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Abstract: The culturable yeast communities in temperate forest soils under the ornithogenic in-
fluence were studied in a seasonal dynamic. To investigate the intense ornithogenic influence,
conventional and “live” feeders were used, which were attached to trees in the forest and constantly
replenished throughout the year. It was found that the yeast abundance in the soil under strong
ornithogenic influence reached the highest values in winter compared to the other seasons and
amounted to 4.8 lg (cfu/g). This was almost an order of magnitude higher than the minimum value
of yeast abundance in ornithogenic soils determined for summer. A total of 44 yeast species, 21 as-
comycetes and 23 basidiomycetes, were detected in ornithogenic soil samples during the year. These
included soil-related species (Barnettozyma californica, Cyberlindnera misumaiensis, Cutaneotrichosporon
moniliiforme, Goffeauzyma gastrica, Holtermanniella festucosa, Leucosporidium creatinivorum, L. yakuticum,
Naganishia adeliensis, N. albidosimilis, N. globosa, Tausonia pullulans, and Vanrija albida), eurybionts
(yeast-like fungus Aureobasidium pullulans, Debaryomyces hansenii, and Rhodotorula mucilaginosa), inhab-
itants of plant substrates and litter (Cystofilobasidium capitatum, Cys. infirmominiatum, Cys. macerans,
Filobasidium magnum, Hanseniaspora uvarum, Metschnikowia pulcherrima, and Rh. babjevae) as well as a
group of pathogenic and opportunistic yeast species (Arxiozyma bovina, Candida albicans, C. parapsilosis,
C. tropicalis, Clavispora lusitaniae, and Nakaseomyces glabratus). Under an ornithogenic influence, the
diversity of soil yeasts was higher compared to the control, confirming the uneven distribution of
yeasts in temperate forest soils and their dependence on natural hosts and vectors. Interestingly, the
absolute dominant species in ornithogenic soils in winter (when the topsoil temperature was below
zero) was the basidiomycetous psychrotolerant yeast T. pullulans. It is regularly observed in various
soils in different geographical regions. Screening of the hydrolytic activity of 50 strains of this species
at different temperatures (2, 4, 10, 15 and 20 ◦C) showed that the activity of esterases, lipases and
proteases was significantly higher at the cultivation temperature. Ornithogenic soils could be a source
for the relatively easy isolation of a large number of strains of the psychrotolerant yeast T. pullulans to
test, study and optimize their potential for the production of cold-adapted enzymes for industry.

Keywords: wild birds; psychrotolerant yeasts; pedobionts; esterases; lipases; proteases

1. Introduction

In forest ecosystems, there are a variety of ecological niches that differ in the habitat
conditions in which yeasts develop, and temperate forests (broadly defined as forests in the
temperate zone that lie between boreal and tropical forests) are no exception. Yeast species
from these ecological niches sooner or later “come into contact” with the organogenic soil
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horizon and participate in the formation of soil yeast complexes. Although yeasts in tem-
perate forest soils have long been studied in detail, and much is known about their diversity
and functional role in soil-related processes (nutrient transformation and maintenance of
soil structure) [1–6], much remains unknown. The distribution of forest topsoil yeasts is
uneven and is influenced by various parameters. Yurkov et al. [7] showed that in three
temperate forests in Germany (in three regions), only one common basidiomycete species
Apiotrichum dulcitum, was present. In three Mediterranean xerophytic forests sampled at a
single locality, 8 of 57 species were found at all three sites [8]. The differences in species
composition between sites lead to high diversity values at the regional level [8,9].

The structure of the yeast complexes depends on many biotic factors: the pres-
ence/absence of anthills [10], various invertebrate species and nests of insect larvae [11],
the feces of migratory and resident birds [12–14], and the excrement of wild animals [15].

Recent studies have shown that quite well-analyzed soils yield a large number of
undescribed yeasts. The proportion of potentially new taxa has been estimated to exceed
30% in temperate beech forests and Mediterranean xerophytic forests [8,16]. The same
applies to some other temperate forests [1,17–19]. Therefore, further studies of soil yeasts
in forest ecosystems are promising to find new species and expand the understanding of
soil yeast diversity. In addition, a number of biotic and abiotic factors that can significantly
influence yeasts in forest soils are still insufficiently analyzed.

The discovery of soil yeast species that can not only grow but also increase their
abundance during the cold period at subfreezing temperatures and the assessment of
their ability to actively secrete hydrolases (proteases, lipases, esterases, amylases, cellu-
lases and pectinases) could prove to be an important source for the relatively simple and
stable isolation of a large number of strains that could subsequently be studied, tested
and optimized for biotechnological purposes. Such isolates can potentially contribute to
industrial processes that require high enzymatic activity at low temperatures, including the
bread, baking, textile, food, biofuel, detergent and brewing industries. Perhaps the greatest
advantage of using psychrophilic enzymes is the reduction in energy consumption and
processing costs associated with the industrial heating steps [20].

In our study, we investigated the ability of one of the most abundant “winter” soil
yeast species to secrete three cold-active hydrolases (esterase, lipase and protease) widely
distributed among yeasts, which enable it to utilize complex substances as an energy
source. In addition, esterase and lipase provide access to phospholipids, glycerol and fatty
acids necessary for membrane maintenance under cold conditions, which is important
for survival.

Little is also known about the influence of wild birds, an integral part of the forest
ecosystem, on the yeast complexes in the topsoil through their droppings and their ability
to increase the diversity of yeasts by a fraction. At the same time, it has been shown that
the feces of migratory birds, wild birds and semi-synanthropic birds can contain specific
and diverse yeast complexes and are also a source of new yeast species [13,14,21,22]. To
our knowledge, ornithogenic soils have been studied around the nests of bird species in
Antarctica [23–26]. No such studies are known for temperate forests.

The Meshcherskaya Lowland, where we conducted our study, is an extensive forest
area in the center of the Eastern European Plain. The typical habitats of the temperate
climate belt, the eastern part of the Atlantic continental forest climate zone, have remained
practically untouched in this lowland area. More than 200 bird species live here, which can
transmit various yeasts with their droppings, including opportunistic pathogenic species.

The aim of this work was to study the culturable yeast diversity in a seasonal dynamic
in ornithogenically influenced topsoils in a pristine mixed forest area, to observe and
identify the most abundant cold-adapted yeast species and to study its esterase, lipase and
protease extracellular enzyme activities at different temperatures.
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2. Materials and Methods
2.1. Study Location, Sample Processing, Yeast Cultivation and Isolation

The study was conducted in the Meshcherskaya lowland in the southwestern sector
of the Vladimir region (55◦10′58′′ N 40◦20′00′′ E). This is a zone of mixed forests in the
center of the East European Plain in Russia (predominant species of the first stage are
Betula verrucosa, Picea abies, Pinus sylvestris, Populus tremula; predominant species in the
understory are Corylus avellana, Euonymus verrucosus, Frangula alnus, Malus silvestris and
Sorbus aucuparia). The lowland has a temperate continental climate with frosty, relatively
cold winters and warm, rarely hot summers (average temperature in January is 10 ◦C below
zero, in July 18 ◦C above zero; annual precipitation 500 mm) (Figure 1, Table 1).
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Figure 1. Four seasons in Meshcherskaya lowland (southwestern sector of the Vladimir region,
55◦10′58′′ N 40◦20′00′′ E); (a) Spring; (b) Summer; (c) Fall; (d) Winter.

Table 1. Average monthly values of air and soil temperature at the location (Meshcherskaya lowland,
southwestern sector of the Vladimir region, 55◦10′58′′ N 40◦20′00′′ E) during the sampling period.

Month Air Day
(◦C)

Air Night
(◦C)

Topsoil
(◦C)

April 13 4 2
May 17 8 6
June 19 9 12
July 22 14 13.5

August 24 15 16
September 19 10 6

October 5 3 4
November 1 −2 −0.5
December −5 −9 −4.5

January −7 −8 −5.5
February −4 −6 −5

March 3 −2 −3

The soils are mainly podzolic, according to the World Reference Base for Soil Re-
sources [27] (typical soils of forests formed in cold areas with good leaching). For the
study of ornithogenically influenced soils in the forest, dynamic sampling was carried
out throughout the year from April 2023 to April 2024. Twice a month, soil samples were
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taken from the topsoil (0–15 cm) under trees (Betula verrucosa) where forest bird feeders
were installed. The samples were taken in the morning between 08:00 and 09:00 GTM to
reduce the temperature fluctuations between the individual samples (they did not exceed
1 ◦C). For each sample, soil temperature was measured using a soil thermometer TP-2 (Klin,
Russia); the hydrogen index (pHH20) was measured in situ with a HI981030 GroLine Soil
pH Tester (Hanna Instruments, Scientific Park in Salaj county, Romania). The hydrogen
index (pHH20) was between 3.6 and 5.4 for the control soil samples and between 3.1 and
4.2 for the ornithogenic soil samples. A total of five sites were investigated at a distance of
500–600 m from each other. At the sites, three wooden feeders (30 × 25 × 30 cm) and three
“live” feeders were placed at a height of 2–2.5 m on a tree (Figure 2).
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Figure 2. Examples of so-called “live” (a,b) and traditional (c,d) feeders.

The composition of the bird feed consisted of wheat, oats, whole maize, crushed maize,
barley, peanuts, sunflower seeds, linseed and red millet. Control soil samples were taken
under trees without feeders at a 100–150 m distance from each tree with feeders. A total
of 60 samples were taken per month (30 samples of ornithogenic soil and 30 samples of
control soil). A total of 720 soil samples were analyzed over twelve months. In winter, when
it snowed, and the drifts in the forest reached 40–60 cm, the drifts under the study trees
were regularly plowed with sterile shovels. Care was taken to ensure that the snow cover
did not exceed 2 cm so that bird droppings could be deposited evenly and abundantly in
the soil. During the entire study period, 16 bird species (ornithologists employees of the
Meshchera National Park helped us to observe and identify the bird species using Carl
Zeiss Victory 8 × 42 SF (42 × 8) binoculars, Wetzlar, Germany) visited the feeding sites
most frequently (Figure 3).

Samples were collected using sterile gloves and trowels. The collected samples were
packed in a sterile zip bag and provided with an accompanying label. The samples were
packed in special cooling bags at a temperature of 4 ◦C and delivered to the laboratory
for microbiological analysis within 12 h. In the laboratory, the samples were stored in a
cold chamber at a temperature of no more than 4 ◦C for a maximum of three days. Each
soil sample was then taken and poured with sterile physiological saline solution to obtain
a dilution of 1:10. The suspensions were vortexed on a Multi Reax Vortexer (Heidolph
Instruments, Schwabach, Germany) for 15 min at 2000 rpm. Three suspensions were
prepared for each sample. The prepared suspensions were plated (100 µL per plate) in
three replicates each on GPY agar media (20 g/L glucose, 10 g/L peptone, 5 g/L yeast
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extract, 20 g/L agar) supplemented with chloramphenicol (500 mg/L). The plates were
incubated at 20 ◦C for 9–12 days and checked regularly. As soon as a colony became
visible, it was transferred to a fresh GPY agar plate. The colonies were differentiated into
macromorphological types using a dissecting microscope, counted and 3–5 representatives
of each colony type were transferred to a pure culture and then molecularly identified.
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Figure 3. Forest bird species that visited the feeding sites most frequently in the year under ob-
servation: 1—Bombycilla garrulus (the Bohemian waxwing); 2—Garrulus glandarius (the Eurasian
jay); 3—Pyrrhula pyrrhula (the Eurasian bullfinch or bullfinch); 4—Curruca communis (the common
whitethroat or greater whitethroat); 5—Loxia curvirostra (the red crossbill or common crossbill);
6—Turdus pilaris (the fieldfare); 7—Parus major (the great tit); 8—Fringilla coelebs (the Eurasian chaffinch
or chaffinch); 9—Parus cristatus (the crested tit or European crested tit); 10—Poecile palustris (the
marsh tit); 11—Cyanistes caeruleus (the Eurasian blue tit); 12—Erithacus rubecula (the European robin);
13—Dendrocopos major (the great spotted woodpecker); 14—Picus viridis (the European green wood-
pecker); 15—Nucifraga caryocatactes (the Eurasian nutcracker or nutcracker); 16—Picoides tridactylus
(the Eurasian three-toed woodpecker). Photos were taken from the website https://en.wikipedia.org/
(accessed on 31 May 2024).

2.2. Molecular Identification (DNA Extraction, Amplification, Sequencing and Analysis)

The yeasts were molecularly identified using the ITS rDNA region as a universal
DNA-barcoding for fungi [28]. The nuclear ribosomal ITS1-5.8S-ITS2 region was ampli-
fied and sequenced using ITS5 primer. The criteria described in Vu [29] were used to
separate the yeast species. DNA isolation and PCR were performed according to the pro-
cedure described previously [30,31]. DNA sequencing was performed using the Big Dye
Terminator V3.1 Cycle Sequencing Kit (Applied Biosystems, Waltham, MA, USA) with
subsequent analysis of the reaction products on an Applied Biosystems 3130xl Genetic
Analyzer at the facilities of Evrogen (Moscow, Russia). For sequencing, the ITS5 primer
(5′-GGA AGT AAA AGT CGT AAC AAG G) was used [31]. For species identification, nu-
cleotide sequences were compared with those in public databases, using the BLAST NCBI
(www.ncbi.nlm.nih.gov (accessed on 24 May 2024)) and the MycoID (www.mycobank.org
(accessed on 24 May 2024)) tools. The ITS regions of the strains studied were 99.5–100%
similar to the type strains. Sequences obtained in the present study for yeast species were
deposited in the GenBank database (PP905601–PP905645, PP481708, Table 2). All the puri-
fied and sequenced yeast strains isolated in this study were cryopreserved in 10% (v/v)
glycerol in water solution at −80 ◦C in the yeast collection of the Soil Biology Depart-
ment at Lomonosov Moscow State University (WDCM CCINFO number: 1173; catalog:
https://depo.msu.ru/, accessed on 10 June 2024).

https://en.wikipedia.org/
www.ncbi.nlm.nih.gov
www.mycobank.org
https://depo.msu.ru/
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Table 2. Species list and relative abundance of yeast taxa isolated from the ornithogenically influenced
soil in seasonal dynamic *. The indices of species richness, diversity and community evenness can be
found below.

* Relative abundance range in percentage value (%).
Ornithogenic soil

Control soil
0–5 5–10 10–15 15–20 20–25 25–30

Yeast Species GenBank
Accession no. Summer Autumn Winter Spring

Ascomycota
Arxiozyma bovina (Kurtzman & Robnett) Q.M. Wang,
Yurkov & Boekhout

PP905601

Aureobasidium pullulans (de Bary) G. Arnaud PP905602

Barnettozyma californica (Lodder) Kurtzman, Robnett &
Basehoar-Power

PP905603

Candida albicans (C.P. Robin) Berkhout PP905604

Candida parapsilosis (Ashford) Langeron & Talice PP905605

Candida sake (Saito & Oda) van Uden & H.R. Buckley PP905606

Candida santamariae Montrocher PP905607

Candida tropicalis (Castell.) Berkhout PP905608

Candida zeylanoides (Castell.) Langeron & Guerra PP905609

Clavispora lusitaniae Rodr. Mir. PP905610

Cyberlindnera misumaiensis (Y. Sasaki & Tak. Yoshida ex
Kurtzman) Minter PP905611

Debaryomyces hansenii (Zopf) Lodder & Kreger-van Rij PP905612

Debaryomyces fabryi M. Ota PP905613

Dothiora sp. PP905614

Hanseniaspora uvarum (Niehaus) Shehata, Mrak & Phaff
ex M.T. Sm.

PP905615

Metschnikowia pulcherrima Pitt & M.W. Mill. PP905616

Meyerozyma guilliermondii (Wick.) Kurtzman & M. Suzuki PP905617

Nakaseomyces glabratus (H.W. Anderson) Sugita & M.
Takash.

PP905618

Starmerella vitis Čadež, Lachance, Drumonde-Neves,
Sipiczki & G. Péter PP905619

Yamadazyma mexicana (M. Miranda, Holzschu, Phaff &
Starmer) Billon-Grand (1989) PP905620

Yarrowia alimentaria (Knutsen, V. Robert & M.T. Sm.)
Gouliam., R.A. Dimitrov, M.T. Sm. & M. Groenew. PP481708

Yarrowia lipolytica (Wick., Kurtzman & Herman) Van der
Walt & Arx

PP905621

Basidiomycota
Cutaneotrichosporon moniliiforme (Weigmann & A. Wolff)
Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout PP905622

Cystofilobasidium capitatum (Fell, I.L. Hunter & Tallman)
Oberw. & Bandoni

PP905623
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Table 2. Cont.

* Relative abundance range in percentage value (%).
Ornithogenic soil

Control soil
0–5 5–10 10–15 15–20 20–25 25–30

Yeast Species GenBank
Accession no.

Summer Autumn Winter Spring

Cystofilobasidium infirmominiatum (Fell, I.L. Hunter &
Tallman) Hamam., Sugiy. & Komag. PP905624

Cystofilobasidium macerans J.P. Samp. PP905625

Filobasidium magnum (Lodder & Kreger-van Rij) Xin Zhan
Liu, F.Y. Bai, M. Groenew. & Boekhout PP905626

Goffeauzyma gastrica (Reiersöl & Di Menna) Xin Zhan Liu,
F.Y. Bai, M. Groenew. & Boekhout PP905627

Holtermanniella festucosa (Golubev & J.P. Samp.) Libkind,
Wuczk., Turchetti & Boekhout PP905628

Kwoniella pini (Golubev & Pfeiffer) Xin Zhan Liu, F.Y. Bai,
M. Groenew. & Boekhout

PP905629

Leucosporidium creatinivorum (Golubev) M. Groenew. &
Q.M. Wang PP905630

Leucosporidium intermedium (Nakase & M. Suzuki) M.
Groenew. & Q.M. Wang PP905631

Leucosporidium yakuticum (Golubev) M. Groenew. &
Q.M. Wang PP905632

Naganishia adeliensis (Scorzetti, I. Petrescu, Yarrow & Fell)
Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout PP905633

Naganishia albida (Saito) Xin Zhan Liu, F.Y. Bai, M.
Groenew. & Boekhout

PP905634

Naganishia albidosimilis (Vishniac & Kurtzman) Xin Zhan
Liu, F.Y. Bai, M. Groenew. & Boekhout PP905635

Naganishia diffluens (Zach) Xin Zhan Liu, F.Y. Bai, M.
Groenew. & Boekhout

PP905636

Naganishia globosa Goto PP905637

Naganishia vaughanmartiniae Turchetti, Blanchette &
Arenz ex Yurkov

PP905638

Papiliotrema flavescens (Saito) Xin Zhan Liu, F.Y. Bai, M.
Groenew. & Boekhout

PP905639

Rhodotorula babjevae (Golubev) Q.M. Wang, F.Y. Bai, M.
Groenew. & Boekhout

PP905640

Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison PP905641

Sampaiozyma ingeniosa (Di Menna) Q.M. Wang, F.Y. Bai, M.
Groenew. & Boekhout

PP905642

Tausonia pullulans (Lindner) Xin Zhan Liu, F.Y. Bai, M.
Groenew. & Boekhout

PP905643

Trichosporon aquatile L.R. Hedrick & P.D. Dupont PP905644

Vanrija albida (C. Ramírez) M. Weiß PP905645

Species richness (ornithogenic soil/control) 23/25 28/24 30/25 39/33

Shannon index, H’ (ornithogenic soil/control) 2.74/2.87 2.79/2.82 2.63/2.79 3.05/3.04
Pielou index, J’ (ornithogenic soil/control) 0.51/0.52 0.51/0.52 0.49/0.51 0.56/0.56
Simpson (1-D) (ornithogenic soil/control) 0.91/0.93 0.91/0.93 0.88/0.92 0.93/0.94
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2.3. Evaluation of Esterase, Lipase and Protease Extracellular Enzyme Activities for Strains of
Tausonia pullulans at 2, 4, 10, 15 and 20 ◦C

All isolates of T. pullulans examined for hydrolytic activity were first tested for their
ability to grow at different temperatures (2, 4, 10, 15, 20, 25 and 28 ◦C) on GPY agar plates.
Growth was visually monitored daily for 14 days. 100% of the isolated yeasts were able to
grow in a temperature range between 2–25 ◦C and at 28 ◦C, no colony growth was observed.
Thus, all investigated strains could be classified as psychrotolerant microorganisms [32,33].

For enzyme screening, yeast isolates were cultured in GPY medium with the addition
of inducing substrates. Calibrated (by spectrophotometry) suspensions of 107 cells/mL
grown for 48 h were inoculated onto the surface of agar plates (10 µL).

For the analysis of esterase, plates with Tween-80 agar were used (10 g/L, 5 g/L NaCl,
0.10 g/L CaCl2·2H2O, pH 6.8); an opaque halo around a colony indicated esterase produc-
tion, which was visualized by CaCl2 precipitation [34,35]. For the analysis of lipase, olive oil
(4%) was added to the growth medium (pH 6.8) as an inducer together with Rhodamine B
dye (0.01%), and UV light (350 nm) indicated the yellowish fluorescent halos [35]. Protease
activity was assessed on GPA plates containing skimmed milk powder (2%, pH 6.6); a clear
zone around a colony on the plate was indicative of protease activity [36]. The secretion
ability was measured using a digital paquimeter and assessed (mm) as follows: ++, strongly
positive, for values > 4.0; +, positive, for values between 2.0 and 4.0; w, weakly positive,
for values between 1.0 and 2.0; w–, weakly negative, for values between 0.1 and 1.0, and –,
negative, no clear zone [37]. The results were determined based on the average from three
individual experiments for each strain.

2.4. Statistical Data Analyses

The number of yeast colonies was used to calculate the abundance of yeast cells (cfu) in
each type of sample per dry weight. The structure of the yeast community was determined
for each sample. Relative abundance was calculated as the proportion (%) of a particular
species in the sample and was based on the number of colonies. The species diversity
of yeasts was estimated using the Shannon index [38]. Simpson’s diversity index (1 – D)
was used to assess the dominance of yeast species [39]. Species evenness was assessed
using the Pielou index [40]. The similarities among yeast groups from different soils were
estimated using UMPGA clustering technique based on the Sorensen and Bray–Curtis
indices. Similarity percentage (SIMPER) analysis was used to determine which species
was responsible for driving the differences in community composition among groups. All
clusterings and SIMPER analyses were performed using PAST 4.04 [41]. Statistical analyses
were performed using Statistica 8 (StatSoft Inc., Tulsa, OK, USA) at two hierarchical levels
of factors: condition of the soil (ornitogenically influenced soil and control samples) and
season (summer, fall, winter, spring). The normality of the distribution of yeast numbers
was tested for the variables discussed. Effects were considered statistically significant at the
p ≤ 0.05 level. After the application of the Shapiro–Wilk test, analysis of variance (ANOVA)
was performed to determine significant differences in the observation of hydrolytic enzyme
activity in strains of T. pullulans at different temperatures and total yeast abundance.

3. Results
3.1. Yeast Abundance

The abundance of soil yeasts changed synchronously throughout the year, both in
the ornithogenic soil and in the control. It reached a minimum in summer and a maxi-
mum in winter (Figure 4). However, the increase in abundance was more pronounced
in the ornithogenic soil. Two-way ANOVA showed that the abundance of soil yeasts
depended on the season of sampling (F = 149.02, α = 0.05) and on the condition of the soil
(ornithogenically influenced/control) (F = 150.20, α = 0.05).
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soil in a temperate forest (Meshcherskaya lowland, southwestern sector of the Vladimir region,
55◦10′58′′ N 40◦20′00′′ E).

3.2. Yeast Diversity

A total of 46 yeast species were found in this study (both in ornithogenically influenced
and control soils), including one potentially new species. They belong to four lineages of
Fungi, Pezizomycotina (2 species), Saccharomycotina (20 species), Agaricomycotina (18 species)
and Pucciniomycotina (6 species). A total of 44 yeast species (21 ascomycetes and 23 basid-
iomycetes) were detected in the ornithogenic soil; 38 yeast species (15 ascomycetes and
23 basidiomycetes) were observed in the control soil (Table 2). A total of six opportunistic
and potentially pathogenic ascomycetous species were observed during the year: A. bov-
ina, C. albicans, C. parapsilosis, C. tropicalis, Cl. lusitaniae and N. glabratus. Two of them
(C. parapsilosis and C. tropicalis) were detected in both ornithogenic and control soil samples.
However, the proportion of both species was significantly dependent on soil condition
(F = 102.57 and 15.78, α = 0.05, for C. parapsilosis and C. tropicalis, respectively) and was
higher in ornithogenic soil. The observed species richness in the ornithogenically influenced
soil varied between the minimum number of 23 species in summer and the maximum
number of 39 species in spring (in the control, the minimum number was observed in fall,
24 species, the maximum—also in spring, 33 species). In the ornithogenic soil, diversity
and evenness ranged from the minimum in winter (H’ = 2.63, J’ = 0.49) to the maximum
in spring (H’ = 3.05, J’ = 0.56) (in the control also from the minimum in winter (H’ = 2.79,
J’ = 0.51) to the maximum in spring (H’ = 3.04, J’ = 0.56)) (Table 2).

3.3. Comparison of Yeast Groups

The comparison of the studied samples of ornithogenically influenced soils in a
temperate forest and control samples in a seasonal dynamic using beta diversity similar-
ity/dissimilarity measures of the relative abundance (by the Bray–Curtis index) and list (by
Sorensen index) of yeast species showed that the yeast communities in ornithogenic soils
differ from the control soils without the strong influence of birds (Figure 5). Differences in
the structure of yeast complexes and yeast species numbers by season were observed. The
significant effect of the ornithogenic load on the soils is evident when the structure of the
yeast groups is compared. Using the Bray–Curtis index for clustering separated control and
ornithogenic soils. The greatest similarity (Sorensen index) was found between summer
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and fall samples in both ornithogenic and control soils; winter and spring complexes were
dissimilar and differed strongly from summer and fall (Figure 5).
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Figure 5. Comparison of studied yeast groups by clustering analysis using the Bray–Curtis and Sorensen
measures based on relative abundances and lists of species. Meshcherskaya lowland, southwestern
sector of the Vladimir region, 55◦10′58′′ N 40◦20′00′′ E, podzolic soil in a temperate forest).

SIMPER analysis revealed that three yeast species were responsible for approximately
50% of the differences in community composition between control and ornithogenic soils
during all seasons. These species were Tausonia pullulans, Candida zeylanoides and Cystofiloba-
sidium capitatum. T. pullulans made the greatest contribution to the differentiation of yeast
groups between control and ornithogenic soils in all seasons except summer when C. zey-
lanoides and Metschnikowia pulcherrima were the main differentiators.

3.4. Production of Hydrolytic Enzymes

A total of 50 yeast isolates of T. pullulans obtained from ornithogenically influenced
soils were analyzed for their esterase, lipase and protease activity at different temperatures
(2, 4, 10, 15, 20 ◦C). For all three enzymes, the maximum enzymatic activity was observed
at the minimum test temperature (plus 2 ◦C) and the minimum enzymatic activity at the
maximum test temperature (plus 20 ◦C). Esterase secretion was most pronounced in the
tested strains of T. pullulans at all tested temperatures, followed by lipase and protease. In
our study, the secretion of hydrolytic enzymes was significantly dependent on temperature
(F = 3445.63, 575.20, 362.62, α = 0.05 for esterases, proteases and lipases, respectively)
(Figure 6, Table S1).
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4. Discussion
4.1. Yeast Abundance

An increase in the epiphytic yeast population in a temperate forest in winter has already
been demonstrated for litter (Betula verrucosa Roth, Quercus robur L., Tilia cordata Mill.) and leaves
of plants that overwinter with green leaves under snow (Ajuga reptans L., Oxalis acetosella L.) [42].
The same trend has been observed in epiphytic yeasts on different plant species [43]. In this
study, the increase in the abundance of soil yeasts in winter was associated with the development
of psychrophilic species, representatives of the genus Leucosporidium, and a significant increase
in the proportion of T. pullulans. Most likely, such an increase in the abundance of the yeast
T. pullulans is related to its adaptations to the selective pressure of the cold environment, with a
high content of unsaturated fatty acids in the cell membrane, as well as the synthesis of enzymes
active at low temperatures, which allows it to efficiently utilize the nutritional sources [44–46].
The boost in abundance was significantly higher in ornithogenically influenced soils, which is
probably due to the fact that they contain high levels of organic carbon and nitrogen in the form
of amino acids and urea [47].

4.2. Yeast Diversity

Studies on ornithogenic soils in Antarctica (colonies of marine bird species in coastal
regions and on islands with exposed ice-free soil) have been carried out using both cultur-
ing methods [25] and metabarcoding [26]. Tausonia pullulans, Candida, Glaciozyma antarctica,
Holtermanniella wattica, Malassezia, Filobasidiella and Leucosporidium were the taxa assigned by
metabarcoding, with T. pullulans being among the most abundant [26]. de Sousa et al. [25]
obtained strains of Debaryomyces sp., Papiliotrema laurentii, Rhodotorula mucilaginosa from or-
nithogenically influenced soils in Antarctica using culturing methods with Rh. mucilaginosa
being among the most abundant species; Candida glaebosa and Debaryomyces macquariensis
were also observed in ornithogenic soils (penguin soils) using culturing methods [23,24]. In
our study of ornithogenic soils in a temperate forest in seasonal dynamics using the culturing
method, 44 yeast species were detected. Species richness was highest in the ornithogenic
soil and in the control in spring, with 39 and 33 species, respectively. In the ornithogenic
soil, this was due to the detection of pathogenic and opportunistic ascomycetous yeasts
A. bovina, C. albicans, Cl. lusitaniae, N. glabratus, which were never found in the control, and
soil-related species of the genus Naganishia (N. albida, N. albidosimilis and N. globosa), which
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were detected both in the ornithogenic soil and in the control. It is possible that yeast species
whose physiological activity was suppressed in winter became more active again in spring
(Table 2). Two opportunistic Candida species were found not only in the ornithogenically
influenced soil but also in the control during the entire study year. These were the yeasts
C. parapsilosis and C. tropicalis. Thus, among other things, birds transmit different clinically
important yeasts and can contaminate soil and water sources.

In winter, when the soil temperature was below zero, the proportion of basidiomyce-
tous psychrophilic yeasts of the genus Leucosporidium (L. creatinivorum, L. intermedium and
L. yakuticum) and the species Sampaiozyma ingeniosa increased in the ornithogenic soil (and
in the control). The relative abundance of species of the genus Leucosporidium was signif-
icantly dependent on the season (F = 15.13, 13.56 and 35.58 α = 0.05, for L. creatinivorum,
L. intermedium and L. yakuticum, respectively). The yeasts L. intermedium, L. yakuticum
and L. creatinivorum were also regularly found in Antarctic and Arctic soils [48–52]. It is
particularly noteworthy that the proportion of the psychrophilic yeast T. pullulans increased
significantly during the winter. While it reached 15% in the control, it was almost 30%
in the ornithogenic soil (while in summer, it was 2% and 10%, respectively). This is the
only yeast species whose relative abundance was significantly dependent on both season
(F = 32.12, α = 0.05) and soil condition (ornithogenic/control) (F = 28.06, α = 0.05).

T. pullulans is a basidiomycetous yeast from the order Cystofilobasidiales (Agaricomy-
cotina and Tremellomycetes) [53]. It is a widespread, psychotolerant, soil-related species
that was first described from the atmosphere in 1901 as Oidium pullulans Lindner (type
strain CBS 2532). T. pullulans strains were found in soils on Scott Base (Ross Island) [54],
on East Ongul Island, East Antarctica [37]; in the province of Tierra del Fuego (Argentina,
Antarctica) [55]; in Patagonian forest soils [18]; in soils from the sub-Antarctic region [20];
in European glaciers [56]; in Arctic habitats (plants and soils) [26,47,57]; in soils near fruit
trees in Slovakia [58]; in ornithogenically influenced maritime Antarctic soils [26]. In addi-
tion to soil, it has also been isolated from spring fluxes (xylem sap leaking from cuts on
limbs and trunks resulting from winter damage caused by freeze–thaw cycles and injuries
caused by birds and animals) of trees in Braunschweig, Lower Saxony, Germany [59]; it has
been found on food (in open packaging in kimchi at 4 ◦C) [60]. In our study, T. pullulans
was the most abundant taxa in winter, emphasizing its ability to successfully adapt and
survive in the hostile conditions of sub-freezing soil temperatures. The ornithogenically
influenced soils in a temperate forest in winter (when the topsoil temperature is below
zero) could probably be a proven site for the active reproduction of the basidiomycetous
psychrotolerant yeast T. pullulans. On average, this species is considered a permanent
but minor component of the pedobiont yeast community in soils of the intracontinental
temperate climate zone [1].

Data derived from the diversity characterization in several studies indicate that basid-
iomycetous yeasts are better adapted to cold environments than ascomycetous yeasts [61].
However, in some studies, yeasts from the phylum Ascomycota have been isolated more
frequently [26]. Recently, it has been shown that the genomes of psychrophilic yeasts
of the phylum Basidiomycota contain more gene clusters for the synthesis of secondary
metabolites than those of the phylum Ascomycota. At the same time, the genome size of
the psychrophilic yeasts of the phylum Basidiomycota is larger than that of the phylum As-
comycota. The psychrophilic yeasts of the phylum Basidiomycota also encode more catalytic
enzymes and may therefore be more environmentally tolerant [62].

Other yeast species found during the year in both ornithogenic soil and the control
included typical ascomycetous (B. californica, C. sake and Cyb. misumaiensis) and basid-
iomycetous (Cut. moniliiforme, G. gastrica and V. albida) soil-related yeasts [1,4,63–69];
characteristic species not only of soil but also of forest litter, tree sap and aquatic habitats
(Cys. capitatum, Cys. Infirmominiatum and Cys. macerans) [1,70–75]; epiphytes (F. magnum,
H. uvarum, P. flavescens and Rh. babjevae) [43,68,73,76,77]; eurybiont species (yeast-like
fungus Aur. pullulans, D. hansenii and Rh. mucilaginosa) [67]. We would also like to draw
attention to the ascomycetous yeast C. zeylanoides found. The relative abundance of this
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species was significantly dependent on the soil condition (F = 219.92, α = 0.05) and was
higher in ornithogenic soils (for C. zeylanoides, about 10% regardless of the season, in the
control, it did not exceed 1.5%). Previously, the yeast C. zeylanoides was found in fresh feces
of the partially synanthropic birds Bombycilla garrulus (Bohemian waxwing) and Pyrrhula
pyrrhula (Eurasian bullfinch) [22]. It can be cautiously assumed that this species could be
an intestinal symbiont of some other wild bird species.

4.3. Extracellular Enzyme Secretion by T. pullulans

The ability of yeasts to grow and multiply in cold environments suggests that their
metabolism is catalyzed by enzymes that are active at low temperatures. T. pullulans
is a psychrotolerant yeast with several extracellular enzymatic activities. It can play an
important role in the decomposition of organic matter, nutrient cycling and fertilization
of soil in the winter season. Its biotechnological potential includes the production of cold-
adapted proteases, lipases, esterases, amylases, cellulases and pectinases [78]. It has even
shown pronounced lipase secretion at subfreezing temperatures [37]. In our study, we
decided to extend the knowledge of the ability to secrete three hydrolases (esterase, lipase
and protease) in this species.

In this context, strains of the most abundant yeast species in the winter season, T. pullu-
lans, isolated from ornithogenically influenced soils, were subjected to screening of different
enzymes at low and moderate temperatures.

The lower the cultivation temperature, the higher the activity. The highest activity
was observed at plus 2 ◦C, the minimum at plus 20 ◦C. The secretion of proteases was no
longer observed at plus 20 ◦C. We also examined the secretion of these three enzymes at
plus 25 ◦C, but we obtained negative results for all three hydrolytic enzymes.

Although this yeast is exposed to temperatures below zero from late fall to early
spring, which is detrimental to its survival, it can still grow and increase its abundance
at low temperatures. The secretion of extracellular enzymes enables it to utilize complex
substances as an energy source [79,80]. Esterases and lipases provide access to phospho-
lipids, glycerols and fatty acids, which are necessary for maintaining the fluidity of the
cell membrane in the cold conditions of the winter season, which is essential for their
survival [81,82]. Strains of T. pullulans have already been reported to produce a variety of
cold-active exoenzymes [24,37,55,80]. It has also been shown that maximum lipase activity
is observed at minus 3 ◦C [37].

Enzymes active at low temperatures from strains of the culturable yeast species
T. pullulans, which can be detected relatively easily and in high abundance in ornithogenic
soils, could be used in various biotechnological processes in different industries as well
as in environmental applications in processes for the bioremediation of pollutants [83].
In addition, esterases could be used as diagnostic reagents for measuring cholesterol in
human blood serum [84,85].

5. Conclusions

The study of the seasonal dynamics of the abundance of culturable yeasts in the
topsoil under the ornithogenic influence in temperate forests showed that the maximum
values occurred in winter when the average soil temperature was below zero. Abundance
increased mainly due to the high proportion of the psychrotolerant yeast T. pullulans. The
study of the ability of strains of this species to produce hydrolytic enzymes (esterase, lipase
and protease) at different temperatures (2, 4, 10, 15 and 20 ◦C) showed that the maximum
activity occurred at the lowest temperature of the study (2 ◦C). It was found that the
diversity of yeasts was higher in ornithogenic soils than in the control. This was mainly due
to the detection of a group of pathogenic and opportunistic species. Six such species were
found in the ornithogenic soils: A. bovina, C. albicans, C. parapsilosis, C. tropicalis, Cl. lusitaniae
and N. glabratus, whereas only two species, C. parapsilosis and C. tropicalis, were found in
the control soil.
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