources to fulfilling socio-economic necessities, tackling environmental
challenges, and ecosystem restoration, microbes exist as integral members of the ecosystem and
influence human lives. Microbes demonstrate remarkable potential to adapt and thrive in climatic
variations and extreme niches and promote environmental sustainability. It is important to mention
that advances in fungal biotechnologies have opened new avenues and significantly contributed to
improving human lives through addressing socio-economic challenges. Microbe-based sustainable
innovations would likely contribute to the United Nations sustainable development goals (SDGs)
by providing affordable energy (use of agro-industrial waste by microbial conversions), reducing
economic burdens/affordable living conditions (new opportunities by the creation of bio-based
industries for a sustainable living), tackling climatic changes (use of sustainable alternative fuels for
reducing carbon footprints), conserving marine life (production of microbe-based bioplastics for safer
marine life) and poverty reduction (microbial products), among other microbe-mediated approaches.
The article highlights the emerging trends and future directions into how fungal biotechnologies can
provide feasible and sustainable solutions to achieve SDGs and address global issues.

Keywords: bio-based economy; climate change; fungal biotechnologies; global food security; SDGs;
‘Wood Wide Web’

1. Introduction

The rising global population, climatic perturbations, and exhausting natural resources
are key drivers of ecological imbalance and extinction of plants and animals. In the face of
widespread damages and climatic uncertainties, existing biodiversity can support mankind
and address the current challenges associated with providing bio-based resources and
tackling environmental challenges, ecosystem restoration, and addressing global food
demands [1–3]. Microorganisms exist as integral members of the ecosystem, demonstrating
ubiquitous presence. Due to their significant association with and influence on human
lives, microbes demonstrate remarkable potential to adapt and thrive in climatic variations
and extreme niches and promote environmental sustainability [4]. Among other biological
species, fungi comprise an integral component of our biodiversity and are estimated to
include 2.2 and 3.8 million species [5]; however, the vast majority remain unexplored due
to limited knowledge/insights about fungal biology and sophisticated technologies. The
era of fungal biotechnology started with citric acid production (by controlled fermentation
of Aspergillus niger) by Pfizer in 1919 and has expanded to commercial use in food addi-
tives and the chemical and pharmaceutical sectors [6,7]. Worldwide companies like Bayer,
DuPont, Kerry Group, AB Enzymes, etc., are harnessing fungal resources for economic
purposes. Several species of edible fungi are being extensively investigated as attractive
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resources of ‘high-value’ metabolites including antibiotics, food ingredients/additives,
chemicals, industrial enzymes, pigments, etc. [8,9]. While filamentous fungi have been
widely explored and harnessed, edible mushrooms (from Ascomycota and Basidiomycota),
Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica, have been increasingly ex-
ploited for commercial use. The advances in fungal biotechnology have opened new av-
enues and significantly contributed to creating engineered strains with high product yields,
bio-functionality, and value addition [10]. For the discovery of new/novel transformative
medicines, an insightful discussion suggested that fungi have evolved to create genetically
encoded small molecules (GEMs) that can be effective against human targets, and tend to
have better pharmacokinetics– brain penetration, oral bioavailability, and less off-target
effects, compared to synthetic agents [11] facilitated by advanced high-throughput tech-
nologies [12]. With considerable progress in omics biology and their integrated use, a vast
repertoire of natural products has been identified and biologically evaluated, attributed to
the recent insights on the biosynthetic pathways/mechanisms. Furthermore, optimized
production of these compounds can be achieved in cultures via cultivation and metabolic
methods including CRISPR-Cas9-mediated gene editing, metabolic engineering, and gene
silencing [13]. The publicly available genome resources for fungal species Trichoderma spp.,
Aspergillus spp., Ganoderma lucidum, Penicillium spp., Rhizopus spp., and others [14,15] have
opened new avenues in bridging knowledge gaps in fungal biology and biotechnologies.
The advanced molecular predictions have considerably expanded the metabolic pool of
fungal high-value metabolites and utilization for creating a bio-based economy and achiev-
ing SDGs. Through its policies and reforms, the United Nations SDGs aim to improve
people’s livelihood and facilitate sustainable practices (https://sdgs.un.org/, accessed on
20 June 2024), and it is crucial to preserve global biodiversity and bridge the gap between
the microbiome and its role in global health [16] (Figure 1).
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Figure 1. Sustainable development goals (SDGs) and role of fungal biotechnologies.

The rapid developments in fungal biology have facilitated the development of biomass-
conversion technologies, and the production of high-value substances as food and feed
components. Microbe-based sustainable innovations would likely contribute to United
Nations SDGs by providing affordable energy (use of agro-industrial waste by microbial
conversions), reducing economic burdens/affordable living conditions (new opportunities
by the creation of bio-based industries for sustainable living), tackling climatic changes
(use of sustainable alternatives fuels for reducing carbon footprints), conserving marine
life (production of microbe-based bioplastics for safer marine life) and poverty reduction
(microbial products/microalgae farming), among other initiatives [17–19]. These objectives
can be achieved via fungal biotechnologies to enhance the production of metabolites,
chemicals, and proteins, microbial processing (using microbial enzymes), and advances
in biorefineries to develop high-value products. Field and coworkers [20] discussed the
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potential of mycorrhizal associations as a sustainable approach to achieving food security,
conservation, and SDGs [20]. It is important to mention that many mycorrhizal associations
of fungi form edible mushrooms, while their collection and consumption are significant for
nutrition, traditions, and the global economy [21]. Furthermore, staple cereal crops [22–24]
and high-value food crops (vanilla flavors) [25] benefit from mycorrhizas, with an important
yet overlooked impact on human societies and the ecosystem.

Delving into how the advances in fungal biotechnologies can attain SDGs, state-of-the-
art concepts, transformative approaches, achievements, and prospects/directions in the
future are discussed in this paper.

2. Fungal Biotechnologies and SDGs—How Far We Have Come

In the face of climate adversities and changing landscapes, human reliance on fossil
fuels has impacted productivity and lifestyles and has driven increased emission rates
and environmental deterioration [26]. The increased recognition and need to prioritize
sustainable practices [27,28] to address and regulate the environmental impact of human
activities [29] have been the main goals of SDGs of the United Nations.

The enriched yet less tapped fungal biodiversity can contribute to achieving SDGs, a
prospective initiative of the United Nations [30]. Fungal species provide transformative
opportunities from petroleum-based to bio-based economy opportunities attributed to
converting organic substances into diverse ‘high-value’ products for addressing socio-
economic concerns. The utilization of fungal bio-based products is sustainable in securing
and enhancing the food supply for a growing population and limiting greenhouse emis-
sions. In addition, the advances in fungal biotechnologies have the potential to tackle global
climate change and accomplish SDG reforms (Table 1).

Table 1. Representative examples of ‘high-value’ products from fungi (natural and engineered strains)
and their potential to achieve SDGs.

Fungal Species High-Value Product Biotechnological/
Economic Utilities

References

Fungal high-value metabolites in medicinal applications

Acremonium chrysogenum β-lactam antibiotics
(cephalosporins)

Pharmaceutical value [31]

Lentiana edodes Lentinan As chemotherapy adjuvant in healthcare [32]

Penicillium rubens
P. solitum
P. chrysogenum

Penicillin
Mevastatin
β-lactam antibiotics (penicillins)

Pharmaceutical value
Statins are widely used in lowering blood
cholesterol levels
Antibiotics in healthcare

[33–35]

Saccharomyces boulardii Probiotics Health supplements [36]

Aspergillus terreus
A. niger

Secondary metabolites
(lovastatin)
Secondary metabolites
(enniatins)
Human granulocyte
colony-stimulating factor
(G-CSF)
Galactaric acid

Pharmaceutical value

Enhanced production of high-value metabolites

High protein titre for medicinal applications

Efficiently produce galactaric acid for industrial
applications

[37–40]

Rhizoctonia bataticola Forskolin Anti-HIV, anti-tumor, therapeutic application [41]

Phomopsis sp. Quinine Antimalarial, used in malaria treatment [42]

Alternaria sp. Digoxin Cardiotonic, therapeutic application [43]
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Table 1. Cont.

Fungal Species High-Value Product Biotechnological/
Economic Utilities

References

Fungal species in food industries/food applications

Blakeslea trispora Carotene
Lycopene

Food pigments for application in food sector [44,45]

Monascus anka Monascus pigments Food pigments as natural food colorants [46]

S. cerevisiae Lycopene (carotenoid)
Ethanol
Production of fatty acid-derived
biofuels
Terpene production

Food pigment for use in food sector
Biofuel production
Industrial applications

Genetic engineering for enhanced terpene
production

[47–50]

Morchella esculenta Polysaccharides As food (nutritional) supplement [51]

Pleaurotus eryngii Pork sausage (food component) Used as food component [52]

Fusarium venenatum
Fusarium sp.

Quorn (meat substitute)

Dairy-free cream cheese

Nutritional food (high amino acid and fiber,
fungal protein)
Food industries

[53,54]

Penicillium camemberti
P. roquefortii

Production of cheese
Blue cheese

Food industries
---

[55,56]

Mushroom mycelium Plant-based bacon Alternative food product [57]

Aspergillus sp.
A. oryzae
A. sojae
A. niger

Fermented meat
Soy sauce
Miso
Jiuqu
Citric acid
Enzymes

Alternative meat source, high protein content
Traditional fermented food
---
Food industries

[58–61]

Yarrowia lipolytica β-carotenoid High metabolite yield for food sector application [62]

Xanthophyllomyces
dendrorhous

Zeaxanthin Food pigment usage in food industry [63]

Mortierella alpina Linoleic and oleic acids Food industry [64]

L. edodes Pasta (functional food) Nutritional supplements [65]

Fungal metabolites for industrial applications

Ustilago maydis Itaconic acid Bio-based building block in the polymer
industry, pharmaceutical value

[66]

Kluyveromyces lactis L-ascorbic acid (vitamin C) Enhanced production for industrial applications [67]

Trichoderma reesei Enzyme (cellulase) Enhanced production for industrial applications [68]

Schizophyllum commune Textiles Industrial application [69]

Ganoderma lucidum Composite material,
construction material

Biomaterials to reduce environmental pollution [70]

Umbelopsis isabellina Constituents of biodiesel
(polyunstaturated fatty acids)

Biofuel production, energy source [71]

Fungal metabolites for agricultural applications

A. nidulans Insecticides (austinoids) Production of austenoid derivatives including
7-hydroxydehydroaustin,
1,2-dihydro-7-hydroxydehydroaustin,
1,2-dehydro-precalidodehydroaustin,
calidodehydroaustin, etc.

[72]
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Table 1. Cont.

Fungal Species High-Value Product Biotechnological/
Economic Utilities

References

Beauveria bassiana Mycoinsecticides Integrated pest management, biocontrol of
arthropod pests

[73,74]

Trichoderma spp.
T. harzianum T22
T. harzianum TC39

Auxin-like metabolites,
proteinaceous compounds
Azaphilone, harzianolide,
1-hydroxy-3-
methylanthraquinone and
harzianopyridone

Regulate plant growth and development,
agricultural applications
Biocontrol agents, suppress the growth of plant
pathogens

[75–77]

Gliocladium virens Antifungal compounds
gliovirin, viridiol, valinotrocin,
viridin, gliotoxin, and heptelidic
acid

Protect agricutural crops from multiple
pathogens, bicontrol functions

[78]

Botrytis cinerea Abscisic acid Phytohormone regulates abiotic stresses,
application in agriculture

[79]

Chaetomium globosum Cg-7,
C. globosum Cg-6
C. globosum Cg-5

Chaetoglobosin Reduce post-harvest diseases in multiple fruits [80]

Eupenicillium parvum Azadirachtin A and B For the control of insects, biocontrol functions [81]

2.1. Fungal ‘High-Value’ Products to Achieve Global Food Security, Tackle Hunger and Malnutrition

Unlocking the road to sustainable food production is challenged by the growing world
population, climate fluctuations, food prices, global catastrophes, and agricultural losses
due to pathogens [82–84]. The development of bio-based products via fungal biotech-
nologies demonstrates potential in reducing hunger and malnutrition and ensuring food
security. Moreover, multiple lifestyle diseases can be tackled by functional foods and
nutraceuticals of fungal origin [85,86], following balanced nutrition. Alternative food
resources have gained key consensus due to their beneficial health impact and nutritional
value. The multi-faceted aspects of food components are improved following microbial
synthesis including bio-functionality, quality/nutritional value, peptide synthesis, antimi-
crobial function, and reduction in antinutritive components, etc. [87,88]. Fungi-based
food demonstrates potential as a high-nutritional source for addressing global hunger and
malnutrition, besides demonstrating industrial importance (Figure 2).

Among the 2–11 million fungal species in nature, only a fraction (approx. 1.5 lakh
species) have been reported; furthermore, only some adhere to the acceptable guidelines
of functional food. Since prehistoric times, fungal species have been used to prepare bev-
erages and food products including cheese, bread, food flavors, etc. Only recently, the
horizon has expanded to other biotechnological utilities. The prospective pharmaceuti-
cal/industrial use of economically viable strains can be attributed to the tractability and
transformative potential of fungi, which lead to horizontal gene acquisition and overall
plasticity [89]. The edible mushrooms from phyla Ascomycota and Basidiomycota are widely
utilized in food preparations across the globe and viewed as exquisite delicacies. The
notable fungi namely Aspergillus, Penicillium, and Fusarium sp. are widely recognized for
their nutraceutical/pharmacological properties. The fungal mycelium comprises dietary
fiber, health-promoting lipids, and vitamins and has health benefits. Some edible fungal
species are key sources of probiotics and food flavors [90], while certain filamentous fungi
are good protein sources (high protein content) [91]. The food derived from fungal sources
has the following major advantages: amino acid profiles, high nutritional and protein
content [91,92], and high concentration of fibers, vitamins, and unsaturated fats in the
case of edible mushrooms [93]. Research into harnessing the socio-economic benefits of
fungi has delved into developing food components comprising nutraceuticals, functional
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food products, pharmaceuticals, and enzymes [9,94]. Key studies have documented the
bioactivities of fungal constituents. Polysaccharides from Morchella esculenta promote
antioxidant enzyme function [33], Ganoderma enhance immune functions [95], Tremella re-
lieves epidermal bleeding [96] and Agaricus bisporus restricts the growth of cancer cells [97],
among other examples. Health promotion effects are demonstrated by oligosaccharides
from copropilous fungi and are developed as a type of functional food [98]. With the
advent of white fungal biotechnology, the quality and nutritional value of food prod-
ucts have remarkably improved in the flavor of bread and beverages, single-cell protein
(SCP) quality and the yield and shelf life of products [99]. Worldwide, mushrooms are
considered to be major aspects of various cuisines and highly nutritional sources of carbo-
hydrates (60%), protein (27–48%), and lipids (2–8%) [100], amino acids (glutamine, valine,
leucine, etc.) and vitamins [101,102]. The commercially cultivated mushroom species
are represented by Agaricus bisporus, Pleurotus spp., Auricula auricula, Lentinus edodes, and
Volvariella volvacea [103,104]. The commercial market for mushrooms has witnessed a
tremendous upsurge, with the value for oysters, shiitake, and champignons exceeding USD
50 billion by 2022 [105].
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Tian and coworkers [106] showed the beneficial effects of A. bisporus on glucose
homeostasis, and the prebiotic effect on glucose homeostasis and regulation of diabetes.
In C57BL/6 mice, succinate and propionate produced by Prevotella sp. signals intestinal
gluconeogenesis, affects the gut–brain neural circuit, and reduces glucose in hepatic cells.
The growing awareness about the nutritional components in multiple fungal species and
their increased consumption has raised the demand, and sustainable methods are being
employed to meet the increased demands globally. The development of novel strains
via genetic engineering studies would be a prospective approach to increase the desired
product yield and productivity. Fungal species are ideal resources to develop alternate food
components, novel drug molecules, and maintain environmental sustainability.

2.2. Harnessing Pharmaceutical Metabolites from Fungi in Healthcare

SDGs established by the United Nations aim to attain sustainable growth and holistic
upliftment of human lives by 2030, utilize alternative bio-based resources, and address
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global issues. The transition from a fossil-based to a bio-based economy requires the
integration of advanced biotechnologies with bioeconomy [107]. The diverse yet interesting
group of known fungi inhabits different ecological niches and contributes to multi-faceted
roles in the environment, ranging from symbionts, and decomposers to pathogens.

Fungal species produce a plethora of diverse, ‘high-value’ compounds including
therapeutics, food components, biofuels, chemicals, vegan leather, organic acids, industrial
materials, etc., that can be effectively utilized for sustainable living. Fungi, as the major
drivers of bio-based economy, demonstrate diverse fermentation capabilities (industrial
value) attributed to their active metabolism (ecological relevance) and adaptation to wider
niches (industrial applications). The commercially important high-value products, namely
antibiotics and drugs, can be utilized to treat human ailments and positively impact human
health and well-being. To date, thousands of pharmacologically active metabolites have
been purified and characterized using fungi- demonstrating potent efficacies in treating
multiple disorders [108,109].

The landmark discoveries of penicillin and cephalosporin C from fungi opened new
avenues and revolutionized fungi-mediated drug discovery. Constituting both classes
of traditional drugs and recent landmarks, fungi-derived drugs have been effective in
treating the following chronic diseases: autoimmune disorders (immunosuppressants),
hypercholesterolemia (statins), and chronic infections (antifungal and antibiotics) [110].
The representative examples include cephalosporins (antibiotic), penicillin V (antibiotic),
fusidic acid (antibiotic), griseofulvin (antifungal), retapamulin and enfumafungin (anti-
fungal), among other notable examples. The translational success of these drugs can be
attributed to their validation in clinical trials (drugs for drug-resistant depression and
cancer). Subsequently, fungal-derived immunosuppressants, such as cyclosporin A (from
Tolypocladium inflatum), block the calcineurin pathway (hampering T-cell activation in hu-
mans) and have been pivotal in organ transplantations [111]. Another drug (isolated from
Penicillium brevicompactum) named mycophenolic acid hampers inosine monophosphate
dehydrogenase and biosynthesis of guanine, which restricts the proliferation of lympho-
cyte (in organ transplantations) [112]. The synthetic compound, fingolimod (inspired
by fungi-derived myriocin), is produced by Novartis and achieved blockbuster success
as an immunosuppressant for multiple sclerosis, generating USD 1 billion in 2012 [113].
Tiwari et al. [2] extensively discussed and highlighted the potential of plant-associated
endophytes to produce potent antimicrobials and counter drug-resistant microbes, an
emerging medical concern in the present era. The antimicrobials, namely hypericin, crypto-
candin, leucinostatin A, colletotric acid, munumbicins, and their derivatives demonstrated
clinical efficacies in treating drug-resistant pathogens; however, assessment and further
trials are imperative to establish their therapeutic potential and drug development. In
obstetric medicine, bromocriptine (a synthetic form of ergocryptine), is a dopamine agonist
and restricts prolactin release from the pituitary gland [114,115]. It is used for the treat-
ment of hyperprolactinemia-related conditions. In therapeutic advances for treating blood
cholesterol levels, fungal-derived drugs have proved pivotal in achieving key success. The
discovery of mevastatin (compactin) from Penicillium citrinum by Akira Endo, a Japanese sci-
entist, ushered in a new era [34]. Lovastatin (the statin drug), isolated from Monascus ruber
(documented as monacolin K) [116] and subsequently from Aspergillus terreus (documented
as mevinolin) [117], was quite successful in lowering blood cholesterol. Lovastatin was
successfully marketed as a cholesterol-lowering drug in 1987, followed by mevastatin [118].
Statins comprise one of the highest-marketed drugs worldwide, generating sales of USD
25 billion in 2005. Furthermore, several compounds of fungal origin and their derivatives
are currently in clinical trials for multiple diseases and include Halimide (synthetic deriva-
tive Plinabulin) in phase III trials for cancer, Hypothemycin (synthetic derivative E6201) in
phase I trials for solid tumors/melanoma, Wortmannin (synthetic derivative PX-866) in
phase II clinical trials for prostate cancer, Cordycepin (synthetic derivative NUC-7738) in
phase I trials for lymphoma/solid tumors and Radicicol (synthetic derivative Ganetespib)
in phase III trials for lung cancer, among other therapeutics. Gomes and coworkers [93]
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have extensively discussed and highlighted the importance of marine-derived fungal
metabolites for cancer treatment, including leptosins, gliotoxin, shearinine, meleagrin,
neoechinulin A, and bostrycin, etc. [119]. The biosynthetic gene clusters (BGCs) in fungal
genomes synthesize bioactive, high-value metabolites and can be investigated/engineered
for obtaining higher yields of the targeted metabolites.

2.3. Novel Fungal Cell Factories for the Production of Bioactive Metabolites

Fungal-derived metabolites exhibit enormous diversity and interesting bioactivities,
namely antimicrobial, hypoglycemic, antiviral, antitumor, immunosuppressant bioactivi-
ties, etc. The increasing evidence from studies highlights the potent efficacies of fungal-derived
bioactive metabolites as key therapeutics. In addition, functional food/nutraceuticals from
fungi have been documented to promote human health and well-being [9,120] and mul-
tiple fungal species are powerful resources used to generate ‘high-value’ substances of
socio-economic relevance.

Filamentous fungi are widely recognized as efficient producers of natural products,
industrial substances, enzymes, proteins, organic acids, etc., and are employed as novel
tools for targeted morphology engineering [121]. In addition, fungal biomass is also
important in textile industries and as a food component. Discussing industrial relevance,
fungi produce key enzymes including phytases, proteases, catalases, and glucoamylases
and others with wider usage [122]. Fungal enzymes are also utilized in biofuel production
to convert lignocellulosic biomass to fermentable sugars, generating an economic return
of over EUR 4 billion [8]. For large-scale cultivation (both solid-state and submerged
fermentations), understanding and reprogramming fungal morphogenesis and growth
are crucial. Further efforts are needed in process design to optimize fungal morphology
for producing a targeted product. Multiple investigations/research in this direction have
speculated that septal secretion in fungi may have industrial value and optimization of
fungal morphology would improve septal junctions by genetic manipulation studies, in
addition to prospective yet less-explored intercalary secretion pathways [123].

Fungal secondary metabolism and its exploration are promising, with studies suggest-
ing that more than 60% of medicines comprise natural products [124]. While efforts are
being made for the bio-prospection of fungal resources, new techniques for the activation
of silent gene clusters (BGCs) in the laboratory and pilot fermentation studies [125] have
been employed and enhanced production via targeted genome manipulation has been
achieved [126]. The advances in synthetic biology and a deeper elucidation of the filamen-
tous life cycle for fungal genome engineering facilitate targeted strain development [123].

Aspergillus is fast emerging as a model for genome manipulation, attributed to the
technological advances in whole genome sequencing. Engineering initiatives started in
the 1950s, ranging from manipulating fungal morphologies and mutagenesis to achieving
high product titers. For instance, strains of A. oryzae were subjected to nitrous acid and UV
mutagenesis, resulting in less viscous broth and higher production of glucoamylase [127].
Subsequently, mutagenesis of Trichoderma reesei with diethyl sulfite led to a highly branched
and short chimeric strain showing enhanced cellulase production [128]. Through the efforts
in genome sequencing, an increased understanding of the candidate genes/metabolic
pathway has been achieved for strain improvement [14]. In addition, attempts have been
made for single nucleotide polymorphism (SNP) identification in fungal genomes for better
growth of fungal strains; however, studies are limited. The signaling pathways govern
morphological regulation in fungi, and engineering attempts have been made to target
components in the cascade for enhanced biotechnological utilities. The key signaling
pathways in filamentous fungi, protein kinase A (PKA)/cyclic adenosine monophosphate
(cAMP) signaling, calcium ion responses, and mitogen-activated protein kinase (MAPK)
are the prime focus of targeted fungal engineering for fungal growth and morphological
improvements [123].

In this direction, synthetic biology has made significant advances to create designer
chimeras possessing minimized genomes, less complexity, and improved attributes, re-
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spectively. A reduced genome of S. cerevisiae was created, and a significant portion (14%)
of chromosome 3 was deleted (tRNA, transposans, and wild-type base pairs) [129]. The
genome editing of S. cerevisiae chromosome 16 and fusion experiments resulted in chimeras
with reduced genome size [130,131]. In A. niger, targeting the fungal genome for minimiza-
tion was achieved by deletion/inactivation of certain genes/chromosome sections by the
CRISPR-Cas9 tool [132]. The genomes of economically viable fungal species have been
engineered by the CRISPR-Cas9 editing system and are as follows: available T. reesei [133],
M. thermophila [134], A. oryzae [135] and P. chrysogenum [136], among other notable ones, and
are exploited industrially. The concept of engineering fungal genomes for size reduction
relies on the deletion of non-essential genes and focuses on targeted genes/pathways for
morphological changes/growth phenotype and the creation of desired fungal chimeras.

The natural product discovery pipeline has been greatly expedited, which is attributed
to the advances in the synthetic biology toolkit. In addition to CRISPR-Cas, advanced
synthetic tools are promising in creating designer fungal cell factories, improving the
morphological feature and high titer of the desired metabolite. The heterologous expres-
sion of key biosynthetic genes (for natural products) has been achieved in A. niger [38],
A. nidulans [137], and P. chrysogenum [138], etc., and synthetic fungal chimeras with
new/novel attributes have been created by domain swapping [139] and fungal media opti-
mization. Synthetic biology toolkits have expanded the horizons to facilitate polycistronic
gene expression in filamentous fungi [140], and next-stage morphological engineering via
controlled gene expression of multiple genes using a single promoter, offers interesting in-
sights [141]. Successful attempts in engineering and optimization of tuneable gene switches
in filamentous fungi [142] offer precise details of the strain’s morphological characteristics
and gene function. It is imperative that advances in fungal imaging have provided precise
information about fungal morphology; X-ray microtomography has elucidated the three-
dimensional morphology of P. chrysogenum and A. niger [143] and defined new prospects
in precise quantification of hyphal number distribution in the pellet, providing future
directions in understanding how pellet morphologies affect the titer of the product. These
technological developments, optimized in filamentous fungi and other fungal systems (in
progress), will result in novel fungal cell factories, including minimizing genomes, higher
product titers, and optimized fungal morphologies, in the future.

2.4. Fungi-Based Bioremediation for Environmental Subsistence

The present era has witnessed an increased interest in microbial biodegradation
of toxic contaminants for ecosystem restoration. Microbe-assisted bioremediation com-
prises a cost-effective and eco-friendly approach for the transformation of recalcitrant
pollutants into environmentally degradable substances. In addition to other microbial
species, fungi-mediated bioremediation is a safe and renewable strategy for mitigating
contaminants/polluted locations [144]. Fungi play a critical role as degraders and sym-
bionts, colonizing diverse environmental niches and possessing consistent morphology
and multi-faceted metabolic potential. A combination of biostimulation, bioaugmentation,
natural attenuation, or individual approaches can be used [145] as per the requirement and
efficiency of the microbial strain. Mycoremediation has been a method of choice in environ-
mental cleanups, with multiple efficient fungal species documented for their potency in
mitigating heavy metal contamination, pollutants, greenhouse gases, industrial chemicals,
etc. [146,147].

Mycorrhizal fungi play a key role in the ecosystem by promoting plant access to
nutrients and water in soil and plant tolerance to pathogens. In addition, fungal species in
mycorrhizal associations contribute to bioremediation, conservation, and ecosystem well-
being [148]. Mycorrhizal associations confer salt tolerance to the plant and promote plant
growth and overall health. Bioremediation achieved in the capacities of microbial degrada-
tions minimizes the amount and harmful impact of diverse contaminants, while microbial
processes aid in the mitigation of pollutants in contaminated sites. Microbe-assisted chemi-
cal and physical processes cause disintegration and structural changes in the pollutants
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and accelerate metabolism. In addition, microbes facilitate energy-dependent chemical re-
actions for the dissemination of contaminants and electron transfer [149] via oxidation and
reduction reactions. In nature, microbes acquire carbon from contaminants for growth and
degrade them into simple substances. Quite interestingly, mycoremediation is effective in
the removal of heavy metals and radioactive agents to be further decomposed [150]. During
pesticide degradation, fungal species obtain nitrogen, carbon, or energy for growth. Molds,
e.g., Botrytis and Aspergillus, decompose sugar polymers, celluloses, starches, pectins, oils,
chitin, oil components, etc. Subsequently, an environmental hazard, e.g., endosulphan, is ef-
fectively degraded by Trichoderma harzianum, Cladosporium oxysporum, Aspergillus spp., and
Mucor thermohyalospora. Moreover, fungi-mediated degradation of pesticides into non-toxic
substances occurs via processes namely hydroxylation, dehydrogenation, esterification,
and deoxygenation [151]. Other fungal strains are capable of bioremediating different
contaminants, including textile wastewater detoxification by Zygomycetes and Aspergillus,
polychlorinated biphenyl (PCB) degradation by Fusarium solani, Penicillum chrysogenum and
Penicillum digitatum, biosorption of pentachlorophenol by Rhizopus oryzae CDBB-H-1877,
cellulose degradation by brown rot fungi, xenobiotics degradation by Agaricus bisporus,
Pleurotus ostreatus, Pleurotus pulmonarius, etc., heptachlor and heptachlor epoxide remedi-
ation by Phanerochaete ostreatus and effluents from textile industries by Ascomycetes and
Basidiomycetes fungi, among other distinct examples [151].

Besides the remediation of contaminants present in the environment, the restoration
of polluted sites has been achieved via naturally occurring microbes. The representative
examples Penicillium, and Aspergillus were effective alleviators of contaminants like tex-
tile dyes, chemicals, pesticides, industrial effluents, organic pollutants, etc. [152,153]. In
addition, the substantial removal of petroleum hydrocarbons and diesel contaminants
in soil has been successful by short-term inoculation of Phanerochaete chrysosporium and
Aspergillus niger, which facilitated bioremediation [154,155]. Literature studies have shown
that white rot fungi disintegrate harmful substances, namely phenols, effluent, pesticides,
heavy metals, polychlorinated biphenyls, etc., and alleviate the adverse impact on soil.
Studies have also established the significant potential of fungal enzymes (lipases, catalases,
amylases, proteases, peroxidases, etc.) in organic waste management [156], highlighting
their industrial value [157,158]. Advanced technologies have immensely contributed to
addressing limitations with fungi-mediated bioremediation. In recent times, immobilized
fungi in bioreactors (fluidized bed reactors and rotating biological reactors) have been
adopted for bioremediation [159,160]. For the treatment of wastewater sludge from sewage
plants, it is mixed with microbial inoculum in a broad-scale bioreactor and considered a sus-
tainable approach [161,162]. Furthermore, advanced practices for PAH mitigation include
Trichoderma longibrachiatum-based biobarriers on nylon sponges, where high efficiency of
PAH removal was achieved [163]. An upcoming approach utilizes yeast expression systems
to generate cytochrome P450 monooxygenases that can tackle hydrocarbons and aid in
mitigation [164].

2.5. Addressing Climate Changes via Fungal Biotechnologies

For addressing climate change, it is imperative to achieve net-zero emissions by the
mid-century to limit temperature rise within 1.5 ◦C, while adopting measures to sequester,
capture, and store excess atmospheric carbon [165]. In a recent report by the World Eco-
nomic Forum, fungi can play a crucial role in addressing climate change [166]. Fungal
species inhabiting natural environments assist forests in absorbing carbon and tackling the
potential impacts of climatic fluctuations. While fungi occupy diverse ecological niches
and mushrooms are present in shady and damp places, mycorrhizal fungi (ectomycorrhizal
fungi) assist trees and forests to absorb CO2 faster and reduce the rate of carbon flow/return
in the atmosphere. However, the rapid deforestation every year threatens the beneficial
interactions, and promoting the regrowth of forests would reduce global emissions by
30%, as per the guidelines of the COP26 summit in Glasgow [166]. Since little information
is available on the role of fungal networks in combating climate change, the Society for
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the Protection of Underground Networks (SPUN) has devised a project to understand
the role of mycorrhizal fungi in areas of climate science and map the ‘Wood Wide Web’.
Thousands of fungal samples are collected to map fungal networks and utilized by SPUN
(via machine learning) to create these networks and their function as carbon sinks. This
information could be used to identify high-priority zones for more carbon storage and
tackle extreme conditions.

The growing evidence from the literature suggests that fungi can contribute to farming
practices and agriculture. The inoculation of seeding soil with beneficial fungi promotes
soil attributes, enriches soil fertility, and decreases atmospheric CO2 levels, crucial to
environmental functioning [167,168], while pathogenic macrofungi exploit plants and
animals to absorb nutrients and also contribute to biodiversity in the ecosystems. The
interconnected mycelial network with the host is crucial and improves nutrient acquisition,
transport, and enzyme secretion [169]. These fungi-mediated processes are essential for
sustaining biodiversity and ecosystem well-being. The translational success of arbuscular
mycorrhizal fungi (AMF) as potential biofertilizers has a major impact on the global market
with a value of USD 2 billion. In addition, fungi are key players and perform essential
functions in the ecosystem. Globally distributed, fungi carry out processes including
bioconversion, energy flow processes, and nutrient cycling and act as symbionts, pathogens,
and decomposers in nature [170,171]. According to a study in nature, the biodiversity of
fungi determines plant biodiversity, productivity, and variation in the ecosystem and
approximately 90% of plants form integral associations with fungi. In addition to other
functions, fungi perform mycoremediation (as earlier discussed), degrade chemicals heavy
metals, crude oils, etc., absorb heavy metals and radioactive components, and maintain
ecological subsistence. However, excessive human activities and pollution levels are
impacting fungal diversity/population and signaling climate change. Adequate and urgent
efforts are required to stop/minimize deforestation, restore ectomycorrhizal forests, and
switch from fossil fuel to renewable energy sources (as in America).

3. Achievements and Prospects in the Present Decade: What Do We Know and What
Comes Next?

Recently, the United Nations General Assembly (UNGA) Science Summit stated that
“understanding the world of microbes is imperative either to curb dangerous effects or
to harness their power for healthier life, for sustainable energy sources, for biodiversity,
for tackling climate change and for solving hunger problems”, which is one of the key
objectives of the United Nations SDGs. The microbes in the environment are integrally
associated and impact human lives. The increased recognition of the favorable impact
of beneficial microbes on humans and the environment has contributed to their potential
applications in healthcare, agriculture, and ecosystem restoration.

Widely exploited as a source of ‘high-value’ food ingredients (food flavors, pigments,
nutritional substances, etc.), the present era has witnessed the utilization of fungi-based
biofertilizers to boost crop health and productivity. Moreover, water quality and sanitation
have been remarkably improved by microbe-assisted remediation of contaminated water
bodies. Other achievements in microbial biotechnologies in achieving SDGs have been
biofuel production as a direct source of affordable and clean energy, industrial production
of high-value metabolites, potent drugs from fungi approved and marketed for disease
treatment with others in different stages of drug development, environmental cleanup via
bioremediation of contaminants and plastics and conferring stress tolerance to plants in
times of global climate adversities.

Cutting-edge research has focused on deciphering and highlighting the prospects of
beneficial microbes in different socio-economic contexts. With the beginning of the transi-
tion towards a bio-based economy and the efficient utilization of fungal resources, answers
to the following pertinent questions are required: which species has valuable/useful traits,
and how can self-sustainability be achieved by fungal production [1]? A better understand-
ing can be achieved with these answers on the road towards a sustainable future. In light
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of the current findings, it is important to investigate/screen the vast repertoire of fungal
species and validate the bioactivities, which are necessary to define the safety profiles for
socio-economic applications.

Advanced biotechnological tools have revolutionized the exploration of natural re-
sources. The phylogenomics-guided exploration of specific traits has been inferred from the
relationship between microbial species. In addition, progress in analytical equipment and
omics-assisted identification of species have contributed to bridging the knowledge gaps in
metabolite biosynthesis and evaluation of their bioactive potential [12,172]. Metabolomics
studies have attempted to understand the fungal metabolic networks and their dynam-
ics, providing critical insights into the taxonomic identification, fungal stress response,
metabolite discovery, metabolic engineering, and plant–fungal interactions. A deeper
knowledge of complex fungal interactions and their environmental responses has been
attained via metabolomics [172,173]. Omics biology has also contributed to research on
edible fungi (cointegrated with other methods), delving into processes including stress
resistance, growth and development, and its pharmaceutical value [174,175], providing
in-depth information. With the advent of modern genome editing tools, like CRISPR-Cas,
the production of high-value metabolites can be optimized by fungal genome engineering,
heterologous expression, and gene disruption [13], among others. Molecular analysis of
the fungal genome provides a framework to screen beneficial traits, metabolite discovery,
and efficient production under laboratory conditions. The key to strengthening fungal
resources and biotechnologies to achieve the sustainable goals involves obtaining extensive
knowledge of fungal biology (a global effort is needed), building a global network, and
providing a knowledge base platform for fungal identification, classification and collection
of fungal species [176].

4. The Road Ahead: Future Directions in a Fungal Bio-Based Economy

The enriched yet less tapped fungal biodiversity can contribute to realizing SDGs,
a prospective initiative of the United Nations for a better world. Fungal biology and
biotechnologies provide transformative opportunities from petroleum-based to bio-based
economies attributed to converting organic substances into diverse ‘high-value’ products
for socio-economic sustainability. Fungi have been associated with land plants during
their evolutionary course, and harnessing the power of ancient players would benefit
natural habitats and biodiversity [20]. The utilization of fungal bio-based products is
sustainable in securing and enhancing the food supply for a growing population and
limiting greenhouse emissions. The development of alternate food products includes Quorn
(meat substitute) (https://mycorena.com, accessed on 20 June 2024) [177], filamentous
fungi-based biomaterials [178], biorefinery applications (second-generation biofuels) [179],
biodegradation of plastics [180], and other notable examples. In addition, the advances in
fungal biotechnologies have the potential to tackle climate change and contribute to the
United Nations SDGs. The road to sustainable development is not yet reachable, and fungal
resources represent prime resources in addressing sustainable livelihood and development
in a global context.
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