
Citation: Huang, H.-C.; Shi, Y.-J.; Vo,

T.-L.-T.; Hsu, T.-H.; Song, T.-Y. The

Anti-Inflammatory Effects and

Mechanism of the Submerged Culture

of Ophiocordyceps sinensis and Its

Possible Active Compounds. J. Fungi

2024, 10, 523. https://doi.org/

10.3390/jof10080523

Academic Editor: Zuzanna Magdziak

Received: 22 May 2024

Revised: 4 July 2024

Accepted: 24 July 2024

Published: 27 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fungi
Journal of

Article

The Anti-Inflammatory Effects and Mechanism of the
Submerged Culture of Ophiocordyceps sinensis and Its Possible
Active Compounds
Hsien-Chi Huang 1, Yu-Juan Shi 2, Thuy-Lan-Thi Vo 2, Tai-Hao Hsu 2 and Tuzz-Ying Song 2,*

1 PhD Program of Biotechnology and Bioindustry, College of Biotechnology and Bioresources,
Da-Yeh University, Changhua 515, Taiwan; d0367004@cloud.dyu.edu.tw

2 Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University,
Changhua 515, Taiwan; b0970705060@gmail.com (Y.-J.S.); d0467601@cloud.dyu.edu.tw (T.-L.-T.V.);
th0123@mail.dyu.edu.tw (T.-H.H.)

* Correspondence: song77@mail.dyu.edu.tw; Tel.: +886-4-8511-888 (ext. 2282); Fax: +886-4-8511-320

Abstract: The pharmacological effects of the fruiting body of Ophiocordyceps sinensis (O. sinensis)
such as antioxidant, anti-virus, and immunomodulatory activities have already been described,
whereas the anti-inflammatory effects and active components of the submerged culture of O. sinesis
(SCOS) still need to be further verified. This study aimed to investigate the active compounds in the
fermented liquid (FLOS), hot water (WEOS), and 50–95% (EEOS-50, EEOS-95) ethanol extracts of
SCOS and their anti-inflammatory effects and potential mechanisms in lipopolysaccharide (LPS)-
stimulated microglial BV2 cells. The results demonstrated that all of the SCOS extracts could inhibit
NO production in BV2 cells. EEOS-95 exhibited the strongest inhibitory effects (71% inhibitory
ability at 500 µg/mL), and its ergosterol, γ-aminobutyric acid (GABA), total phenolic, and total
flavonoid contents were significantly higher than those of the other extracts (18.60, 18.60, 2.28, and
2.14 mg/g, p < 0.05, respectively). EEOS-95 also has a strong inhibitory ability against IL-6, IL-1β,
and TNF-α with an IC50 of 617, 277, and 507 µg/mL, respectively, which is higher than that of
1 mM melatonin. The anti-inflammatory mechanism of EEOS-95 seems to be associated with the
up-regulation of PPAR-γ/Nrf-2/HO-1 antioxidant-related expression and the down-regulation of
NF-κB/COX-2/iNOS pro-inflammatory expression signaling. In summary, we demonstrated that
EEOS-95 exhibits neuroinflammation-mediated neurodegenerative disorder activities in LPS-induced
inflammation in brain microglial cells.

Keywords: Ophiocordyceps sinensis; microglial; anti-inflammatory; cytokines; submerged culture;
neurodegenerative diseases

1. Introduction

The caterpillar fungus O. sinensis is known as Yarshagumba in Nepal and Dong-chong-
xia-cao in Chinese, and it has also been found in the alpine regions of Bhutan, India, China,
and Nepal [1,2]. It has been treasured for centuries in traditional medicine [2]. Primarily
used as a tonic to boost immunity, it holds immense potential for various therapeutic
applications [3]. Several studies have documented its diverse beneficial properties, making
it a fascinating subject for scientific exploration [4]. Previous research has highlighted
the potential of O. sinensis in addressing a multitude of health concerns [1–4]. Many
pharmacological effects have been reported, including on the nervous system, immune
regulation, and renal, liver, and cardiovascular diseases; in particular, it was also used
to treat the severe acute respiratory syndrome virus (SARS virus) 2003 in China [3,4]. In
addition, Sen and co-authors comprehensively pointed to phytochemicals such as phenolic
acids, amino acids, fatty acids, sterols, polysaccharides, nucleosides, etc., which have
contributed various beneficial nutritional or pharmacological properties [4]. Traditionally,
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O. sinensis has been consumed in powdered form, mixed with milk or water, or added to
tea or soup. The high price of O. sinensis is mainly due to its medicinal value, which has
led to an increasing demand from consumers and a gradual decrease in the production of
natural wild species (fruiting bodies). Wei et al. warn that climate change further threatens
its distribution in the wild [5]. Based on the above reasons, some researchers have used
mycelium isolation technology and isolated O. sinensis mycelia for submerged culture [3].
The benefits of this new approach are twofold: it reduces pressure on wild populations and
promotes ecological sustainability while providing a more economically viable source of
O. sinensis. Although many studies were conducted in the past to demonstrate the effects
of the fruiting body of O. sinensis on human health, the functionality of submerged cultures
of O. sinensis mycelia and the active compounds in mycelia and fermentation still need to
be further verified.

Neurodegenerative diseases (NDs) are a group of progressive conditions that affect
millions of people worldwide, predominantly in their later years. These devastating
disorders attack the nervous system, particularly the brain, leading to a decline in cognitive
and motor function. The rising number of ND cases puts immense pressure on healthcare
systems, families, and communities [6–10]. While the specific causes of each ND vary,
researchers have identified several key factors that contribute to their development; these
include oxidative stress (an imbalance between free radicals and antioxidants) leading to
cellular damage, protein aggregation (the abnormal buildup of misfolded proteins in the
brain, forming toxic clumps), neuro-inflammation (chronic inflammation in the nervous
system damaging brain cells), neurotransmission impairment (disruption of chemical
communication between neurons), mitochondrial dysfunction (impaired energy production
in brain cells), and excitotoxicity (excessive stimulation of brain cells, leading to their
death) [11].

Neuroinflammation is a defensive response of the brain to injury or infection, oc-
curring in both chronic and acute neurodegenerative disorders. Microglia, the innate
immune cells of the central nervous system, become rapidly activated when the brain is
infected, injured, or damaged. They regulate the production of proinflammatory cytokines
and immune response mediators, including nitric oxide (NO), tumor necrosis factor-α
(TNF-α), interleukin-1β (IL-1β), reactive oxygen species (ROS), and various neurotoxic
mediators [12,13]. Therefore, inhibiting the activation of microglia and neuroinflammation
is a potential therapeutic target for reducing ND and neuronal damage.

The important bioactive compounds detected in Os mycelia are as follows: adeno-
sine, polysaccharides, ergosterol, cordycepin, etc. [14,15]. These compounds have been
reported to have various biological and pharmacological effects such as immunomodu-
latory, anti-inflammatory, and antioxidant effects [3]. Li et al. reported that the bioactive
compounds of mycelia isolated from wild O. sinensis had neuroprotective effects on PC12
cells and prevented hydrogen peroxide-induced nerve damage in rats [16]. However, to
date, no analytical data on the effects of SCOS on BV2 microglia or analysis of the bioactive
components of their mycelial extracts are available.

Thus, in the present report, we explored the contents of active compounds of fer-
mented liquid (FLOS), and various mycelial extracts (hot water—WEOS; 50% ethanol
extracts—EEOS-50; and 95% ethanol extracts—EEOS-95) of SCOS by RP-HPLC assays and
evaluated their potential cytotoxicity and role as a mediator of nitric oxide (NO) produc-
tion. EEOS-95 (a potent extract) was then evaluated for its anti-inflammatory activities
(cytokine release; interleukins-1β (IL-1β), interleukins-6 (IL-6), tumor necrosis factor-α
(TNF-α), and prostaglandin E2 (PGE2)) in LPS-stimulated microglial BV2 cells through
ELISA kits (LPS stimulation can mimic the initial acute inflammatory response to produce
cytokines). Additionally, the effect of EEOS-95 on inflammatory proteins (inducible NO
synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB)) and
anti-inflammatory proteins (nuclear factor-erythroid 2-related factor 2 (Nrf-2), peroxisome
proliferator-activated receptors (PPAR-γ), and heme oxygenase-1 (HO-1)) were determined
in LPS-stimulated microglial BV2 cells by using Western blotting assays.
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2. Materials and Methods
2.1. Chemicals

The mouse microglial BV2 cell line was purchased from the Food Industry Research
and Development Institute (Hsinchu, Taiwan). The lipopolysaccharide (LPS; Escherichia
coli O26:B6) and bovine serum albumin were bought from Sigma-Aldrich Co. (St Louis,
MO, USA). RPMI 1640, and fetal bovine serum (FBS) were purchased from Gibco by Life
Technologies (Frederick, MD, USA). All solvents were of HPLC grade, and the purity of
all standard powders was > 99%. Tips, dishes, test tubes, etc., for cell culture were bought
from Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Preparation of Hot Water and Ethanol Extracts from the Submerged Culture of O.
Sinesis (SCOS)

The O. sinensis H101 strain was isolated from wild O. sinensis (Qinghai Province,
China), and identified by the Bioresource Collection and Research Center (Hsinchu, Taiwan)
(BCRC 930166). The submerged culture of fungus contains its submerged mycelia and
culture liquid is determined as a liquid culture of the dried mycelia under laboratory
conditions. This experiment used dried mycelia (O. sinensis H101), kindly provided by
Professor Hsu Tai-Hao. O. sinensis H101 was cultured at pH 7.0, in 100× g, and at 18 ◦C for
15 days in a 2 L Erlenmeyer flask containing (3% glucose, 0.5% peptone, 0.3% yeast extract,
0.1% H2PO4, and 0.05% MgSO4.7 H2O) on a rotary shaker (120 rpm). The submerged
culture of Os H101 (SCOS) was harvested at the end of the fermentation process. Mycelia
of SCOS were extracted with a 1:20 ratio (w/v) of 121 ± 2 ◦C hot water (in an autoclave)
for 15 min, or extracted with a 1:20 ratio of 50% and 95% ethanol by soaking at room
temperature for 24 h. The extracts were centrifuged (1500 rpm, 10 min) and concentrated at
reduced pressure using a rotary evaporator. Then, the mycelia of the SCOS extracts were
freeze-dried (lyophilization) to obtain the hot water extract of O. sinensis (WEOS), 50%
ethanol extract of O. sinensis (EEOS-50), and 95% ethanol extract of O. sinensis (EEOS-95).
Finally, samples were stored at 4 ◦C for the following analysis. The extraction yields of
WEOS (32.9%), EEOS-50 (25.1%), and EEOS-95 (7.4%) were determined. The fermented
liquid of Os (FLOS) was concentrated 10 times by using a rotary evaporator and then freeze-
dried to powder. The preparation procedure was performed according to our previous
study and Javadi et al., 2021 [17–19].

2.3. Determination of Bioactive Compounds

The determination of the bioactive compounds of SCOS was carried out using an
Agilent 1200 reversed-phase high-performance liquid chromatograph coupled with a
diode-array detector (Hitachi, Chiyoda City, Japan, Chromaster 5430). A HIQ Sil C18W
reversed-phase column was used (4.6 mm × 250 mm, 5 µm). The results were expressed in
mg/g. All solvents were of HPLC grade and filtered before HPLC analysis.

2.3.1. Measurement of Adenosine

Adenosine was measured by applying the method described in Chang et al. [20]. The
sample or standard was dissolved in 1 mL distilled water, and ultrasound-assisted (ultra-
sonic power 100 W) extraction was carried out for 1 h. The mobile phase was CH3OH:0.02 M
KH2PO4 (15:85, v/v), with isocratic elution. The flow rate was 0.7 mL/min, the absorbance
was measured at 254 nm, and the injection volume was 20 µL.

2.3.2. Measurement of Ergosterol

Ergosterol was measured as described by Yuan et al. [21]. The sample or standard
(10 mg) was dissolved in 1 mL methanol/dichloromethane (75:25, v/v) and shaken for
1 h. The mobile phase consisted of solvents A (80% methanol) and B (75% methanol
in dichloromethane) with a gradient elution as follows: 0–5 min (100% A); 5–19 min
(0%–100% B); 20 min (100% B); and 34–35 min (100% B). The flow rate was 1.0 mL/min,
the absorbance was measured at 280 nm, and the injection volume was 20 µL.
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2.3.3. Measurement of GABA

The measurement of GABA was performed as previously described by Rogério da
Silva Moraes et al. [22]. The mobile phase was A: 50 mM sodium acetate, 5% methanol,
2-propanol (pH 5.67); B: 70% methanol. The gradient was as follows: 0–10 min: 100% A,
10–20 min: 70% A, 20–25 min: 50% A, and 25 min: 100% A. The flow rate was 0.8 mL/min,
the absorbance was measured at 338 nm, and the injection volume was 20 µL.

The chemicals were prepared as follows: the working solution was derivatized (OPA-
NAC complex) to allow for a reaction between the OPA and NAC thiol group: 16.3 mg N-
acetylcysteine (NAC), 13 mg o-phthalaldehyde (OPA), and 300 µL methanol were allowed
to react for 30 min at room temperature in the dark, and were then stored in plastic test
tubes at 4 ◦C in the dark (used within 24 h after preparation) with borate buffer (pH 9.6).

GABA standard or samples were mixed: 60 µL standard or sample, 40 µL borate buffer,
and 10 µL OPA-NAC complex; after 10 min of reaction, this final solution was vortexed
before HPLC analysis.

2.3.4. Measurement of EPS, TPC, and TFC Contents

Extracellular polysaccharides (EPSs) were detected following the phenol–sulfuric
colorimetric method described by Jiménez et al. [23].

The total phenolic content (TPC) of each extract was determined by applying the
Folin–Ciocalteu method described by Yang et al. [18]. TPC was expressed as milligrams of
gallic acid equivalent per gram of SCOS extract (mg Ga/g). The total flavonoid content
(TFC) of each extract was determined using the aluminum chloride colorimetric method
described by Yang et al. [18]. TFC was expressed as milligram of quercetin equivalent per
gram of SCOS extract (mg Que/g).

2.4. Cytotoxicity Test of SCOS on BV2 Microglial Cells

The mouse microglial BV2 cell line was purchased from the Food Industry Research
and Development Institute (Hsinchu, Taiwan). Cells were cultured in RPMI 1640, con-
taining 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 10% fetal bovine serum, and 1%
antibiotic penicillin/streptomycin. The medium for cells used in the experiments was
changed every 2 days and incubated at 37 ◦C and 5% CO2.

The cytotoxicity evaluation of SCOS on BV2 microglial cells was determined by the
MTT method described in Vo et al. [19]. Cells were treated with various concentrations
(10–1000 µg/mL) of FLOS, WEOS, EEOS-50, and EEOS-95 and cell viability was detected
at 490 nm using an ELISA reader (Synergy HTX, BioTek, Winooski, VT, USA).

2.5. Measurement of Nitrite Production

The evaluation of the effect of SCOS on NO level was applied by measuring nitrite accu-
mulation as described in Vo et al. [19] with minor modifications. BV2 cells (5 × 105 cells/mL)
were seeded in 24-well plates for 2 h. Cells were treated with 10–1000 µg/mL of FLOS,
WEOS, EEOS-50, and EEOS-95 for 24 h. They were LPS stimulated (1 µg/mL) for 24 h,
and nitrite levels were detected at 540 nm using an ELISA reader (Synergy HTX, BioTek,
Winooski, VT, USA). The inhibition % formula was: Inhibition (%) =

(
LPS−Sample
LPS−CON

)
× 100.

2.6. Anti-Inflammatory Activities of 95% Ethanol Extract SCOS (EEOS-95)
2.6.1. Measurement of Pro-Inflammatory Cytokine Level

BV2 cells (5 × 105 cells/well) were seeded in 24-well plates for 2 h and treated with
different concentrations (50–500 µg/mL) of EEOS-95 for 24 h, and then incubated for
24 h with 1 µg/mL LPS to induce the secretion of inflammatory-related cytokines. After
incubation, the concentration of cytokines in the culture medium was determined using
an ELISA kit according to the manufacturer’s instructions. Cytokines were measured as
IL-1β, IL-6, TNF-α (Invitrogen Co. Camarillo, CA, USA), and PGE2 (Life Technologies
Corp. Frederick, MD, USA).
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2.6.2. Western Blotting Analysis

Cell pellets were harvested and washed with cold phosphate buffer saline (pH 7.4).
An amount of 50 µg of cytoplasmic proteins were electrophoresed on 10% sodium dodecyl
sulfate–polyacrylamide gels (SDS-PAGE) and transferred to a poly-vinylidene fluoride
membrane. The membrane was blotted and incubated with specific primary antibodies
overnight at 4 ◦C, followed by incubation with a horseradish peroxidase-conjugated sec-
ondary antibody. Finally, the blots were probed using enhanced chemiluminescence and
autoradiographed. The relative density of protein expression was quantified using ImageJ
software v1.8.0, developed by Wayne Rasband at the National Institutes of Health and the
Laboratory for Optical and Computational Instrumentation (LOCI, University of Wisconsin,
Madison, WI, USA). The protein content in the supernatant was determined using the
BCA protein assay kit (Thermo, Rockford, IL, USA). Western blot analysis detected the
protein expression of iNOS, COX-2, NF-κB, HO-1, Nrf-2, PARP-γ, and β-actin in the BV2
microglial cells.

2.7. Statistical Analysis

All statistical analyses were performed using SPSS for Windows, version 18 (SPSS
Inc., Chicago, IL, USA). Data are expressed as means ± standard deviation and analyzed
using one-way ANOVA followed by Duncan’s multiple range test. p < 0.05 is considered
statistically significant.

3. Results
3.1. Bioactive Compounds in Extract of SCOS

We prepared the dry matter of the fermented liquid (FLOS) and the mycelial extracts
with hot water (WEOS), 50% ethanol(EEOS-50), and 95% ethanol (EEOS-95) from the sub-
merged culture of Os (SCOS). The following Bioactive compounds, total polyphenols, total
flavonoids, adenosine, ergosterol, polysaccharide, and GABA, in SCOS were detected by
RP-HPLC and colorimetric methods (Table 1). Instrument calibrations in analysis methods
using liquid chromatography (LC) are usually created using either average correlation
coefficients (r) or linear regression equations. The relative standard deviation (RSD%)
was applied to evaluate the reproducibility of the chemical analysis. As shown in Table 1,
the standard chemicals had an RSD% less than 101%. All of these results suggested that
the analytical method could be applied to six active compounds’ analysis with excellent
repeatability and stability [24]. The HPLC chromatograms of adenosine, ergosterol, and
GABA standards and EEOS-95 are shown in Figure 1A, B, C, and D, respectively. The
spectrum of the full wavelength of the sample (Figure 1F) was compared with that of the
standard (Figure 1E) and has the same waveform.

Table 1. Correlation coefficients (R2), retention time (R.T.), detection limits (LD), linear calibration
curve, relative standard deviation (RSD), number of data points, and detection methods for the
standard chemicals. Values are means ± SD, n = 3 for the test groups, p < 0.05.

Standard
Chemicals R2 R.T.

(min) LD Linear Equation RSD % Number of
Data Points

Detection
Methods

Adenosine 0.9971 20.31 40 µg/mL y = 12255.09x − 3756.04 100.6006 5 RP-HPLC
Ergosterol 0.9148 14.03 6.0 µg/mL y = 753758x − 1185200 68.3628 5 RP-HPLC
Polysaccharide 0.9975 - 0.10 mg/mL y = 19.8894x + 0.1320 67.7326 5 Colorimetric
Total Polyphenols
(mg Ga/g) 0.9952 - 0.10 mg/mL y = 2.5844x + 0.0407 68.0186 5 Colorimetric

Total Flavonoids
(mg Que/g) 0.9973 - 10 µg/mL y = 0.00237x + 0.0514 34.9659 5 Colorimetric

GABA 0.9441 19.32 200 µg/mL y = 17039x + 430827 57.3752 5 RP-HPLC

The results are shown in Table 2; both FLOS and WEOS are rich in adenosine (2.12 and
283 mg/g) and polysaccharides (107.60 and 156.3 mg/g), while EEOS-50 and EEOS-95 have
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higher GABA, TPC, and TFC contents. It is worth noting that the contents of ergosterol,
TPC, TFC, and GABA in EEOS-95 were higher than those in other extracts, with contents of
18.6, 2.28, 2.14, and 18.60 mg/g, respectively. Therefore, we hypothesized that EEOS-95
might be a potential extract of SCOS with anti-inflammatory effects. The main reason for
the “non-detected” polysaccharides in EEOS-95 is that polysaccharides are not soluble
in 95% alcohol, and therefore, the extract (EEOS-95) extracted with 95% ethanol did not
contain polysaccharides.
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Figure 1. HPLC chromatograms and full-wavelength spectrum of adenosine, ergosterol, GABA,
and EEOS-95. The HPLC chromatograms of standard adenosine (A), ergosterol (B), GABA (C) and
EEOS-95 (D) were detected. A diode array detector (DAD) was used to detect the full-wavelength
(200–400 nm), comparison standard waveforms (adenosine, ergosterol, and GABA) (E), and EEOS-95
(F). EEOS-95: 95% ethanol extract of SCOS.

Table 2. Active compounds of various extracts from SCOS.

Compounds (mg/g)
SCOS Extracts 1

FLOS WEOS EEOS-50 EEOS-95

Adenosine 2.12 ± 0.09 b,2 2.83 ± 0.05 c 3.29 ± 0.29 d 0.19 ± 0.01 a

Ergosterol ND ND ND 18.60 ± 0.70
Polysaccharide 107.60 ± 10.20 b 156.30 ± 7.10 c 28.50 ± 7.70 a ND
Total Polyphenols (mg Ga/g) 1.57 ± 0.09 a 1.71 ± 0.07 bc 1.77 ± 0.15 c 2.28 ± 0.05 d

Total Flavonoids (mg Que/g) 1.34 ± 0.01 b 1.17 ± 0.02 a 1.65 ± 0.01 c 2.14 ± 0.06 d

GABA 3.70 ± 0.30 a 12.60 ± 0.80 b 13.20 ± 0.60 b 18.60 ± 0.50 c

1 FLOS: fermented liquid of SCOS, WEOS: hot water extract of SCOS, EEOS-50: 50% ethanol extract of SCOS, and
EEOS-95: 95% ethanol extract of SCOS. ND: non-detected. 2 Values (means ± SD, n = 3 for the test groups) not
sharing the same superscript letter in a row are significantly different (p < 0.05).

3.2. Cytotoxicity Evaluation of SCOS

The cytotoxicity of SCOS mycelial extracts and FLOS (50–1000 µg/mL) in BV2 mi-
croglial cells was evaluated using MTT analysis after 24 h incubation. Table 3 indicates that
the cell viability of all extracts was > 90% in BV2 cells at concentrations up to 1000 (µg/mL).
Thus, there was no toxic effect when BV2 cells were treated with 50 to 1000 (µg/mL) of
SCOS extracts. The results also indicated that when the concentration was <500 µg/mL,
all SCOS samples increased the cell viability in a dose-dependent manner. In particular, at
concentrations of 50 and 500 µg/mL EEOS-95, the percentage of cell viability enhanced
from 116.60% to 196.50%, an increase of approximately 68.52%. At a concentration of
1000 µg/mL, the cell viability of all the samples began to show a decreasing trend.
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Table 3. The cytotoxicity of various extracts of SCOS on BV2 cells.

Concentration (µg/mL) 1
Cell Viability (% of CON)

FLOS 2 WEOS EEOS-50 EEOS-95

50 89.80 ± 13.20 a,3 95.90 ± 7.20 a 94.30 ± 11.90 a 116.60 ± 8.60 a

100 106.40 ± 25.60 a 96.70 ± 1.40 a 102.20 ± 6.00 a 137.30 ± 12.60 b

250 119.40 ± 18.30 ab 108.80 ± 5.10 a 116.80 ± 6.20 ab 171.70 ± 12.90 cd

500 134.20 ± 11.30 b 123.70 ± 11.90 b 125.70 ± 4.40 b 196.50 ± 13.80 d

1000 114.00 ± 23.40 ab 116.50 ± 8.40 ab 123.00 ± 1.00 b 175.90 ± 3.00 c

1 Cells were pretreated with various extracts of SCOS (50–1000 µg/mL) for 24 h. Viability was measured by
MTT assay. Control (CON) was treated with the culture medium of mycelia. 2 FLOS: fermented liquid of SCOS,
WEOS: hot water extract of SCOS, EEOS-50: 50% ethanol extract of SCOS, and EEOS-95: 95% ethanol extract of
SCOS. 3 Values (means ± SD, n = 3 for the test groups) not sharing the same superscript letter in a column are
significantly different (p < 0.05).

3.3. Effect of O. sinensis Mycelia on Nitric Oxide

We examined the effect of various extracts of SCOS on LPS-induced NO production
by Griess reagent assay (Table 4). BV2 cells were stimulated with LPS (1 µg/mL), and
the NO level significantly increased (0.78 nmol/106 cells) compared with the control
(0.33 nmol/106 cells) (p < 0.05). Our results also indicated that cells pre-treated with
different concentrations (50–500 µg/mL) of extracts from SCOS mycelia—WEOS, EEOS-50,
and EEOS-95—significantly suppressed the NO production by LPS-stimulated BV2 cells in
a dose-dependent manner (p < 0.05); the inhibition effects at 500 µg/mL were 42, 44, and
71%, and EEOS-95 had the highest inhibition effect on NO production. FLOS also inhibited
42% of NO levels; however, treatment doses had no significant difference. (p < 0.05). Thus,
we chose EEOS-95 to proceed with in the following anti-inflammation evaluation.

Table 4. Effect of various extracts of SCOS on LPS-induced nitrite production in BV2 microglial cells.

Treatments 1
Nitrite Concentration (nmol/106 Cells)

50 250 500

CON 0.33 ± 0.05 a,4 - - -
LPS (1 µg/mL) 0.78 ± 0.12 d - - -
MT (1 mM) 2

+LPS

0.45 ± 0.03 b - - -
FLOS 3 - 0.55 ± 0.00 c 0.59 ± 0.07 c 0.59 ± 0.07 c

WEOS - 0.75 ± 0.02 d 0.74 ± 0.02 d 0.59 ± 0.05 c

EEOS-50 - 0.76 ± 0.11 d 0.66 ± 0.05 cd 0.58 ± 0.10 c

EEOS-95 - 0.64 ± 0.16 cd 0.53 ± 0.09 c 0.46 ± 0.02 b

1 Cells were pretreated with 1 mM melatonin (MT) or various extracts of SCOS (µg/mL) for 24 h and then incubated
with LPS 1 µg/mL for 24 h. Control (CON) was treated with the culture medium of mycelia. 2 Melatonin (MT,
N-acetyl-5-methoxytryptamine) is an animal hormone that exhibits physiological functions such as improving
sleep, delaying aging, etc. MT is a positive control. 3 FLOS: fermented liquid of SCOS, WEOS: hot water extract of
SCOS, EEOS-50: 50% ethanol extract of SCOS, and EEOS-95: 95% ethanol extract of SCOS. 4 Values (means ± SD,
n = 3 for the test groups) not sharing the same superscript letter in a column are significantly different (p < 0.05).

3.4. Anti-Inflammation Effect of EEOS-95 on LPS-Induced BV2 Microglial Cells

We further tested EEOS-95, which affected the cytokine production induced by LPS in
BV2 microglial cells. The levels of IL-1β, TNF-α, IL-6, and PGE2 were determined by an
ELISA kit. As shown in Table 5, LPS markedly increased IL-1β, IL-6, TNF-α, and PGE2 lev-
els, as compared with untreated controls (p < 0.05); however, all of these pro-inflammatory
cytokines were significantly decreased by EEOS-95 (50–500 µg/mL) in a concentration-
dependent manner. In addition, at a concentration of 500 µg/mL, the inhibitory effects
of EEOS-95 on IL-1β, IL-6, TNF-α, and PGE2 production (96.60, 70.33, 49.83, and 43.57%,
respectively, p < 0.05) were significantly better than that of 1 mM MT (30.22, 61.60, 11.40,
and 6.70%, respectively, p < 0.05). The inhibition ratio of EEOS-95 on different cytokines
showed that EEOS-95 had the best inhibition effect on PGE2, followed by IL-1β, TNF-α, and
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IL-6, with inhibition rates of 90, 60, 50, and 40%, respectively, p < 0.05, at a concentration of
500 µg/mL (Figure 2).

Table 5. Effect of EEOS-95 on LPS-induced cytokines in BV2 microglial cells.

Treatments 1
Cytokines

IL-1β (pg/mL) TNF-α (ng/mL) IL-6 (ng/mL) PGE2 (pg/mL)

CON 4.29 ± 1.30 a,3 13.71 ± 0.69 a 0.00 ± 0.00 a 97.60 ± 5.50 a

LPS (1 µg/mL) 76.66 ± 3.47 f 70.54 ± 4.89 d 608.22 ± 17.40 e 933.90 ± 12.30 e

MT (1 mM) 2

+ LPS

54.79 ± 0.94 d 35.53 ± 3.58 b 538.87 ± 28.22 de 877.90 ± 10.30 d

50 62.86 ± 3.90 e 49.58 ± 0.75 c 510.21 ± 7.09 cd 308.20 ± 9.80 c

250 36.59 ± 1.54 c 53.10 ± 3.53 c 451.58 ± 2.73 c 155.40 ± 30.40 b

500 25.76 ± 0.61 b 42.22 ± 3.22 bc 343.20 ± 1.86 b 126.00 ± 27.90 a

1 Cells were pretreated with 1 mM melatonin or 50–500 (µg/mL) of EEOS-95: 95% ethanol extracts of SCOS for
24 h and then incubated with LPS 1 µg/mL for 24 h. 2 Melatonin (MT) is a positive control; the control (CON)
was treated with the culture medium of mycelia. 3 Values (means ± SD, n = 3 for the test groups) not sharing the
same superscript letter in a column are significantly different (p < 0.05).
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Figure 2. The inhibitory ratio of EEOS-95 on LPS-induced cytokine production in BV2 microglial cells.
Values (means ± SD, n = 3 for the test groups) not sharing the same superscript letter are significantly
different (p < 0.05). Interleukins-1β (IL-1β), interleukins-6 (IL-6), tumor necrosis factor-α (TNF-α),
and prostaglandin E2 (PGE2).

3.5. Effect of EEOS-95 on the Expression of Inflammatory Proteins in LPS-Induced BV2 Microglial

Western blot analyses were performed to determine whether EEOS-95 had a direct ef-
fect on the pro-inflammatory factor in LPS-induced BV2 microglial. As shown in Figure 3A,
LPS significantly induced the expression of inflammation-associated proteins such as iNOS,
COX-2, and NF-κB, which were dose-dependently (50–500 µg/mL) reduced by EEOS-95
(p < 0.05). At a concentration of 500 µg/mL, EEOS-95 showed a 34, 55, and 20% decrease in
protein expression of iNOS, COX-2, and NF-κB, respectively, compared to the LPS-treated
group alone (Figure 3B–D, p < 0.05). Pretreatment of BV2 cells with 1 mM melatonin
also reduced the expression levels of iNOS and COX-2 by 12% and did not affect NF-κB
compared with the LPS group only.
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Figure 3. Effect of EEOS-95 on the expression levels of pro-inflammation factors in LPS-induced
BV2 microglial cells. Cells were treated with EEOS95 (50–500 µg/mL) and MT (1 mM Melatonin)
for 24 h and incubated with 1 µg/mL LPS for 24 h. (A) Protein expression of inducible nitric oxide
synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (NF-κB), and β-actin were detected
in the cytoplasm by a Western blotting assay. The quantitative values of (B) iNOS, (C) COX-2, and
(D) NF-κB were analyzed using ImageJ software v1.8.0. * Values (means ± SD, n = 3 for the test
groups) not sharing the same superscript letter are significantly different (p < 0.05).

3.6. Effect of EEOS-95 on the Expression of Anti-Inflammatory Protein in LPS-Induced BV2
Microglial Cells

As per the results shown in Figure 4, cells incubated with EEOS-95 significantly
increased the expression levels of antioxidant factors (HO-1, Nrf-2, and PPAR-γ) in the
LPS-induced BV2 microglial cells. The protein expression level of HO-1, Nrf-2, and PPAR-γ
in BV2 cells treated with EEOS-95 at 25–250 µg/mL showed a significant increase (p < 0.05)
compared with the control group and the LPS-treated group. In contrast, EEOS-95 at a
concentration of 500 µg/mL increased the expression of the control group by more than
50% and was superior to that of the 1 mM MT-treated group.
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ing effective in tackling ailments like diabetes, liver cancer, and kidney cancer [15,25,26]. 
Overharvesting of wild O. sinensis has significantly reduced its annual production, caus-
ing a gap between rising demand and declining supply. This has fueled research into sus-
tainable alternatives, including artificial cultivation using C. militaris and submerged cul-
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Figure 4. Effect of EEOS-95 on expression levels of antioxidant factors in LPS-induced BV2 microglial
cells. Cells were treated with EEOS95 (50–500 µg/mL) and MT (Melatonin 1 mM) for 24 h and
incubated with LPS 1 µg/mL for 24 h. (A) Protein expression of heme oxygenase-1 (HO-1), nuclear-
related factor 2 (Nrf-2), peroxisome proliferator-activated receptors-γ (PPAR-γ), and β-actin were
detected in the cytoplasm by a Western blotting assay. The quantitative values of (B) HO-1, (C) Nrf-2,
and (D) PPAR-γ were analyzed using ImageJ software v1.8.0. * Values (means ± SD, n = 3 for the test
groups) not sharing the same superscript letter are significantly different (p < 0.05).

4. Discussion

The wild caterpillar fungus O. sinensis is a traditional Chinese medicine, often found in
Asia for its rich bioactive profile and diverse therapeutic applications, also has over 30 bioac-
tive compounds that exhibit numerous beneficial effects, including anti-inflammatory,
antioxidant, anti-tumor, immunomodulatory, and anti-osteoporotic activities, proving
effective in tackling ailments like diabetes, liver cancer, and kidney cancer [15,25,26]. Over-
harvesting of wild O. sinensis has significantly reduced its annual production, causing a
gap between rising demand and declining supply. This has fueled research into sustain-
able alternatives, including artificial cultivation using C. militaris and submerged culture
techniques for natural O. sinensis [26–30]. These approaches focus on optimizing culture
conditions, maximizing mycelial biomass production, and exploring polysaccharide extrac-
tion. While substantial research has investigated the pharmacological potential of SCOS, a
vital knowledge gap remains concerning the detailed analysis of their extracted bioactive
components. Our study employed aqueous and ethanolic solvents to extract bioactive
compounds from SCOS to identify their main bioactive components and anti-inflammatory
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potential. We used melatonin (MT, N-acetyl-5-methoxytryptamine) for a positive control;
MT is an animal hormone that exhibits physiological functions that can improve sleep and
delay aging. Alvarez-García et al. found that 1 mM MT inhibited cytokine expression in
malignant cells. Based on this evidence, we used a 1 mM concentration of MT on cells [31].

Yan et al. (2023) indicated that there is little difference in the nutritional components
between a submerged culture and fruiting bodies [32]. The main biologically active ingre-
dients isolated from the fruiting bodies of edible and medicinal fungi are polysaccharides,
triterpenes, proteins, alkaloids, sterols, etc. These active compounds exhibit anti-tumor, im-
munoregulatory, antioxidant, hypoglycemic, and lipid-lowering effects [33,34]. During the
mycelial growth of edible and medicinal fungi, the metabolism will secrete many nutrients
and active ingredients (such as polysaccharides, GABA, ergosterol, flavonoids, vitamins,
alkaloids, glycosides, and antibiotics) that can be extracted from both the mycelia and ex-
tracellular fluid (fermented liquid). They have anti-tumor, immunoregulatory, antioxidant,
antibacterial, and antiviral activities.

Several bioactive compounds and their pharmacological properties have been studied
in the mycelia and fermented liquid, such as polysaccharides, cordycepin, peptides, nucleo-
sides, GABA, ergosterol, melanin, etc., which play an important role in immunomodulatory,
antitumor, and antioxidant activities [35].

Our quantitative analysis of the dried powder of SCOS extract using RP-HPLC re-
vealed six bioactive ingredients: adenosine, ergosterol, polysaccharide, TPC, TFC, and
GABA. Briefly, adenosine belongs to nucleosides, which are essential bioactive compounds
in organisms. The content of adenosine was 3.29 mg/g (EEOS-50), which was similar to
previous reports (3.06 mg/g) and remarkably higher than that of natural O. sinensis [15].
Zhang et al. also pointed out that adenosine provides neuronal protection in NDs such
as Alzheimer’s (AD) and Parkinson’s disease (PD), suggesting its value as a marker for
quality control in an O. sinensis submerged fermentation [36]. However, these diverse
bioactive compounds warrant further investigation into their potential health benefits
and applications.

Ergosterol is an essential component of fungal cell membranes and is called the main
fungal sterol; its function is similar to cholesterol in animals, which can be converted
to vitamin D2 under ultraviolet radiation or sunlight. The vegetarian body needs be
provided with vitamin D every day through a source of mushrooms; thus, ergosterol is
interesting in further research [37]. The pharmacological effects of ergosterol have also
been reported as antioxidant, anti-inflammatory, anti-neurodegenerative, antimicrobial,
anticancer, antidiabetic, etc. [38–46]. As reported by Peng and colleagues, ergosterol is the
active compound of cultured mycelium C. sinensis, which has inhibited liver fibrosis [45].
Herein, we confirm that ergosterol is only present in EEOS-95 (18.60 mg/g), which is six
times higher than other published data in the literature (3.20 mg/g) [14]. Thus, the potential
of phytol-ergosterol from the SCOS will be interesting for future biomedical applications.

Ergosterol exerts its anti-neuroinflammatory activity via the TLR4/NF-κB-dependent
pathway. Therefore, exploring the potential for developing ergosterol into a novel drug for
treating AD is viable [40]. Ergosterol also inhibits NF-κB luciferase activity in RAW246.7
macrophages [47]. Moreover, ergosterol binds directly to the active site of NF-κB p65 to
restrain the phosphorylation and degradation of IκB-α and thus block the phosphorylation
of NF-κB p65 [48]. Furthermore, ergosterol displays a significant anti-inflammatory effect
on LPS-induced human monocytic cells through the inhibition of MyD88 (which is a central
node of the inflammatory signaling pathway), VCAM-1 expression, and cytokine (IL-1β,
IL-6, and TNF-α) production [49,50].

GABA is a non-protein amino acid that has been biosynthesized from glutamic acid in
the human body. Boonstra’s study indicated that GABA is considered the major inhibitory
neurotransmitter in the central nervous system, which has a lot of potential for various parts
of the nervous system, including the cerebellum, hippocampus, hypothalamus, striatum,
and spinal cord [51]. A previous study pointed out that biosynthetic GABA intake may
have a beneficial effect on stress reduction and sleep improvement [52]. Surprisingly, the
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content of GABA in EEOS-95 (18.60 mg/g) is much higher than that found in C. militaris
(0.0686–0.180 mg/g) and C. sinensis (0.220 mg/g) [27,53]. Thus, the GABA-rich SCOS will
be a potential source of natural neuroprotection.

Evidence indicates that polysaccharides can promote cell proliferation, scavenge
cellular ROS, and downregulate the secretion of pro-inflammatory cytokines [54,55]. In the
cell viability test, we also found that FLOS, WEOS, EEOS-50, and EEOS-95 promoted cell
proliferation (Table 3), presumably related to the polysaccharides in the samples. However,
polysaccharides were not detected in EEOS-95, but its cell viability was higher than that of
other extracts, suggesting that EEOS-95 may contain other cell proliferation components.
Ergosterol is regarded as a “fungal hormone” that can stimulate growth and proliferation.
Many studies have shown that ergosterol is essential for mitochondrial DNA maintenance
in fungi, the same function cholesterol performs in humans [56–58]. Ergosterol also exerts
a differential effect on Androgen-dependent LNCaP and Androgen-independent DU-145
cancer cells; ergosterol showed an antiproliferative effect on LNCaP and a proliferative
effect on DU-145. Thus, the promoted cell proliferative effect of EEOS-95 in BV2 cells
(Androgen-independent cells) should benefit from the ergosterol.

The TPC and TFC contents of fermented liquid (FLOS) and all mycelia extracts of the
O. sinensis submerged culture were 1.57~2.28 mg Ga/g (TPC) and 1.17~2.14 mg Que/g
(TFC). Tran et al. [59]. pointed out that the amounts of gallic acid, quercetin, quercitrin, and
hesperidin dominated the O. sobolifera extracts at 193.60, 142.07, 544.53, and 110.08 µg/g,
respectively, out of a total of a 990.27 µg/g dry weight of the active phenolic fraction,
and these phenolic compounds of O. sobolifera extract were responsible for renal injury
prevention [59]. Thus, we suggested that the TPC and TFC present in the SCOS extracts
enhance the benefit of the pharmacological properties of SCOS for functional foods. Our
results revealed that EEOS-95 was the most potent extract in SCOS by inhibiting the NO
production induced by LPS in BV2 cells, which is related to their high contents of active
compounds (ergosterol, TPC, TFC, and GABA).

Activation of the microglia leads to the production of excessive inflammatory molecules
and deleterious consequences leading to neuronal death, which has been thought to con-
tribute to the pathogenesis of NDs; the cause of acute injuries (stroke and traumatic
brain injury); and chronic neurodegeneration (such as AD, PD, and chronic traumatic en-
cephalopathy) [60]. Recent studies have reported that some compounds such as nucleoside,
ergosterol, GABA, polysaccharides, and cordycepin isolated from C. militaris inhibited the
production of NO, which reduced pro-inflammatory cytokines; they also possessed an
effect of neuroprotection by inhibiting microglia-mediated inflammation in LPS-induced
microglia BV2 cells [40,61]. In the present study, our results demonstrated that EEOS-95
significantly inhibited the levels of cytokines (IL-1β, IL-6, TNF-α, and PGE2) secreted and
decreased the production of NO in LPS-stimulated BV2 cells. Therefore, using the natural
ingredients obtained from EEOS-95 as therapeutics for neurodegenerative disorders with
neuro-inflammation is possible.

Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a subunit of the PPAR
and is a ligand-activated nuclear transcription factor; if the brain is injured, PPAR-γ
can be the “key” to cytoprotective stress responses and enhance the chances of cellular
survival [60]. Furthermore, several recent studies have shown that PPAR-γ is also capable
of inhibiting other transcription factors and has been implicated in the downregulation of
the transcription and expression of related genes involved in proinflammatory cytokines
(IL-1β, IL-6, and TNF-α), and neuro-inflammatory genes (COX-2 and iNOS), additionally,
as it can inhibit active-NF-κB signals, playing a neuroprotective role for microglia [60,62].

Luteoloside (a flavonoid compound) significantly upregulated PPAR-γ and Nrf-2 and
decreased the release of proinflammatory cytokines in focal cerebral ischemia in middle
cerebral artery occlusion (MCAO) rats by inhibiting the NF-κB pathway [63]. Ergosterol iso-
lated from mushrooms (A. polytricha and C. militaris) attenuates bisphenol A or LPS-induced
BV2 microglial cell inflammation [42,43]. Zheng et al. indicated that a GABA-enriched
Moringa oleifera leaf (MLFB) fermentation broth could also effectively alleviate the LPS-
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induced inflammatory response by inhibiting the secretions of pro-inflammatory cytokines
and the anti-inflammatory activity might be related to the relatively high contents of GABA,
flavonoids, phenolics, and organic acids in MLFB; its mechanism might be associated with
the inhibition of TLR-4/NF-κB inflammatory signaling pathway activation [64]. Actually,
treatment with EEOS-95 significantly inhibited the expression of NF-κB, iNOS, and COX-2
and enhanced the upregulation of Nrf-2 and HO-1; likewise, it can inhibit active-NF-κB
signaling as well as play a neuroprotective role for microglia in the PPAR-γ/Nrf-2/HO-
1/NF-κB signaling pathway, and ergosterol, GABA, flavonoids, and polyphenols may be
responsible for this activity.

Additionally, the nuclear factor Nrf-2 is known as another transcription factor and a
master regulator of detoxification and antioxidant regulation, which may play a main role
in neuroprotective function [65]. Some documents suggested that it correlates with PPAR-γ
and Nrf-2, which are exerted against oxidative stress, effectively reducing the inflammatory
response by inhibiting NF-κB signals [66,67]. In addition, Duan et al. pointed out the syner-
gistic effect of the PPAR-γ and Nrf-2 pathway to upregulate the expression of related genes
and inhibit ferroptosis-induced neuronal injury in intracerebral hemorrhage rats in vitro
and in vivo [67]. Furthermore, pro-oxidant HO-1 expression is upregulated by oxidative
stress, nitric oxide, CO, and hypoxia. Choi and colleagues also highlighted that HO-1 is
present and has a role in neurovascular diseases, such as age-related macular degeneration
(AMD), ischemia-reperfusion injury, traumatic brain injury, and AD [68]. Abnormal HO-1
levels with Nrf-2 dysfunction are implicated in pathogenesis in neurovascular systems
related to ischemia, trauma, and aging; thus, the Nrf-2/HO-1 signal mechanism is involved
in development, oxidative stress responses, and anti-inflammation [69].

The antioxidative function of PPARγ was reported to be mediated by the transcrip-
tional activation of several antioxidant genes such as HO-1, CAT, and manganese superox-
ide dismutase (MnSOD) through its direct association with the PPAR response elements
of their promoter regions [70,71]. PPARγ was indeed able to suppress inflammation by
transcriptional repression of many proinflammatory transcription factors and enzymes
such as nuclear factor kappa B (NF-κB), signal transducer and activator of trancription-6
(STAT-6), activator protein 1 (AP-1), and cyclooxygenase-2 (COX-2), and induced nitric
oxide synthase (iNOS) [72]. Thus, PPARγ has been regarded as a new anti-inflammatory
and antioxidative pharmacotherapy target in many diseases adversely affected by oxida-
tive stress and inflammation [73]. Therefore, we speculate that EEOS-95 has an effect on
PPAR- γ, an activator that inhibits oxidative stress, and against neuronal inflammation
through the synergistic actions of the expression of PPAR-γ, Nrf-2, and HO-1 pathways in
LPS-stimulated microglia BV2 cells (Figure 5). Furthermore, EEOS-95 has exhibited strong
pharmacological properties and exerted a potential anti-neuroinflammatory effect.
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Figure 5. Schematic diagram of the mechanism of speculated anti-inflammatory ability of EEOS-95.
FLOS: fermented liquid of SCOS, WEOS: hot water extract of SCOS, EEOS-50: 50% ethanol extract of
SCOS, and EEOS-95: 95% ethanol extract of SCOS, mycelial submerged culture of O. sinensis H101
(SCOS). Nitric oxide (NO), interleukins-1β (IL-1β), interleukins-6 (IL-6), tumor necrosis factor-α (TNF-
α), prostaglandin E2 (PGE2)), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear
factor kappa B (NF-κB)), nuclear factor-erythroid 2-related factor 2 (Nrf-2), peroxisome proliferator-
activated receptors (PPAR-γ), and heme oxygenase-1 (HO-1). γ-aminobutyric acid (GABA), and
lipopolysaccharide (LPS).

5. Conclusions

The findings demonstrate the potential of EEOS-95 to be developed into a functional
food due to its anti-inflammatory effects. EEOS-95 not only upregulated PPAR-γ/Nrf-
2/HO-1 and downregulated NF-κB/COX-2/iNOS pathways, but it also decreased pro-
inflammatory cytokines (IL-1β, IL-6, and TNF-α). We also found six types of bioactive com-
ponents involving adenosine, ergosterol, polysaccharides, GABA, TPC, and TFC present
in the extracts of SCOS. The synergism of these phytochemicals would contribute to the
pharmacological properties in LPS-induced BV2 microglia cells. Thus, SCOS could be a
potential source for neuroprotection. We propose that SCOS could be used as raw material
for functional products or nutraceuticals.
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