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Abstract: Exploring species diversity along elevational gradients is important for understanding the
underlying mechanisms. Our study focused on analyzing the species diversity of fungal communities
and their subcommunities at different trophic and taxonomic levels across three high mountains of
the Korean Peninsula, each situated in a different climatic zone. Using high-throughput sequencing,
we aimed to assess fungal diversity patterns and investigate the primary environmental factors
influencing fungal diversity. Our results indicate that soil fungal diversity exhibits different eleva-
tional distribution patterns on different mountains, highlighting the combined effects of climate,
soil properties, and geographic topology. Notably, the total and available phosphorus contents in
the soil emerged as key determinants in explaining the differences in diversity attributed to soil
properties. Despite the varied responses of fungal diversity to elevational gradients among different
trophic guilds and taxonomic levels, their primary environmental determinants remained remarkably
consistent. In particular, total and available phosphorus contents showed significant correlations
with the diversity of the majority of the trophic guilds and taxonomic levels. Our study reveals
the absence of a uniform diversity pattern along elevational gradients, underscoring the general
sensitivity of fungi to soil conditions. By enriching our understanding of fungal diversity dynamics,
this research enhances our comprehension of the formation and maintenance of elevational fungal
diversity and the response of microbial communities in mountain ecosystems to climate change. This
study provides valuable insights for future ecological studies of similar biotic communities.

Keywords: fungi; diversity patterns; elevation; environmental determinants

1. Introduction

Ecologists have long endeavored to decipher biodiversity patterns, with variations
along elevational gradients being pivotal in shaping the discourse on biodiversity patterns.
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The study of elevational diversity gradients represents a compelling facet of ecological
research that reflects the complex interplay between abiotic and biotic factors that influence
species distribution and abundance [1,2]. Numerous studies have documented the influ-
ence of elevation on a diverse array of fauna and flora [3,4], and the biodiversity of these
organisms typically adheres to one of three general elevational patterns: a hump-shaped
pattern with peak diversity at mid-elevations [5,6], monotonically decreasing diversity
with increasing elevation [7,8], or monotonically increasing diversity with increasing eleva-
tion [9–11]. These patterns have been extensively studied in macroorganisms, providing
substantial insights into their biogeographical distribution. However, the patterns exhibited
by microorganisms along elevation gradients are more challenging to observe and measure
compared to larger organisms in terrestrial ecosystems [12–14]. Therefore, exploring the
distribution of microorganisms is essential to fully understand the nuances of biodiversity
patterns along elevational gradients.

Fungi are crucial components of soil microbial communities and drive numerous vital
ecological processes, including litter decomposition, nutrient cycling, and the regulation
of plant growth [15]. Their presence and activity are pivotal for maintaining the health
and stability of ecosystems, thereby influencing both aboveground and belowground bio-
diversity [16–18]. Emerging research has revealed diverse fungal distribution patterns in
terrestrial ecosystems [19–22]. Fungal communities are often classified into various taxo-
nomic groups and functional guilds [23]. For example, mycorrhizal fungi enhance plant
nutrient uptake, whereas saprotrophic fungi play a key role in organic matter decomposi-
tion [24,25]. The diversity of these fungal subcategories tends to change along elevational
gradients. For example, studies have shown that the diversity of arbuscular mycorrhizal
fungi is negatively correlated with elevation [26]. Nevertheless, when studying the entire
fungal community, or its different taxonomic groups and functional guilds, these fungi
consistently demonstrate rapid responses to environmental changes.

The diversity of soil fungal communities along elevational gradients is influenced by
the complex interplay between various environmental factors. Many studies have empha-
sized the substantial impact of climatic conditions, such as mean annual temperature (MAT)
and mean annual precipitation (MAP), on fungal diversity [21,27]. Soil properties, such as
the soil pH and C:N ratio, are also recognized as factors that affect the diversity of fungal
communities [28–30]. Additionally, geographical factors play a crucial role in shaping
fungal diversity [31]. These findings illustrate the complex interactions among the environ-
mental factors that regulate soil fungal diversity. However, despite extensive research on
this topic, a lack of consensus remains regarding the response of fungal diversity to changes
in environmental factors. By understanding how fungal community diversity responds to
changes in climatic factors, soil properties, and geographical factors, we can predict how
ecosystems will change under varying climatic conditions. This knowledge is essential for
developing strategies to adapt to and mitigate the impacts of environmental change.

To gain a deeper understanding of the patterns of soil fungal diversity along eleva-
tional gradients, as well as the environmental factors influencing this diversity, we collected
soil samples at six different elevations on three mountains in the Korean Peninsula. By
sequencing the internal transcribed spacer (ITS) region, we investigated the fungal commu-
nities on these mountains with the objectives of clarifying (1) the patterns of fungal diversity
along the elevational gradients on these three mountains, (2) the relationship between fun-
gal diversity and environmental factors, and (3) the associations between elevational and
environmental gradients and fungal diversity at different taxonomic or functional levels.
This study provides a comprehensive examination of how fungal communities respond to
elevational and environmental gradients, thereby contributing valuable insights into the
biogeographic patterns of fungal diversity.
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2. Materials and Methods
2.1. Sampling Site

Sampling was conducted in August and September of 2019 and 2020 and focused on
three prominent mountains in the East Asian temperate zone: Mt. Halla, Mt. Jiri, and Mt.
Seorak (Figure 1). These mountains were selected for their distinct climatic and ecological
features that are representative of the region’s biodiversity.
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Figure 1. Sampling site (a) and schematic diagram of sampling points: Mt. Seorak (b), Mt. Jiri (c), and
Mt. Halla (d). The green, blue, and red dots represent Mt. Halla, Mt. Jiri, and Mt. Seorak, respectively.

Mt. Halla (33.3◦ N, 126.5◦ E), located on Jeju Island, is the highest shield volcano
in South Korea, with an elevation of 1950 m. Jeju Island has a warm temperate climate
with an MAT of 15.3 ◦C and MAP of 1424 mm. The MAT at the summit of Mt. Halla is
considerably lower, reaching only 3.7 ◦C. The native vegetation on the lower slopes of
Mt. Halla mainly consists of evergreen broadleaf forests dominated by communities of
Castanopsis cuspidata var. sieboldii, Quercus salicina, and Quercus glauca. As the elevation
increases, the predominant vegetation transitions from deciduous Quercus serrata forests
(600–1400 m) with Abies koreana (1400 m) to shrub belts that include Juniperus chinensis,
Empetrum nigrum, and Ilex crenata [12,32].

Mt. Jiri (35.3◦ N, 127.7◦ E), standing at 1915 m, is the second highest peak in South
Korea. It has a MAT of 13 ◦C and MAP of approximately 1400 mm [33]. Low-elevation
areas are dominated by Quercus variabilis and Pinus densiflora, while mid-elevation zones
feature a mix of Carpinus laxiflora, Quercus serrata, Acer mono, Larix leptolepis, and Pinus
koraiensis (Choi and An, 2013). Higher elevations are characterized by Quercus mongolica,
Agrostis clavata, Rhododendron mucronulatum, and Abies koreana [34].

Mt. Seorak (38.08◦ N, 128.3◦ E), located in Eastern South Korea, has an elevation of
1708 m. It has the lowest MAT among the three mountains, averaging 3.05 ◦C along its
elevation gradient, and a MAP of 1537 mm [35]. The diverse vegetation includes low-
elevation species, such as Pinus densiflora and Abies holophylla in the lowlands and Betula
ermanii, Pinus koraiensis, Quercus mongolica, and Abies nephrolepis in the highlands. The
summit and highlands are home to dwarf species, such as Pinus pumila, Taxus caespitosa, and
Thuja koraiensis, as well as arctic–alpine plants, such as Arctous ruber, Crataegus komarovii,
and Vaccinium uliginosum [36].

The sampling methods were consistent across the three mountains. Soil samples were
collected from six different elevations along an elevational transect, with five sampling
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points at each elevation band, and approximately 300 m of elevation difference between
each elevation band. To account for natural heterogeneity within each elevation band,
five separate sampling points were established at 20 m intervals at each elevation to capture
the variation within the elevation range. This is a common practice in ecological studies to
ensure robust and representative data [37–41]. To validate the consistency of samples within
the same elevation, we conducted analyses with Bray–Curtis non-metric multidimensional
scaling and clustering, both of which confirmed the consistency of samples within each
elevation band (Supplementary Figure S1). During the sampling process, all sampling
points were located at least three meters away from the nearest tree. For each individual
sample, five soil cores (0–10 cm depth, just below the litter layer) were collected from
the corners and center of a 1 m × 1 m quadrat and then combined to form a composite
sample. Visible roots and litter were removed from each fresh soil sample, which was
then sieved through a 2 mm mesh. Each composite soil sample was subsequently divided
into two subsamples: one stored at 4 ◦C for subsequent measurement of soil physical and
chemical properties, and the other stored at −20 ◦C for soil environmental DNA extraction.
In total, 90 soil samples were collected, with 30 samples from each mountain (6 elevation
gradients × 5 replicates = 30 samples per mountain).

2.2. Environmental Data Sources and Measurement

Sixteen environmental attributes were measured at each sampling point (Supplementary
Table S1). Climatic variables, including MAT and MAP, were obtained from the National
Digital Climate Map compiled by the National Meteorological Center of the Korea Meteorolog-
ical Administration [42]. Soil characteristics were measured at the National Instrumentation
Center for Environmental Management, Seoul National University, following the standard
protocols of the Soil Science Society of America. The measured soil properties included total
organic carbon (TOC), total nitrogen (TN), NH4

+, NO3
−, total phosphorus (TP), available

phosphorus (P2O5), pH value, moisture content, and texture, which were determined based
on the proportions of sand, silt, and clay (Supplementary Table S1).

2.3. High-Throughput Sequencing and Amplicon Data Analysis

Environmental DNA was extracted from 0.25 g of soil, using a PowerSoil DNA ex-
traction kit (Mo Bio Laboratories, Carlsbad, CA, USA), following the manufacturer’s
instructions. High-throughput sequencing of the fungal ITS2 region was performed on
the Illumina MiSeq platform (Illumina, Inc., San Diego, CA, USA) at the Centre for Com-
parative Genomics and Evolutionary Bioinformatics at Dalhousie University. The primer
combination used was ITS86F (5′-GTGAATCATCGAATCTTTGAA-3′) and ITS4(R) (5′-TCC
TCCGCTTATTGATATGC-3′) [43]. The polymerase chain-reaction conditions included an
initial denaturation at 95 ◦C for 10 min, followed by 30 cycles at 95 ◦C for 30 s, 55 ◦C for
30 s, and 72 ◦C for 30 s, with a final extension at 72 ◦C for 7 min.

Raw ITS reads were obtained in the fastq format. Sequence data were processed using
mothur (version 1.48.0, http://www.mothur.org; accessed on 27 October 2023), following
the MiSeq SOP [44]. Forward and reverse reads were combined using the “make.contigs”
command. Sequences shorter than 200 bp, chimeric sequences, and rare sequences were
excluded from downstream analysis. High-quality sequences were assigned to operational
taxonomic units (OTUs) at ≥97% similarity. This threshold has been widely used in the
literature and provides a practical compromise for capturing fungal diversity without
over-splitting OTUs [45–47]. Meanwhile, singletons and doubletons were removed to
prevent the inclusion of potentially erroneous reads generated by sequencing errors. A
smaller subset of 2764 high-quality sequences from the original set was randomly selected
using the “sub.sample” command to ensure consistent sequencing depth across samples.
The classification of each OTU was performed using the “classify.seqs” command with
1000 iterations against the UNITE [48] database, with a naive Bayesian bootstrap cutoff of
80% (Supplementary Table S2).

http://www.mothur.org
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2.4. Statistical Analysis

Fungal functional guilds were assigned using FUNGuild (https://github.com/brendanf/
FUNGuildR; accessed on 15 November 2023), which taxonomically parses fungal OTUs by
analyzing the ecological guilds of sequencing databases [49]. Three broad trophic modes—
pathotrophs, symbiotrophs, and saprotrophs—were defined based on the primary feeding
habits of the fungi. Only “highly likely” guild assignments were considered. Otherwise, OTUs
remained unclassified and categorized as “Others” (Supplementary Figure S3). To avoid
confusion arising from the terminology used in the FUNGuild database and to better convey
the ecological significance of our results, we adopt the terms “mycorrhizal” and “parasitic”
instead of “symbiotic” and “pathogenic”, respectively, except when directly referring to
FUNGuild outputs.

Diversity indices, including the Shannon index, Chao index, Simpson index (1-D),
and OTU richness, were estimated at different taxonomic levels and in different functional
guilds. These indices were calculated using the diversity function of the “vegan” package
in R (version 4.1.3) [50]. The Shannon index was used for linear regression analysis of
diversity in response to environmental factors (Supplementary Table S3). The diversity of
the fungal subcommunities was calculated using the same methods after rarefaction. To
examine the influence of elevation on diversity, linear, quadratic, and cubic models were
selected based on the Akaike information criterion (AIC). Spearman’s rank correlation was
used to examine the relationships between diversity and environmental variables [51].

Variation partitioning analysis (VPA) was conducted using the “vegan” package in
R to illustrate the independent or combined effects of three grouped environmental fac-
tors (climate, geography, and soil properties) on the variance in fungal alpha diversity
(Shannon index) [52]. Environmental variables were categorized into three groups: climatic
factors (MAT and MAP), geographical factors (elevation, longitude, and latitude), and
soil factors (pH, TOC, TN, NH4

+, NO3
−, P2O5, moisture content, TP, sand, clay, and silt).

To assess the relative importance of environmental variables in driving fungal diversity,
analysis was performed using the “randomForest” package in R (version 4.7.1). Regression
was performed using the “randomForest” function, and variable importance was deter-
mined based on the mean squared error increase (Inc MSE, %) value computed using the
“importance” function.

3. Results
3.1. Alpha Diversity Patterns along Elevational Gradients

The biodiversity of the fungal community exhibited different patterns along the ele-
vational gradients of the three mountains. On Mt. Halla, no significant patterns in alpha
diversity were observed along the elevational gradient. This lack of significant variation
extended across major fungal phyla and classes, as well as the three dominant functional
guilds (Figure 2a; Supplementary Figure S2; Supplementary Tables S4 and S5). On Mt. Jiri,
the fungal alpha diversity displayed a U-shaped distribution along the elevational gradient
(R2 = 0.4556, p < 0.001). Specifically, Tremellomycetes and pathotrophs displayed this
U-shaped pattern, reflecting the overall diversity trend. In contrast, Ascomycota and Doth-
ideomycetes demonstrated a more complex pattern, with alpha diversity initially decreas-
ing, then increasing, and finally decreasing (Figure 2b; Supplementary Tables S1 and S2).
On Mt. Seorak, the fungal alpha diversity showed a complex pattern characterized by an
initial increase, followed by a decrease and then an increase along the elevational gradient
(R2 = 0.2758, p < 0.05). Specifically, Ascomycota showed a linear decreasing trend in alpha
diversity (p < 0.05), whereas the Zygomycota_class_Incertae_sedis diversity mirrored the
overall trend with an initial increase, subsequent decrease, and final increase. However,
no significant elevational gradient patterns were observed for the three most dominant
functional guilds (Figure 2c; Supplementary Figure S3; Supplementary Tables S4 and S5).

https://github.com/brendanf/FUNGuildR
https://github.com/brendanf/FUNGuildR


J. Fungi 2024, 10, 556 6 of 14

J. Fungi 2024, 10, x FOR PEER REVIEW 6 of 15 
 

 

mirrored the overall trend with an initial increase, subsequent decrease, and final increase. 
However, no significant elevational gradient patterns were observed for the three most 
dominant functional guilds (Figure 2c; Supplementary Figure S3; Supplementary Tables 
S4 and S5). 

 
Figure 2. Elevational patterns of fungal community diversity, including overall and specific phylum, 
class, and functional diversity, indicated by blue dots, black fitted curves, and gray confidence in-
tervals, respectively. Panels (a–c) represent alpha diversity (Shannon index transformed by z-score) 
for Mt. Halla, Mt. Jiri, and Mt. Seorak. The quadratic model was selected based on the AIC (refer to 
Supplementary Table S1). Blue dots represent the values of the Shannon index transformed by z-
score at each sampled sites for each mountain. Solid lines indicate significant trends, while dashed 
lines represent non-significant trends. 

3.2. Impact of Environmental Factors on Elevational Patterns of Fungal Diversity 
The VPA results revealed that geographical factors, climatic factors, and soil proper-

ties collectively explained a substantial proportion of the variation in fungal community 
diversity. On Mt. Seorak, these factors accounted for the highest variance, explaining 
67.1% of the variation in fungal community diversity. On Mt. Jiri and Mt. Halla, these 
factors explained 52.7% and 38% of the variation in diversity, respectively (Figure 3). Cli-
matic factors were the primary explanatory variables for the variation in fungal commu-
nity diversity on Mt. Jiri, with a variance explanation rate of 49.0%. Notably, 28.3% of the 
explanatory power was solely attributed to climatic factors, whereas the remaining por-
tion (20.7%) was due to overlap between climatic factors, geographical factors, and soil 
properties. In contrast, the influence of climatic factors on fungal community diversity 
variation was lower on Mt. Halla (4.3%) and higher on Mt. Seorak (28.9%). Soil properties 
exhibited the highest explanatory power for fungal community diversity variation on Mt. 
Seorak, explaining 64.9% of the variance. Notably, 44.8% of the explanatory power was 
shared by geographical and climatic factors. Soil properties contributed to 31.1% and 
17.1% of the variation in fungal community diversity on Mt. Halla and Mt. Jiri, respec-
tively. In comparison to climatic and soil properties, geographical factors showed the low-
est explanatory power for fungal community diversity variation on Mt. Jiri and Mt. 
Seorak, accounting for 24.4% and 20.3%, respectively. On Mt. Halla, geographical factors 
explained 11.8% of the variation. 

Correlation and Random Forest variable importance analyses indicated that no com-
mon soil properties exhibited a strong correlation with fungal alpha diversity (repre-
sented by the Shannon index) on the three mountains (Figure 4a; Supplementary Table 
S6). However, soil TP emerged as the primary environmental variable that simultaneously 
influenced the Shannon index on Mt. Jiri (R = 0.59, p < 0.001) and Mt. Seorak (R = 0.55, p < 
0.01), and P2O5 also had similar positive correlations on both mountains (Mt. Jiri: R = 0.59, 
p < 0.001; Mt. Seorak: R = 0.55, p < 0.01). Moreover, pH (R = 0.46, p < 0.05) and TOC (R = 
−0.56, p < 0.01) exhibited significant correlations with the Shannon index only on Mt. 
Seorak, while TN showed a significant positive correlation only on Mt. Jiri (R = 0.52, p < 
0.01). Regarding climatic factors, there was no evidence of a correlation between MAP and 

Figure 2. Elevational patterns of fungal community diversity, including overall and specific phylum,
class, and functional diversity, indicated by blue dots, black fitted curves, and gray confidence
intervals, respectively. Panels (a–c) represent alpha diversity (Shannon index transformed by z-score)
for Mt. Halla, Mt. Jiri, and Mt. Seorak. The quadratic model was selected based on the AIC (refer
to Supplementary Table S1). Blue dots represent the values of the Shannon index transformed by
z-score at each sampled sites for each mountain. Solid lines indicate significant trends, while dashed
lines represent non-significant trends.

3.2. Impact of Environmental Factors on Elevational Patterns of Fungal Diversity

The VPA results revealed that geographical factors, climatic factors, and soil proper-
ties collectively explained a substantial proportion of the variation in fungal community
diversity. On Mt. Seorak, these factors accounted for the highest variance, explaining 67.1%
of the variation in fungal community diversity. On Mt. Jiri and Mt. Halla, these factors ex-
plained 52.7% and 38% of the variation in diversity, respectively (Figure 3). Climatic factors
were the primary explanatory variables for the variation in fungal community diversity on
Mt. Jiri, with a variance explanation rate of 49.0%. Notably, 28.3% of the explanatory power
was solely attributed to climatic factors, whereas the remaining portion (20.7%) was due
to overlap between climatic factors, geographical factors, and soil properties. In contrast,
the influence of climatic factors on fungal community diversity variation was lower on
Mt. Halla (4.3%) and higher on Mt. Seorak (28.9%). Soil properties exhibited the highest
explanatory power for fungal community diversity variation on Mt. Seorak, explaining
64.9% of the variance. Notably, 44.8% of the explanatory power was shared by geographical
and climatic factors. Soil properties contributed to 31.1% and 17.1% of the variation in
fungal community diversity on Mt. Halla and Mt. Jiri, respectively. In comparison to
climatic and soil properties, geographical factors showed the lowest explanatory power for
fungal community diversity variation on Mt. Jiri and Mt. Seorak, accounting for 24.4% and
20.3%, respectively. On Mt. Halla, geographical factors explained 11.8% of the variation.
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Correlation and Random Forest variable importance analyses indicated that no com-
mon soil properties exhibited a strong correlation with fungal alpha diversity (represented
by the Shannon index) on the three mountains (Figure 4a; Supplementary Table S6). How-
ever, soil TP emerged as the primary environmental variable that simultaneously influenced
the Shannon index on Mt. Jiri (R = 0.59, p < 0.001) and Mt. Seorak (R = 0.55, p < 0.01), and
P2O5 also had similar positive correlations on both mountains (Mt. Jiri: R = 0.59, p < 0.001;
Mt. Seorak: R = 0.55, p < 0.01). Moreover, pH (R = 0.46, p < 0.05) and TOC (R = −0.56,
p < 0.01) exhibited significant correlations with the Shannon index only on Mt. Seorak,
while TN showed a significant positive correlation only on Mt. Jiri (R = 0.52, p < 0.01).
Regarding climatic factors, there was no evidence of a correlation between MAP and the
Shannon index, whereas MAT had a negative correlation with the Shannon index only
on Mt. Jiri (R = −0.37, p < 0.05). Geographical factors had low explanatory power for
fungal community diversity on all three mountains (Figure 4a). The correlations between
environmental variables and fungal diversity that were expressed by OTU richness and the
Chao index were consistent with those expressed by the Shannon index (Figure 4a).
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3.3. Environmental Drivers of Dominant Taxa and Functional Group Diversity along
Elevational Gradients

Pathotrophs, saprotrophs, and symbiotrophs were the three main functional guilds
identified in this study (Figure 4b; Supplementary Table S6). The alpha diversity of the
pathotrophs exhibited significant positive correlations with TP and P2O5 on both Mt. Jiri
and Mt. Seorak (p < 0.01). Additionally, soil pH showed significant positive correlations
with the pathotroph Shannon index on Mt. Halla and Mt. Seroka (p < 0.05). On Mt. Seorak,
pathotroph diversity was also strongly correlated with elevation (R = 0.37, p < 0.05), latitude
(R = 0.36, p < 0.05), TOC (R = −0.64, p < 0.001), and soil texture (sand: R = 0.62, p < 0.001;
clay: R = −0.52, p < 0.01; silt: R = −0.54, p < 0.01). The environmental factors influencing
the saprotroph groups were similar to those affecting pathotrophs. Additionally, TP had a
positive correlation with saprotroph diversity on both Mt. Jiri and Mt. Seorak (p < 0.05),
whereas P2O5 showed a positive correlation with saprotroph diversity only on Mt. Jiri
(R = 0.62, p < 0.001). On Mt. Seorak, pH (R = 0.38, p < 0.05), TOC (R = −0.55, p < 0.01),
and soil texture (sand: R = 0.55, p < 0.01; silt: R = −0.52, p < 0.01) were significantly
correlated with saprotroph diversity. Notably, TP and AP exhibited significant positive
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correlations with the diversity of all three functional groups on Mt. Jiri (p < 0.01). Unlike
soil properties, climatic and geographic factors were not significantly correlated with fungal
functional diversity.

We investigated the influence of environmental factors on the major fungal taxonomic
groups (Figure 4c; Supplementary Table S6). On Mt. Jiri, the alpha diversity of Ascomycota,
Basidiomycota, and Dothideomycetes was positively correlated with TP, P2O5, and TN
(p < 0.05). Meanwhile, Leotiomycetes and Tremellomycetes showed significant correla-
tions with climatic (MAT and MAP) and geographic variables (elevation, latitude, and
longitude) (p < 0.01), but variables that positively influenced Leotiomycetes negatively
affected Tremellomycetes and vice versa. On Mt. Seorak, the alpha diversity of Zygomycota
and Zygomycota_class_Incertae_sedis was positively correlated with TP, P2O5, and pH
(p < 0.05), whereas that of Ascomycota was significantly positively correlated with climatic
and geographic variables (p < 0.01). Additionally, the alpha diversity of Zygomycota,
Leotiomycetes, and Dothideomycetes was positively correlated with NO3

− (p < 0.05).

4. Discussion

Species diversity varies along elevational gradients, with fungal communities often
exhibiting particularly complex patterns. This complexity stems primarily from the high
sensitivity of fungi to changes in the soil microenvironment [21]. Fungal communities
quickly respond to subtle changes in microclimatic conditions, soil chemistry, and biotic
interactions, resulting in complex and variable diversity patterns along elevational gradi-
ents [53]. Our study, focusing on three mountains reaching approximately 2000 m above
sea level at different latitudes on the Korean Peninsula, provides insights into the diverse
patterns of fungal community diversity along elevational gradients. The three mountains
exhibited distinctly different diversity trends with increasing elevation. As elevation in-
creased, Mt. Seorak’s fungal alpha diversity first increased and then decreased, showing the
highest species diversity at mid-elevation zones. Conversely, Mt. Jiri displayed a U-shaped
distribution, with the lowest diversity at mid-elevation zones, while Mt. Halla showed no
significant change in fungal alpha diversity with changing elevation. Classic ecological theo-
ries have posited that diversity generally decreases with elevation, suggesting that a similar
trend would exist for fungi, with fungal abundance decreasing along mountain elevational
gradients [21]. This phenomenon is typically associated with the increasing harshness of
the environment at higher elevations [54]. For example, studies have observed a monotonic
decline in soil fungal diversity along elevations ranging from 700 to 2600 m on Changbai
Mountain [20]. However, as ecological research has advanced, more studies have found
that peak diversity occurs at mid-elevation zones. For example, ectomycorrhizal fungi on
Mt. Fuji in Japan exhibit a hump-shaped distribution along the elevational gradient [55,56].
Several theories have been proposed to explain the peak fungal diversity at mid-elevation
zones. The “community overlap” hypothesis suggests that mid-elevation zones function
as transitional areas between the distinct environments of the mountain top and base,
resulting in higher species diversity due to the inclusive nature of transitional habitats.
Another widely recognized explanation is the “mid-domain effect”, which posits that if
species ranges are randomly distributed between the mountain top and base boundaries,
the mid-elevation zone will exhibit the highest species overlap [57]. While these theories
emphasize the importance of deterministic processes, such as climatic and geographical fac-
tors, in influencing soil fungal diversity, Wang et al. [13] suggested that stochastic processes
can also substantially affect mountain fungal community diversity under certain conditions.
Although a U-shaped pattern (with the lowest diversity at mid-elevation zones) is uncom-
mon, studies on fungal diversity in Korean pine forests on Changbai Mountain have found
the lowest community diversity at mid-elevation zones [58], which is consistent with our
findings on Mt. Jiri. Additionally, the primary vegetation from low- to mid-elevation zones
on Mt. Jiri is Pinus densiflora [34], indicating that soil properties influenced by Korean pines
may negatively affect fungal diversity, warranting further research. Birch trees (Betula spp.)
play a significant role in shaping soil properties and influencing fungal diversity. Birch
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trees can alter soil pH, organic matter content, and nutrient availability, thereby affecting
fungal biomass and communities [59,60]. This impact is particularly important at mid to
high elevations, where birch trees are more prevalent. On Mt. Halla, the fungal community
alpha diversity did not show significant changes with elevation, differing from previously
observed distribution patterns. However, a study in Southeastern Tibet reported a similar
lack of a gradient pattern in fungal diversity, generally attributed to the variation in habitats
along the elevational gradient [61].

Elevational gradients are associated with changes in various environmental factors.
As elevation increases, many environmental variables, such as temperature, humidity, soil
pH, and soil trace-element content, also change accordingly [62]. For example, although
lower temperatures and higher humidity at high elevations can support specific fungal
communities, reduced soil nutrient levels (such as TN and TOC) and extreme climatic
conditions limit the survival of many fungal species [63]. Understanding the distribution
and diversity of fungi at different elevations provides crucial insights into how mountain
ecosystems respond to environmental changes [64]. Our findings confirmed the important
role of climatic, soil, and geographical factors in shaping the elevational gradient of fungal
community alpha diversity.

Climate is a crucial factor controlling fungal community diversity [65–67], and it indi-
rectly controls the relative abundance of fungal community diversity through its strong
influence on ecosystem types, vegetation, and soil properties [68]. In our study, fungal com-
munity alpha diversity showed a significant correlation with not only MAP but also MAT.
Specifically, on Mt. Jiri, fungal community alpha diversity was negatively correlated with
MAT, consistent with previous studies indicating that temperature directly affects fungal
communities through physical tolerance and enzymatic processes and indirectly affects
them through its impact on vegetation turnover [69–72]. Compared to climatic factors, soil
properties have a more significant impact on soil fungal diversity. Soil nutrient availability
has been shown to significantly influence fungal community composition [73–75]. In par-
ticular, P is an important energy source for microorganisms, significantly influencing the
elevational distribution patterns of soil microbes by determining their metabolism [76–78].
Our study showed that TP and P2O5 positively affected the alpha diversity of fungal
communities and different taxonomic groups across the three mountains, possibly due
to the preference of certain fungi for specific elements [66]. Many studies have found
that soil nutrients such as TP [79] and available N [80] affect fungal growth [73,81,82] and
may limit the maximum potential fungal diversity in the soil [80]. Additionally, phos-
phates are crucial for fungal proliferation, stress response, cell wall synthesis, and carbon
metabolism, serving as key mediators in interactions with other organisms. The availability
of phosphates influences fungal adaptation to environmental stress and host interactions,
directly impacting the structure and diversity of soil fungal communities. Furthermore,
phosphates act as signaling molecules within fungal cells, regulating nutrient acquisition,
stress responses, and metabolic processes, enabling fungi to adjust their diversity and
distribution in various soil environments [83]. In our study, TN and TOC also influenced
the alpha diversity of fungal communities on different mountains. In contrast, soil pH
did not significantly affect fungal biodiversity, likely because of fungi’s broad optimal pH
range for growth [84]. The influence of geographical factors on soil microbial communities
depends on the spatial scale [85–87]. Our study focused on the elevational gradients of
individual mountains in a local-scale investigation. Therefore, the geographical factors in
this study were insufficient to affect the fungal community diversity more than the envi-
ronmental factors. This finding aligns with previous research indicating that, at regional
scales, geographical factors explain some variations in soil fungal diversity [88], whereas at
local scales, fungal diversity changes are primarily regulated by environmental factors [89].

It is well understood that underground microbial communities are largely determined
by the diversity and composition of the aboveground plant species [88,90]. For example,
Tedersoo et al. [88] found that, as the proportion of Pinus sylvestris increases in forests, tree
diversity has a negative effect on fungal diversity, with species-identity effects dominating
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aboveground–belowground relationships beyond plant diversity. Therefore, the influence
of vegetation on fungal communities cannot be ignored. In our study, we sampled the bulk
soil rather than rhizosphere soil on the three mountains to minimize the influence from
vegetation on fungi communities, making it possible to explore the effects of a more diverse
series of environmental factors. Indeed, the relative low abundance of functional groups
of arbuscular mycorrhizal fungi and Ectomycorrhizal fungi confirmed the success of our
sampling plan.

Although the three main functional groups (i.e., pathotrophs, saprotrophs, and sym-
biotrophs) exhibited varied responses to environmental constraints, the saprotrophs re-
sponded to environmental factors in a manner similar to that of pathotrophs on all the
three mountains. Future studies should be conducted to comprehensively understand
their effects on fungal diversity. The diversity of parasitic fungi on Mt. Jiri exhibited a
U-shaped distribution, consistent with the findings of previous research. TP was signif-
icantly positively correlated with the diversity of parasitic fungi. This may be because
P, as an essential nutrient, promotes microbial growth and reproduction. Parasitic fungi
obtain nutrients by damaging host cells; thus, they thrive and reproduce easily in high-P
environments [83]. On Mt. Seorak, the diversity of parasitic fungi was also found to be
influenced by pH, TOC, and soil texture (sand, clay, and silt). This may be because parasitic
fungi tend to thrive in nutrient-rich environments, where these soil properties provide
favorable conditions for their growth [49,91]. Notably, the diversity patterns of the three
functional groups on Mt. Jiri and Mt. Seorak were consistent with the overall trend and
were significantly correlated with TP, indicating the important role of fungal functional
groups in determining the overall diversity. Interestingly, our study reveals that, within
each mountain, the environmental factors influencing the diversity patterns of different
fungal functional groups are generally consistent. However, significant differences exist in
the environmental factors affecting the diversity of these fungal functional groups across
the three mountains. This variability may be attributed to the distinct fungal community
diversity patterns observed in each mountain.

5. Conclusions

This study investigated the patterns of soil fungal community diversity along eleva-
tional gradients on three major mountains in the Korean Peninsula: Mt. Halla, Mt. Jiri, and
Mt. Seorak. By employing high-throughput sequencing to analyze fungal communities,
we elucidated the diversity patterns at different elevations and identified the key environ-
mental factors influencing these patterns. The results revealed distinct elevational diversity
patterns of fungal communities on each mountain. Geographic distance, climatic factors,
and soil properties collectively explained a significant portion of the variation in fungal
community diversity. Among these factors, soil properties, particularly total phosphorus
and available phosphorus, emerged as critical determinants of fungal diversity, highlight-
ing the importance of soil nutrients in shaping fungal communities. These findings offer
new insights into the biogeographical distribution of fungi and the ecological processes
driving fungal diversity in temperate forest ecosystems. Overall, our study enhances the
understanding of fungal diversity dynamics along elevational gradients and underscores
the necessity of considering multiple environmental factors when assessing microbial
biodiversity. The results provide valuable references for future ecological research and
conservation efforts of similar biotic communities, especially in the context of changing
environmental conditions.
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