Study on Differences of Metabolites among Different Ganoderma Species with Comprehensive Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Metabolite Extraction
2.3. UHPLC-MS/MS Analysis
2.4. Data Processing and Metabolite Identification
2.5. Metabolome Validation
2.6. Data Analysis
3. Results
3.1. Phylogenetic Analysis
3.2. Method Validation
3.3. PCA and OPLS-DA Analysis
3.4. Comparative Analysis of Differential Metabolites
3.5. Steroids and Steroid Derivatives Analysis of Four Ganoderma Samples
3.6. Terpenoid Analysis of Four Ganoderma Samples
3.7. Phenols Analysis of Four Ganoderma Samples
3.8. Quinone Analysis of Four Ganoderma Samples
3.9. KEGG Analysis of Four Ganoderma Samples
3.10. Metabolome Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Sheikha, A.F. Nutritional profile and health benefits of Ganoderma lucidum “lingzhi, reishi, or mannentake” as functional foods: Current scenario and future perspectives. Foods 2022, 11, 1030. [Google Scholar] [CrossRef]
- Zeng, P.; Guo, Z.; Zeng, X.; Hao, C.; Zhang, Y.; Zhang, M.; Liu, Y.; Li, H.; Li, J.; Zhang, L. Chemical, biochemical, preclinical and clinical studies of Ganoderma lucidum polysaccharide as an approved drug for treating myopathy and other diseases in China. J. Cell. Mol. Med. 2018, 22, 3278–3297. [Google Scholar] [CrossRef]
- Luz, D.A.; Pinheiro, A.M.; Fontes-Júnior, E.A.; Maia, C.S.F. Neuroprotective, neurogenic, and anticholinergic evidence of Ganoderma lucidum cognitive effects: Crucial knowledge is still lacking. Med. Res. Rev. 2023, 43, 1504–1536. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.-Q.; Zhang, J.; Li, Z.-M.; Liu, H.-G.; Wang, Y.-Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020, 10, 42084–42097. [Google Scholar] [CrossRef]
- Seweryn, E.; Ziała, A.; Gamian, A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients 2021, 13, 2725. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Li, X.; Lin, D.; Wang, L.; Yang, T.; Yang, B. Inhibition of intrarenal PRR-RAS pathway by Ganoderma lucidum polysaccharide peptides in proteinuric nephropathy. Int. J. Biol. Macromol. 2023, 253, 127336. [Google Scholar] [CrossRef] [PubMed]
- Blundell, R.; Camilleri, E.; Baral, B.; Karpiński, T.M.; Neza, E.; Atrooz, O.M. The phytochemistry of ganoderma species and their medicinal potentials. Am. J. Chin. Med. 2023, 51, 859–882. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.M.; Abdel-Mawgoud, M.; Hassan, A.R.; Habeeb, T.H.; Yehia, R.S.; AbdElgawad, H. Global metabolic changes induced by arbuscular mycorrhizal fungi in oregano plants grown under ambient and elevated levels of atmospheric CO2. Plant Physiol. Biochem. 2020, 151, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Plett, K.L.; Wojtalewicz, D.; Anderson, I.C.; Plett, J.M. Fungal metabolism and free amino acid content may predict nitrogen transfer to the host plant in the ectomycorrhizal relationship between Pisolithus spp. and Eucalyptus grandis. New Phytol. 2024, 242, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xue, M.; Shen, Z.; Jia, X.; Hou, X.; Lai, D.; Zhou, L. Phytotoxic Secondary Metabolites from Fungi. Toxins 2021, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bao, H. Comparative analysis of metabolic compositions and trace elements of Inonotus hispidus mushroom grown on five different tree species. ACS Omega 2022, 7, 9343–9358. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.W.; Li, Z.Y.; Zeng, Z.P.; Zhang, F.S.; Li, A.P.; Qin, X.M.; Peng, B. UPLC/Q-TOF MS and NMR plant metabolomics approach in studying the effect of growth year on the quality of Polygala tenuifolia. Yao Xue Xue Bao = Acta Pharm. Sin. 2015, 50, 340–347. [Google Scholar]
- Dar, M.A.; Arafah, A.; Bhat, K.A.; Khan, A.; Khan, M.S.; Ali, A.; Ahmad, S.M.; Rashid, S.M.; Rehman, M.U. Multiomics technologies: Role in disease biomarker discoveries and therapeutics. Brief. Funct. Genom. 2022, 22, 76–96. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Su, B.; Li, M.; Zhou, Y.; He, X. Multiomics characterization of fatty acid metabolism for the clinical management of hepatocellular carcinoma. Sci. Rep. 2023, 13, 22472. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Tian, L.; Wang, Y.; Li, Z.; Xu, Z. Chemodiversity, pharmacological activity, and biosynthesis of specialized metabolites from medicinal model fungi Ganoderma lucidum. Chin. Med. 2024, 19, 51. [Google Scholar] [CrossRef]
- Ahmad, M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018, 107, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Xiong, C.; Zeng, X.; Jin, Y.; Huang, W. Exploring nutrient profiles, phytochemical composition, and the antiproliferative activity of Ganoderma lucidum and Ganoderma leucocontextum: A comprehensive comparative study. Foods 2024, 13, 614. [Google Scholar] [CrossRef]
- Aiduang, W.; Kumla, J.; Srinuanpan, S.; Thamjaree, W.; Lumyong, S.; Suwannarach, N. Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. J. Fungi 2022, 8, 1125. [Google Scholar] [CrossRef]
- Fazmiya, M.J.A.; Sultana, A.; Rahman, K.; Heyat, M.B.B.; Sumbul Akhtar, F.; Khan, S.; Appiah, S.C.Y. Current insights on bioactive molecules, antioxidant, anti-inflammatory, and other pharmacological activities of Cinnamomum camphora linn. Oxidative Med. Cell. Longev. 2022, 2022, 9354555. [Google Scholar] [CrossRef]
- Khazdair, M.R.; Ghorani, V.; Alavinezhad, A.; Boskabady, M.H. Pharmacological effects of Zataria multiflora boiss l. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects. Fundam. Clin. Pharmacol. 2018, 32, 26–50. [Google Scholar] [CrossRef]
- Koufakis, T.; Papanas, N.; Dimitriadis, G.; Zebekakis, P.; Kotsa, K. Interpreting the results of the VERTIS-CV trial: Is this the end of the “class effect” perspective. J. Diabetes 2020, 12, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Peck, R.W. Precision dosing: An industry perspective. Clin. Pharmacol. Ther. 2021, 109, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Zenkov, N.K.; Chechushkov, A.V.; Kozhin, P.M.; Kandalintseva, N.V.; Martinovich, G.G.; Menshchikova, E.B. Plant phenols and autophagy. Biochemistry 2016, 81, 297–314. [Google Scholar] [CrossRef]
- Xie, H.; Shen, C.Y.; Jiang, J.G. The sources of salidroside and its targeting for multiple chronic diseases. J. Funct. Foods 2020, 64, 103648. [Google Scholar] [CrossRef]
- Souto, E.B.; Yoshida, C.M.; Leonardi, G.R.; Cano, A.; Sanchez-Lopez, E.; Zielinska, A.; Viseras, C.; Severino, P.; Silva, C.F.D.; Barbosa, R.D.M. Lipid-polymeric films: Composition, production and applications in wound healing and skin repair. Pharmaceutics 2021, 13, 1199. [Google Scholar] [CrossRef]
- Lee, H.; Vilian, A.E.; Kim, J.Y.; Chun, M.H.; Suh, J.S.; Seo, H.H.; Cho, S.H.; Shin, I.S.; Kim, S.J.; Park, S.H.; et al. Design and development of caffeic acid conjugated with bombyx mori derived peptide biomaterials for anti-aging skin care applications. RSC Adv. 2017, 7, 30205–30213. [Google Scholar] [CrossRef]
- Dou, J.; Feng, N.; Guo, F.; Chen, Z.; Liang, J.; Wang, T.; Guo, X.; Xu, Z. Applications of probiotic constituents in cosmetics. Molecules 2023, 28, 6765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadbaatar, S.; Bao, H.; Gao, X.; Huo, H. Study on Differences of Metabolites among Different Ganoderma Species with Comprehensive Metabolomics. J. Fungi 2024, 10, 524. https://doi.org/10.3390/jof10080524
Khadbaatar S, Bao H, Gao X, Huo H. Study on Differences of Metabolites among Different Ganoderma Species with Comprehensive Metabolomics. Journal of Fungi. 2024; 10(8):524. https://doi.org/10.3390/jof10080524
Chicago/Turabian StyleKhadbaatar, Solongo, Haiying Bao, Xusheng Gao, and Huimin Huo. 2024. "Study on Differences of Metabolites among Different Ganoderma Species with Comprehensive Metabolomics" Journal of Fungi 10, no. 8: 524. https://doi.org/10.3390/jof10080524
APA StyleKhadbaatar, S., Bao, H., Gao, X., & Huo, H. (2024). Study on Differences of Metabolites among Different Ganoderma Species with Comprehensive Metabolomics. Journal of Fungi, 10(8), 524. https://doi.org/10.3390/jof10080524