The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Hot Water and Ethanol Extracts from the Submerged Culture of O. Sinesis (SCOS)
2.3. Determination of Bioactive Compounds
2.3.1. Measurement of Adenosine
2.3.2. Measurement of Ergosterol
2.3.3. Measurement of GABA
2.3.4. Measurement of EPS, TPC, and TFC Contents
2.4. Cytotoxicity Test of SCOS on BV2 Microglial Cells
2.5. Measurement of Nitrite Production
2.6. Anti-Inflammatory Activities of 95% Ethanol Extract SCOS (EEOS-95)
2.6.1. Measurement of Pro-Inflammatory Cytokine Level
2.6.2. Western Blotting Analysis
2.7. Statistical Analysis
3. Results
3.1. Bioactive Compounds in Extract of SCOS
3.2. Cytotoxicity Evaluation of SCOS
3.3. Effect of O. sinensis Mycelia on Nitric Oxide
3.4. Anti-Inflammation Effect of EEOS-95 on LPS-Induced BV2 Microglial Cells
3.5. Effect of EEOS-95 on the Expression of Inflammatory Proteins in LPS-Induced BV2 Microglial
3.6. Effect of EEOS-95 on the Expression of Anti-Inflammatory Protein in LPS-Induced BV2 Microglial Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakraborty, S.; Chowdhury, S.; Nandi, G. Review on Yarsagumba (Cordyceps sinensis)—An exotic medicinal mushroom. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 339–346. [Google Scholar]
- Pandey, K. A review of the medicinal value of Ophiocordyceps sinensis (Yarshagumba). Asian J. Pharmacogn. 2022, 6, 6–9. [Google Scholar]
- Yan, J.K.; Wang, W.Q.; Wu, J.Y. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J. Funct. Foods 2014, 6, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Karati, D.; Priyadarshini, R.; Dua, T.K.; Paul, P.; Sahu, R.; Nandi, G. Cordyceps sinensis (yarsagumba): Pharmacological properties of a mushroom. Pharmacol. Res. Mod. Chin. Med. 2023, 8, 100294. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, L.; Wang, J.; Wang, W.; Niyati, N.; Guo, Y.; Wang, X. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation. Sci. Total Environ. 2021, 755, 142548. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Petersen, R.C. Mild cognitive impairment and mild dementia: A clinical perspective. Mayo Clin. Proc. 2014, 89, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Hague, S.; Klaffke, S.; Bandmann, O. Neurodegenerative disorders: Parkinson’s disease and Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Teoh, H.L.; Carey, K.; Sampaio, H.; Mowat, D.; Roscioli, T.; Farrar, M. Inherited Paediatric Motor Neuron Disorders: Beyond Spinal Muscular Atrophy. Neural. Plast. 2017, 2017, 6509493. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.D.; Mao, S.S.; Lin, L.; Bai, G.N.; Liu, B.J.; Mao, J.H. Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol. Dis. 2022, 170, 105749. [Google Scholar] [CrossRef]
- Klockgether, T.; Mariotti, C.; Paulson, H.L. Spinocerebellar ataxia. Nat. Rev. Dis. Primers 2019, 5, 24. [Google Scholar] [CrossRef]
- Moreira, J.; Machado, M.; Dias-Teixeira, M.; Ferraz, R.; Delerue-Matos, C.; Grosso, C. The neuroprotective effect of traditional Chinese medicinal plants—A critical review. Acta Pharm. Sin. B 2023, 13, 3208–3237. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yang, J.; Wang, X.; Yang, P.; Zhao, Y.; Li, K.; Chen, Y.; Xu, Y. Herbal Compounds Play a Role in Neuroprotection through the Inhibition of Microglial Activation. J. Immunol. Res. 2018, 2018, 9348046. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.P.; Park, S.H.; Lee, Y.S.; Lee, S.; Lim, S.; Byun, J.; Cho, I.H.; Song, G.J. Daphne genkwa flower extract promotes the neuroprotective effects of microglia. Phytomedicine 2023, 108, 154486. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.Q.; Wang, C.Y.; Zhao, R.; Li, H.H.; Zhang, Q.H.; Cai, D. Artificial cordyceps mycelium by submerged fermentation of Hirsutella sinensis HS 1201 using rice bran hydrolysate as substrate. Environ. Qual. Manag. 2021, 31, 109–118. [Google Scholar] [CrossRef]
- Chatnarin, S.; Thirabunyanon, M. Potential bioactivities via anticancer, antioxidant, and immunomodulatory properties of cultured mycelial enriched β-D-glucan polysaccharides from a novel fungus Ophiocordyceps sinensis OS8. Front. Immunol. 2023, 14, 1150287. [Google Scholar] [CrossRef] [PubMed]
- Li, S.P.; Zhao, K.J.; Ji, Z.N.; Song, Z.H.; Dong, T.T.; Lo, C.K.; Cheung, J.K.; Zhu, S.Q.; Tsim, K.W. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci. 2003, 73, 2503–2513. [Google Scholar] [CrossRef] [PubMed]
- Javadi, N.; Khodadadi Tirkolaei, H.; Hamdan, N.; Kavazanjian, E., Jr. Longevity of Raw and Lyophilized Crude Urease Extracts. Sustain. Chem. 2021, 2, 325–334. [Google Scholar] [CrossRef]
- Yang, S.E.; Vo, T.L.T.; Chen, C.L.; Yang, N.C.; Chen, C.I.; Song, T.Y. Nutritional Composition, Bioactive Compounds and Functional Evaluation of Various Parts of Cajanus cajan (L.) Millsp. Agriculture 2020, 10, 55. [Google Scholar] [CrossRef]
- Vo, T.L.T.; Yang, N.C.; Yang, S.E.; Chen, C.L.; Wu, C.H.; Song, T.Y. Effects of Cajanus cajan (L.) millsp. Roots extracts on the antioxidant and anti-inflammatory activities. Chin. J. Physiol. 2020, 63, 137–148. [Google Scholar] [CrossRef]
- Chang, C.Y.; Lue, M.Y.; and Pan, T.M. Determination of adenosine, cordycepin and ergosterol contents in cultivated Antrodia camphorata by HPLC method. J. Food Drug Anal. 2005, 13, 338–342. [Google Scholar] [CrossRef]
- Yuan, J.P.; Wang, J.H.; Liu, X.; Kuang, H.C.; and Zhao, S.Y. Simultaneous determination of free ergosterol and ergosteryl esters in Cordyceps sinensis by HPLC. Food Chem. 2007, 105, 1755–1759. [Google Scholar] [CrossRef]
- Rogério da Silva Moraes, E.; Santos-Silva, M.; Grisólia, A.A.; Braga, D.V.; Reis Leão, L.K.; Bahia, C.P.; Soares de Moraes, S.A.; Passos, A.F.; de Jesus Oliveira Batista, E.; Herculano, A.M.; et al. High performance liquid chromatography-based method to analyze activity of GABA transporters in central nervous system. Neurochem. Int. 2022, 158, 105359. [Google Scholar] [CrossRef] [PubMed]
- Quero-Jiménez, P.C.; Montenegro, O.N.; Sosa, R.; de la Torre, J.B.; Valero Acosta, J.; López Pérez, D.; Santana Rodríguez, A.; Ramos Méndez, R.; Calvo Alonso, A.; Corrales, A.J.; et al. Total carbohydrates concentration evaluation in products of microbial origin. Afinidad J. Chem. Eng. Theor. Appl. Chem. 2019, 76, 195–203. [Google Scholar]
- Burrows, R.; Parr, J. Evaluating the Goodness of Instrument Calibration for Chromatography Procedures. LCGC Suppl. Spec. Issues 2020, 38, 35–38. [Google Scholar]
- Dai, Y.D.; Wu, C.K.; Yuan, F.; Wang, Y.B.; Huang, L.D.; Chen, Z.H.; Zeng, W.B.; Wang, Y.; Yang, Z.L.; Zeng, P.S.; et al. Evolutionary biogeography on Ophiocordyceps sinensis: An indicator of molecular phylogeny to geochronological and ecological exchanges. Geosci. Front. 2020, 11, 807–820. [Google Scholar] [CrossRef]
- Lo, H.C.; Hsieh, C.; Lin, F.Y.; Hsu, T.H. A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in DongChongXiaCao and related bioactive ingredients. J. Tradit. Complement. Med. 2013, 3, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.O.; Yun, J.W. A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J. Appl. Microbiol. 2005, 99, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.H.; Yao, Y.J. Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. J. Appl. Microbiol. 2005, 99, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.H.; Lim, J.S.; Yoon, C.S.; Koh, J.H.; Chang, H.I.; Kim, S.W. Production of mycelia and exo-biopolymer from molasses by Cordyceps sinensis 16 in submerged culture. Bioresour. Technol. 2007, 98, 165–168. [Google Scholar] [CrossRef]
- Wang, X.L.; Liu, G.Q.; Zhu, C.Y.; Zhou, G.Y.; Kuang, S.M. Enhanced production of mycelial biomass and extracellular polysaccharides in caterpillar-shaped medicinal mushroom Cordyceps sinensis CS001 by the addition of palmitic acid. J. Med. Plant Res. 2011, 5, 2873–2878. [Google Scholar]
- Alvarez-García, V.; González, A.; Alonso-González, C.; Martínez-Campa, C.; Cos, S. Melatonin interferes in the desmoplastic reaction in breast cancer by regulating cytokine production. J. Pineal Res. 2012, 52, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.Q.; Feng, J.; Liu, Y.F.; Hu, D.M.; Zhang, J.S. Functional Components from the Liquid Fermentation of Edible and Medicinal Fungi and Their Food Applications in China. Foods 2023, 12, 2086. [Google Scholar] [CrossRef] [PubMed]
- Bishop, K.S.; Kao, C.H.J.; Xu, Y.Y.; Glucina, M.P.; Paterson, R.R.M.; Ferguson, L.R. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 2015, 114, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [Google Scholar] [CrossRef] [PubMed]
- Chellapandi, P.; Saranya, S. Ophiocordyceps sinensis: A Potential Caterpillar Fungus for the Production of Bioactive Compounds. Explor. Res. Hypothesis Med. 2023, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, H.; Qiu, X.; Xu, D.; Chen, Y.; Barnes, G.N.; Tu, Y.; Gyabaah, A.T.; Gharbal, A.H.A.A.; Peng, C.; et al. Neuroprotective Effects of Adenosine A1 Receptor Signaling on Cognitive Impairment Induced by Chronic Intermittent Hypoxia in Mice. Front. Cell Neurosci. 2020, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, M.; Mujumdar, A.S. UV induced conversion during drying of ergosterol to vitamin D in various mushrooms: Effect of different drying conditions. Trends Food Sci. Technol. 2020, 105, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lin, C.; Wang, T.; Zhang, P.; Liu, Z.; Lu, C. Ergosterol attenuates LPS-induced myocardial injury by modulating oxidative stress and apoptosis in rats. Cell Physiol. Biochem. 2018, 48, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, S.; Zhu, C.; Gao, Q.; Bai, J.; Si, J.; Chen, Y. Ergosterol ameliorates renal inflammatory responses in mice model of diabetic nephropathy. Biomed Pharmacother. 2020, 128, 110252. [Google Scholar] [CrossRef]
- Kushairi, N.; Tarmizi, N.A.K.A.; Phan, C.W.; Macreadie, I.; Sabaratnam, V.; Naidu, M.; David, P. Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer’s disease. Trends Food Sci. Technol. 2020, 104, 153–162. [Google Scholar] [CrossRef]
- Ano, Y.; Kutsukake, T.; Hoshi, A.; Yoshida, A.; Nakayama, H. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum. PLoS ONE 2015, 10, e0116598. [Google Scholar] [CrossRef] [PubMed]
- Nallathamby, N.; Guan-Serm, L.; Vidyadaran, S.; Abd Malek, S.N.; Raman, J.; Sabaratnam, V. Ergosterol of Cordyceps militaris attenuates LPS induced inflammation in BV2 microglia cells. Nat. Prod. Commun. 2015, 10, 885–886. [Google Scholar] [CrossRef] [PubMed]
- Sillapachaiyaporn, C.; Chuchawankul, S.; Nilkhet, S.; Moungkote, N.; Sarachana, T.; Ung, A.T.; Baek, S.J.; Tencomnao, T. Ergosterol isolated from cloud ear mushroom (Auricularia polytricha) attenuates bisphenol A-induced BV2 microglial cell inflammation. Food Res. Int. 2022, 157, 111433. [Google Scholar] [CrossRef] [PubMed]
- Sillapachaiyaporn, C.; Mongkolpobsin, K.; Chuchawankul, S.; Tencomnao, T.; Baek, S.J. Neuroprotective effects of ergosterol against TNF-α-induced HT-22 hippocampal cell injury. Biomed. Pharmacother. 2022, 154, 113596. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Tao, Y.; Wang, Q.; Shen, L.; Yang, T.; Liu, Z.; Liu, C. Ergosterol Is the Active Compound of Cultured Mycelium Cordyceps sinensis on Antiliver Fibrosis. Evid. Based Complement. Alternat. Med. 2014, 2014, 537234. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Huang, Y.; Liu, Y.; Huang, M.; Song, G.; Ming, Q.; Ma, X.; Yang, J.; Deng, S.; Wen, Y.; et al. Antidiabetic activity of ergosterol from Pleurotus ostreatus in KK-A(y) mice with spontaneous type 2 diabetes mellitus. Mol. Nutr. Food. Res. 2018, 62, 1700444. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chen, H.; Dong, P.; Lu, X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013, 139, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xiao, C.; Xu, H.; Yang, S.; Chen, Z.; Wang, H.; Zheng, B.; Mao, B.; Wu, X. Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem. Toxicol. 2021, 150, 112073. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Lu, T.M.; Lai, M.N.; Ng, L.T. Immunomodulatory activities of medicinal mushroom Grifola frondosa extract and its bioactive constituent. Am. J. Chin. Med. 2013, 41, 131–144. [Google Scholar] [CrossRef]
- Rangsinth, P.; Sharika, R.; Pattarachotanant, N.; Wongwan, C.; Sillapachaiyaporn, C.; Nilkhet, S.; Duangjan, C.; Wongsirojkul, N.; Prasansuklab, A.; Tencomnao, T.; et al. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023, 12, 2529. [Google Scholar] [CrossRef]
- Boonstra, E.; de Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S. Neurotransmitters as Food Supplements: The Effects of GABA on Brain and Behavior. Front. Psychol. 2015, 6, 1520. [Google Scholar] [CrossRef] [PubMed]
- Hepsomali, P.; Groeger, J.A.; Nishihira, J.; Scholey, A. Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front. Neurosci. 2020, 14, 923. [Google Scholar] [CrossRef] [PubMed]
- Jędrejko, K.J.; Lazur, J.; Muszyńska, B. Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity. Foods 2021, 10, 2634. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cheng, L.; He, Y.; Wei, X. Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. Int. J. Biol. Macromol. 2018, 120, 2076–2085. [Google Scholar] [CrossRef] [PubMed]
- Sung, T.J.; Wang, Y.Y.; Liu, K.L.; Chou, C.H.; Lai, P.S.; Hsieh, C.W. Pholiota nameko polysaccharides promotes cell proliferation and migration and reduces ros content in H2O2-induced l929 cells. Antioxidants 2020, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Cirigliano, A.; Macone, A.; Bianchi, M.M.; Oliaro-Bosso, S.; Balliano, G.; Negri, R.; Rinaldi, T. Ergosterol reduction impairs mitochondrial DNA maintenance in S. cerevisiae. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Jordá, T.; Puig, S. Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Fonseca, M.B.; Vidal-Limon, A.; Fernández-Pomares, C.; Rojas-Durán, F.; Hernández-Aguilar, M.E.; Espinoza, C.; Trigos, A.; Suárez-Medellín, J. Ergosterol exerts a differential effect on AR-dependent LNCaP and AR-independent DU-145 cancer cells. Nat. Prod. Res. 2021, 35, 4857–4860. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.V.T.; Tran, V.K.; Le, L.S.; Tran, T.M.; Nguyen, D.G.C.; Trinh, T.K.; Nguyen, Q.V.; Nguyen, C.C.; Le, T.H. Phenolic content and antioxidant activity of Ophiocordyceps Sobolifera extract for renal injury prevention. Process Biochem. 2022, 121, 322–329. [Google Scholar]
- Shao, F.; Wang, X.; Wu, H.; Wu, Q.; Zhang, J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front. Aging Neurosci. 2022, 14, 825086. [Google Scholar] [CrossRef]
- Peng, J.; Wang, P.; Ge, H.; Qu, X.; Jin, X. Effects of cordycepin on the microglia-overactivation-induced impairments of growth and development of hippocampal cultured neurons. PLoS ONE 2015, 10, e0125902. [Google Scholar] [CrossRef]
- Ding, Y.; Kang, J.; Liu, S.; Xu, Y.; Shao, B. The Protective Effects of Peroxisome Proliferator-Activated Receptor Gamma in Cerebral Ischemia-Reperfusion Injury. Front. Neurol. 2020, 11, 588516. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tian, Z.; Wang, M.; Kou, J.; Wang, C.; Rong, X.; Li, J.; Xie, X.; Pang, X. Luteoloside attenuates neuroinflammation in focal cerebral ischemia in rats via regulation of the PPARγ/Nrf2/NF-κB signaling pathway. Int. Immunopharmacol. 2019, 66, 309–316. [Google Scholar] [CrossRef]
- Zheng, L.; Lu, X.; Yang, S.; Zou, Y.; Zeng, F.; Xiong, S.; Cao, Y.; Zhou, W. The anti-inflammatory activity of GABA-enriched Moringa oleifera leaves produced by fermentation with Lactobacillus plantarum LK-1. Front. Nutr. 2023, 10, 1093036. [Google Scholar] [CrossRef]
- Zhao, X.R.; Gonzales, N.; Aronowski, J. Pleiotropic role of PPARγ in intracerebral hemorrhage: An intricate system involving Nrf2, RXR, and NF-κB. CNS Neurosci. Ther. 2015, 21, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhao, T.; Xiao, H. The Implication of Oxidative Stress and AMPK-Nrf2 Antioxidative Signaling in Pneumonia Pathogenesis. Front. Endocrinol. 2020, 11, 400. [Google Scholar] [CrossRef]
- Duan, C.; Jiao, D.; Wang, H.; Wu, Q.; Men, W.; Yan, H.; Li, C. Activation of the PPARγ Prevents Ferroptosis-Induced Neuronal Loss in Response to Intracerebral Hemorrhage Through Synergistic Actions with the Nrf2. Front. Pharmacol. 2022, 13, 869300. [Google Scholar] [CrossRef]
- Choi, Y.K.; Kim, Y.M. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int. J. Mol. Sci. 2022, 23, 7041. [Google Scholar] [CrossRef] [PubMed]
- Nitti, M.; Piras, S.; Brondolo, L.; Marinari, U.M.; Pronzato, M.A.; Furfaro, A.L. Heme Oxygenase 1 in the Nervous System: Does It Favor Neuronal Cell Survival or Induce Neurodegeneration? Int. J. Mol. Sci. 2018, 19, 2260. [Google Scholar] [CrossRef]
- Polvani, S.; Tarocchi, M.; Galli, A. PPAR gamma and oxidative stress: Con(beta) catenating NRF2 and FOXO. PPAR Res. 2012, 15, 641087. [Google Scholar]
- Kronke, G.; Kadl, A.; Ikonomu, E.; Blüml, S.; Fürnkranz, A.; Sarembock, I.J.; Bochkov, V.N.; Exner, M.; Binder, B.R.; Leitinger, N. Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Lee, C. Collaborative Power of Nrf2 and PPARγ Activators against Metabolic and Drug-Induced Oxidative Injury. Oxid. Med. Cell Longev. 2017, 2017, 1378175. [Google Scholar] [CrossRef] [PubMed]
- Dubuquoy, L.; Rousseaux, C.; Thuru, X.; Peyrin-Biroulet, L.; Romano, O.; Chavatte, P.; Chamaillard, M.; Desreumaux, P. PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut 2006, 55, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
Standard Chemicals | R2 | R.T. (min) | LD | Linear Equation | RSD % | Number of Data Points | Detection Methods |
---|---|---|---|---|---|---|---|
Adenosine | 0.9971 | 20.31 | 40 μg/mL | 100.6006 | 5 | RP-HPLC | |
Ergosterol | 0.9148 | 14.03 | 6.0 μg/mL | 68.3628 | 5 | RP-HPLC | |
Polysaccharide | 0.9975 | - | 0.10 mg/mL | 67.7326 | 5 | Colorimetric | |
Total Polyphenols (mg Ga/g) | 0.9952 | - | 0.10 mg/mL | 68.0186 | 5 | Colorimetric | |
Total Flavonoids (mg Que/g) | 0.9973 | - | 10 μg/mL | 34.9659 | 5 | Colorimetric | |
GABA | 0.9441 | 19.32 | 200 μg/mL | 57.3752 | 5 | RP-HPLC |
Compounds (mg/g) | SCOS Extracts 1 | |||
---|---|---|---|---|
FLOS | WEOS | EEOS-50 | EEOS-95 | |
Adenosine | 2.12 ± 0.09 b,2 | 2.83 ± 0.05 c | 3.29 ± 0.29 d | 0.19 ± 0.01 a |
Ergosterol | ND | ND | ND | 18.60 ± 0.70 |
Polysaccharide | 107.60 ± 10.20 b | 156.30 ± 7.10 c | 28.50 ± 7.70 a | ND |
Total Polyphenols (mg Ga/g) | 1.57 ± 0.09 a | 1.71 ± 0.07 bc | 1.77 ± 0.15 c | 2.28 ± 0.05 d |
Total Flavonoids (mg Que/g) | 1.34 ± 0.01 b | 1.17 ± 0.02 a | 1.65 ± 0.01 c | 2.14 ± 0.06 d |
GABA | 3.70 ± 0.30 a | 12.60 ± 0.80 b | 13.20 ± 0.60 b | 18.60 ± 0.50 c |
Concentration (µg/mL) 1 | Cell Viability (% of CON) | |||
---|---|---|---|---|
FLOS 2 | WEOS | EEOS-50 | EEOS-95 | |
50 | 89.80 ± 13.20 a,3 | 95.90 ± 7.20 a | 94.30 ± 11.90 a | 116.60 ± 8.60 a |
100 | 106.40 ± 25.60 a | 96.70 ± 1.40 a | 102.20 ± 6.00 a | 137.30 ± 12.60 b |
250 | 119.40 ± 18.30 ab | 108.80 ± 5.10 a | 116.80 ± 6.20 ab | 171.70 ± 12.90 cd |
500 | 134.20 ± 11.30 b | 123.70 ± 11.90 b | 125.70 ± 4.40 b | 196.50 ± 13.80 d |
1000 | 114.00 ± 23.40 ab | 116.50 ± 8.40 ab | 123.00 ± 1.00 b | 175.90 ± 3.00 c |
Treatments 1 | Nitrite Concentration (nmol/106 Cells) | ||||
---|---|---|---|---|---|
50 | 250 | 500 | |||
CON | 0.33 ± 0.05 a,4 | - | - | - | |
LPS (1 µg/mL) | 0.78 ± 0.12 d | - | - | - | |
MT (1 mM) 2 | +LPS | 0.45 ± 0.03 b | - | - | - |
FLOS 3 | - | 0.55 ± 0.00 c | 0.59 ± 0.07 c | 0.59 ± 0.07 c | |
WEOS | - | 0.75 ± 0.02 d | 0.74 ± 0.02 d | 0.59 ± 0.05 c | |
EEOS-50 | - | 0.76 ± 0.11 d | 0.66 ± 0.05 cd | 0.58 ± 0.10 c | |
EEOS-95 | - | 0.64 ± 0.16 cd | 0.53 ± 0.09 c | 0.46 ± 0.02 b |
Treatments 1 | Cytokines | ||||
---|---|---|---|---|---|
IL-1β (pg/mL) | TNF-α (ng/mL) | IL-6 (ng/mL) | PGE2 (pg/mL) | ||
CON | 4.29 ± 1.30 a,3 | 13.71 ± 0.69 a | 0.00 ± 0.00 a | 97.60 ± 5.50 a | |
LPS (1 µg/mL) | 76.66 ± 3.47 f | 70.54 ± 4.89 d | 608.22 ± 17.40 e | 933.90 ± 12.30 e | |
MT (1 mM) 2 | + LPS | 54.79 ± 0.94 d | 35.53 ± 3.58 b | 538.87 ± 28.22 de | 877.90 ± 10.30 d |
50 | 62.86 ± 3.90 e | 49.58 ± 0.75 c | 510.21 ± 7.09 cd | 308.20 ± 9.80 c | |
250 | 36.59 ± 1.54 c | 53.10 ± 3.53 c | 451.58 ± 2.73 c | 155.40 ± 30.40 b | |
500 | 25.76 ± 0.61 b | 42.22 ± 3.22 bc | 343.20 ± 1.86 b | 126.00 ± 27.90 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-C.; Shi, Y.-J.; Vo, T.-L.-T.; Hsu, T.-H.; Song, T.-Y. The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds. J. Fungi 2024, 10, 523. https://doi.org/10.3390/jof10080523
Huang H-C, Shi Y-J, Vo T-L-T, Hsu T-H, Song T-Y. The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds. Journal of Fungi. 2024; 10(8):523. https://doi.org/10.3390/jof10080523
Chicago/Turabian StyleHuang, Hsien-Chi, Yu-Juan Shi, Thuy-Lan-Thi Vo, Tai-Hao Hsu, and Tuzz-Ying Song. 2024. "The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds" Journal of Fungi 10, no. 8: 523. https://doi.org/10.3390/jof10080523
APA StyleHuang, H. -C., Shi, Y. -J., Vo, T. -L. -T., Hsu, T. -H., & Song, T. -Y. (2024). The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds. Journal of Fungi, 10(8), 523. https://doi.org/10.3390/jof10080523