Exploring Endophytic Fungi as Natural Antagonists against Fungal Pathogens of Food Crops
Abstract
:1. Introduction
2. Materials and Methods
3. Endophytic Fungi
3.1. Ecological Role of the Endophytic Fungi
3.2. Factors Influencing the Effectiveness of Endophytic Fungi in Plant Disease Control
4. Pathogenic Fungal Species in Food Crops
4.1. Leaf Fungal Diseases
4.2. Root Fungal Diseases
4.3. Stem Fungal Diseases
4.4. Fruit Fungal Diseases
4.5. Fungal Diseases in Vegetable Crops
4.6. Fungal Diseases in Cereal Crops
Host Plant | Fungal Disease | Disease-Causing Fungi | Symptoms | References |
---|---|---|---|---|
Banana | Panama wilt | Fusarium oxysporum f. sp. cubense | Older leaves turn yellow, then necrotic and collapse, with vascular bundles exhibiting purplish brown discoloration | [115] |
Anthracnose | Colletotrichum musae | Brown lesions on ripened banana fruits, mature lesions become diamond-shaped, dark brown to black color with yellow halos | [115,116] | |
Banana black Sigatoka (black leaf streak) | Mycosphaerella fijiensis | Reddish brown spots on the lower leaf surface that later develop into large spots | [115] | |
Cordana leaf spot | Cordana musae | Pale brown, necrotic, oval-shaped spots on leaves, characterized by concentric zonation with a dark margin surrounded by a yellow halo | ||
Bean | Anthracnose | Colletotrichum lindemuthianum | Dark brown necrotic lesions on leaves accompanied by reduced photosynthetic activity | [62] |
White mold | Sclerotinia sclerotium | Water-soaked, circular, dark green lesions on leaves, pods, stems, and branches, with white cottony mycelium growing on infected flower surfaces | [117] | |
Angular leaf spot | Pseudocercospora griseola | Angular-shaped necrotic lesions with yellow halos on leaves, reddish brown to black circular spots on pods, elongated, brown lesions on stems, petioles, and branches | [118] | |
Powdery mildew | Erysiphe polygonii | Leaves covered with whitish grey powdery growth, later infected leaves turn yellow and drop off, infected pods and stems covered with white mildew | [119] | |
Cercospora leaf spot | Cercospora cruenta, C. canescens | Defoliation and severe leaf spotting during pod formation and flowering | [120] | |
Bean rust | Uromyces appendiculaters | White/light green spots on upper and lower leaf surfaces that turn into reddish brown pustules surrounded by yellow tissue, later leaves exhibit yellowing, senescence, and drop off | [121] | |
Coffee | Leaf rust | Hemileia vastatrix | Light yellow, small spots on upper leaf surface, orange-yellow to red-orange powdery lesions on underside of leaves, premature leaf drop | [122] |
Wilt disease | Fusarium xylarioides | Yellowing and withering of leaves, development of brown necrotic lesions, curling, drying, and falling of leaves | ||
Cercospora blotch | Cercospora coffeicola | Round/irregular, small light brown to brown lesions with dark purple/black margins on leaves, brown, sunken, longitudinal/oval/irregular lesions with a grey center on green berries | ||
Maize | Anthracnose stalk rot | Colletotrichum graminicola | Foliar leaf blight, light brown spindle-shaped/oval-shaped water-soaked lesions with dark brown/purple margins on lower leaves, soft stalks with rot and reflective black strips on internodes | [123] |
Charcoal rot | Macrophomina phaseolina | Progressive wilting, premature dying, loss of vigor, decreased yield | ||
Corn smut | Ustilago maydis | Formation of mushroom-like galls on maize kernels, chlorosis, decreased growth | ||
Southern leaf blight | Bipolaris maydis | Cob rot, premature falling of corn ears | ||
Mango | Malformation disease | Fusarium moniliformae var. subglutinans | Presence of shorter, thicker, and highly branched inflorescences, increases in male flowers and reduces fertility in hermaphroditic flowers | [124] |
Powdery mildew | Oidium mangiferae | White powdery growth covering the stalks of the leaves, young fruits, inflorescences, and flowers | [125] | |
Anthracnose | Colletotrichum gloeosporioides | Dark brown irregular or oval sunken spots on leaves, black necrotic sunken lesions on the peel of the fruit | [59] | |
Dieback | Lasiodiplodia theobromae | Dark patches on green twigs, later complete defoliation result in fire scorch | [125] | |
Stem end rot | Alternaria alternata, Botryosphaeria spp., Botrytis cinerea, Colletotrichum gloeosporioides, Cytosphaera mangifera, Dothiorella mangiferae, Lasiodiplodia theobromae, Phomopsis mangiferae, Pestalotiopsis mangiferae | Soft brown rot at the stem end of mango fruit that quickly spreads to the whole fruit, with secretion of straw-colored fluid from the stem end | [126] | |
Potato | Black dot | Colletotrichum coccodes | Macroscopic black sclerotia are the major symptom, later turns into brown or silver lesions | [127] |
Late blight | Phytophthora infestans | Irregular-shaped, water-soaked, pale green lesions near the margins and tips of leaves; they grow rapidly and turn into brown to purplish black, large, necrotic lesions; later the whole crop becomes blackened blight | [128] | |
Grey mold | Botrytis cinerea | Tan-colored, wedge-shaped lesions on leaves; slimy brown rot on infected stems; discolored, pitted, sunken areas in tubers; grey color fuzzy growth on infected tubers | [129] | |
Rice | Sheath blight | Rhizoctonia solani | Oval/irregular/elliptical greenish grey spots on the leaf sheath; brown/dark brown sclerotia and brown silky mycelium loosely attached to the lesions in moist conditions; the entire leaf and plant later die | [130] |
Rice blast disease | Pyricularia oryzae | Elliptical spots with pointed ends featuring whitish/grey color centers and brown/reddish brown margins | [131] | |
Brown spot | Bipolaris oryzae | Brown, small, circular/oval-shaped spots with whitish grey centers and yellow halos all over the leaf surfaces; small, dark brown/purple-brown young spots | [132] | |
Tea | Blister blight | Exobasidium vexans | Lemon green translucent spots on the first/second leaves, powdery white coating on blisters, shoot dieback | [133] |
Anthracnose | Colletotrichum camelliae | Yellowish green, small, diffuse spots, spots turn into dark brown, necrotic lesions with concentric rings, twig dieback | ||
Gray blight | Pestalotiopsis longiseta | Concentric brown spots in the middle of the leaf, spots turn gray with brown margins and cover entire leaf, young shoot dieback | ||
Tomato | Damping-off | Pythium spp. | Complete rotting of seedlings, water-soaked and soft collar tissues | [134] |
Powdery mildew | Leveillula taurica | Light green to bright yellow spots on the upper surfaces of leaves, light powdery coatings on the lower leaf surfaces, necrotic lesions, defoliation, small and sunburned fruits | ||
Tomato wilt | Fusarium oxysporum f. sp. lycopersici | Yellowing of leaves, downward curling, browning, and drying of infected leaves | ||
Anthracnose | Colletotrichum coccodes | Small, circular, and sunken lesions on ripening fruit surfaces, spots enlarge into bruise-like depressions with a water-soaked appearance | ||
Wheat | Leaf rust | Puccinia triticina | Circular to slightly oval, non-merged pustules on stems or leaves | [135] |
Powdery mildew | Blumeria graminis | Greyish powder on stems and upper and lower surfaces of leaves | ||
Crown root rot | Bipolaris sorokiniana | Infected crowns turn brown with brown to black small lesions on primary and secondary roots |
5. Management of Plant Fungal Diseases
6. Antagonistic Activity of Endophytic Fungal Species
6.1. Antagonistic Activity of Trichoderma spp.
6.2. Antagonistic Activity of Penicillium spp.
6.3. Antagonistic Activity of Muscodor spp.
6.4. Antagonistic Activity of Other Endophytic Fungi
7. Future Prospects
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tommaso, S.D.; Wang, S.; Vajipey, V.; Gorelick, N.; Strey, R.; Lobell, D.B. Annual field-scale maps of tall and short crops at the global scale using GEDI and sentinel-2. Remote Sens. 2023, 15, 4123. [Google Scholar] [CrossRef]
- Bano, A.; Gupta, A.; Prusty, M.R.; Kumar, M. Elicitation of fruit fungi infection and its protective response to improve the postharvest quality of fruits. Stresses 2023, 3, 231–255. [Google Scholar] [CrossRef]
- Punja, Z.K.; Utkhede, R.S. Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol. 2003, 21, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, K.; Kołodziejczak, M. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Ashraf, M.; Ahmad, M.S.A.; Öztürk, M.; Aksoy, A. Crop improvement through different means: Challenges and prospects. In Crop Production for Agricultural Improvement; Ashraf, M., Öztürk, M., Ahmad, M., Aksoy, A., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Samadi, B.Y. Crop production challenges and ways to overcome them. Strat. Res. J. Agric. Sci. Nat. Resour. 2016, 1, 51–62. [Google Scholar]
- Dun-chun, H.; Jia-sui, Z.; Lian-hui, X. Problems, challenges and future of plant disease management: From an ecological point of view. J. Integr. Agric. 2016, 15, 705–715. [Google Scholar]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.L.; Kannangara, S.D.; Promputtha, I. Fungi vs. Fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef]
- Shukla, S.; Upadhyay, D.; Mishra, A.; Jindal, T.; Shukla, K. Challenges faced by farmers in crops production due to fungal pathogens and their effect on Indian economy. In Fungal Diversity, Ecology and Control Management; Rajpal, V.R., Singh, I., Navi, S.S., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Al Husnain, L.; Alajlan, L.; AlKahtani, M.D.F.; Orfali, R.; Ameen, F. Avicennia marina endophytic fungi shows antagonism against tomato pathogenic fungi. J. Saudi Soc. Agric. Sci. 2023, 22, 214–222. [Google Scholar] [CrossRef]
- Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.; Shi, J. A Review of Plant Leaf Fungal Diseases and Its Environment Speciation. Bioengineered 2019, 10, 409–424. [Google Scholar] [CrossRef]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef]
- Brown, J.; Ogle, H. Fungal diseases and their control. plant pathogens and plant diseases. Australas. Plant Pathol. 1997, 1, 443–467. [Google Scholar]
- Goldammer, T. Plant disease management for organic crops. In Organic Crop Production; Apex Publishers: Mumbai, India, 2017. [Google Scholar]
- Rajapakse, R.H.S.; Ratnasekera, D.; Abeysinghe, S. Biopesticides Research: Current Status and Future Trends in Sri Lanka. In Agriculturally Important Microorganisms; Springer: Singapore, 2016; pp. 219–234. [Google Scholar]
- Radic, N.; Strukel, B. Endophytic fungi—The treasure chest of antibacterial substances. Phytomedicine 2012, 19, 1270–1284. [Google Scholar] [CrossRef] [PubMed]
- Ratnaweera, P.B.; de Silva, E.D. Endophytic Fungi: A Remarkable Source of Biologically Active Secondary Metabolites. In Endophytes: Crop Productivity and Protection, Sustainable Development and Biodiversity; Maheshwari, D.K., Annapurna, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Priyashantha, A.K.H.; Karunarathna, S.C.; Lu, L.; Tibpromma, S. Fungal endophytes: An alternative biocontrol agent against phytopathogenic fungi. Encyclopedia 2023, 3, 759–780. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. In The Fungal Kingdom; ASM Press: Washington, DC, USA, 2017; pp. 79–95. [Google Scholar]
- Stone, J.; Polishook, J.; White, J. Endophytic fungi. In Biodiversity of Fungi; Elsevier: Amsterdam, The Netherlands, 2004; pp. 241–270. [Google Scholar]
- Mishra, Y.; Singh, A.; Batra, A.; Sharma, M.M. Understanding the biodiversity and biological applications of endophytic fungi: A review. Microb. Biochem. Technol. 2014, S8. [Google Scholar] [CrossRef]
- Singh, V.K.; Kumar, A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023, 90, 1–15. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 2020, 8, 467. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C. Endophytic fungi: A tool for plant growth promotion and sustainable agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef]
- Hyde, K.D.; Soytong, K. The fungal endophyte dilemma. Fungal Divers. 2008, 33, 163–173. [Google Scholar]
- Carroll, G.C. The biology of endophytism in plants with particular reference to woody plants. In Microbiology of the Phyllospher; Fokkema, N.J., van den Heuvel, J., Eds.; Cambridge University Press: Cambridge, UK, 1986; pp. 205–222. [Google Scholar]
- Petrini, O. Fungal endophytes of tree leaves. In Microbial Ecology of Leaves; Andrews, J.H., Hirano, S.S., Eds.; Springer: New York, NY, USA, 1991; pp. 179–197. [Google Scholar]
- Arnold, A.E. Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biol. Rev. 2007, 21, 51–66. [Google Scholar] [CrossRef]
- Anillo, H.J.; Garrido, C.; Collado, I.G. Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochem. Rev. 2020, 19, 721–740. [Google Scholar] [CrossRef]
- Zheng, R.; Li, S.; Zhang, X.; Zhao, C. Biological activities of some new secondary metabolites isolated from endophytic fungi: A review study. Int. J. Mol. Sci. 2021, 22, 959. [Google Scholar] [CrossRef] [PubMed]
- Bacon, C.W.; Hill, N.S. Symptomless grass endophytes: Products of coevolutionary symbiosis and their role in ecological adaptations of infected grasses. In Endophytic Fungi in Grass and Woody Plants; Redlin, S.C., Carris, L.M., Eds.; APS Press: Eagan, MN, USA, 1996; pp. 155–178. [Google Scholar]
- Krings, M.; Taylor, T.N.; Hass, H.; Kerp, H.; Dotzler, N.; Hermsen, E.J. Fungal endophytes in a 400-million-yr-old land plant: Infection pathways, spatial distribution, and host responses. New Phytol. 2007, 174, 648–657. [Google Scholar] [CrossRef]
- Galindo-Solís, J.M.; Fernández, F.J. Endophytic fungal terpenoids: Natural role and bioactivities. Microorganisms 2022, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Okyere, S.K.; Wang, S.; Wang, J.; Xie, L.; Ran, Y.; Hu, Y. Endophytic fungi: An effective alternative source of plant-derived bioactive compounds for pharmacological studies. J. Fungi 2022, 8, 205. [Google Scholar] [CrossRef]
- Freeman, E.M. The seed fungus of Lolium temulentum L., the darnel. Phil. Trans. R. Soc. B 1904, 196, 1–27. [Google Scholar]
- Nouh, A. Endophytic fungi for sustainable agriculture. Microb. Biosyst. 2019, 4, 31–44. [Google Scholar]
- Omomowo, I.O.; Amao, J.A.; Abubakar, A.; Ogundola, A.F.; Ezediuno, L.O.; Bamigboye, C.O. A review on the trends of endophytic fungi bioactivities. Sci. Afr. 2023, 20, e01594. [Google Scholar] [CrossRef]
- Vyas, P.; Bansal, A. Fungal endophytes: Role in sustainable agriculture. In Fungi and Their Role in Sustainable Development: Current Perspectives; Gehlot, P., Singh, J., Eds.; Springer: Singapore, 2018; pp. 107–120. [Google Scholar]
- Chaudhary, P.; Agri, U.; Chaudhary, A.; Kumar, A.; Kumar, G. Endophytes and their potential in biotic stress management and crop production. Front. Microbiol. 2022, 13, 933017. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, A.L.; Hamayun, M.; Shahzad, R.; Kim, Y.; Choi, K.; Lee, I. Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants, and functional amino acids. Eur. J. Plant Pathol. 2015, 141, 803–824. [Google Scholar] [CrossRef]
- Sun, X.; Wang, N.; Li, P.; Jiang, Z.; Liu, X.; Wang, M.; Su, Z.; Zhang, C.; Lin, F.; Liang, Y. Endophytic fungus Falciphora oryzae promotes lateral root growth by producing indole derivatives after sensing plant signals. Plant Cell Environ. 2020, 43, 358–373. [Google Scholar] [CrossRef]
- Mehmood, A.; Hussain, A.; Irshad, M.; Hamayun, M.; Iqbal, A.; Khan, N. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth-promoting activities in Zea mays. Symbiosis 2019, 77, 225–235. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Kailoo, S.; Khan, R.T.; Khan, S.S.; Rasool, S. Harnessing fungal endophytes for natural management: A biocontrol perspective. Front. Microbiol. 2023, 14, 1280258. [Google Scholar] [CrossRef]
- Nuraini, F.R.; Setyaningsih, R.; Susilowati, A. Antioxidant activity of bioactive compound produced by endophytic fungi isolated from endemic plant of South Kalimantan Mangifera casturi Kosterm. In Proceedings of the International Conference on Biology and Applied Science, Malang, Indonesia, 3 July 2019. [Google Scholar]
- Fan, Y.; Shi, B. Endophytic fungi from the four staple crops and their secondary metabolites. Int. J. Mol. Sci. 2024, 25, 6057. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.H.; Patil, M.P.; Maheshwari, V.L. Bioactive secondary metabolites from endophytic fungi. In Studies in Natural Products Chemistry, 1st ed.; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49, pp. 189–205. [Google Scholar]
- Sui, L.; Zhu, H.; Xu, W.; Guo, Q.; Wang, L.; Zhengkun, Z.; Li, Q.; Wang, D. Elevated air temperature shifts the interactions between plants and endophytic fungal entomopathogens in an agroecosystem. Fungal Ecol. 2020, 47, 100940. [Google Scholar] [CrossRef]
- Marcianò, D.; Mizzotti, C.; Maddalena, G.; Toffolatti, S.L. The dark side of fungi: How they cause diseases in plants. Front. Young Minds 2021, 9, 560315. [Google Scholar] [CrossRef]
- Malathrakis, N.E.; Goumas, D.E. Fungal and bacterial diseases. In Integrated Pest and Disease Management in Greenhouse Crops; Albajes, R., Lodovica, G.M., van Lenteren, J.C., Elad, Y., Eds.; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Yang, Y.L.; Liu, Z.Y.; Cai, L.; Hyde, K.D.; Yu, Z.N.; Mckenzie, E.H.C. Colletotrichum anthracnose of Amaryllidaceae. Fungal Divers. 2009, 39, 123–146. [Google Scholar]
- Jayawardena, R.S.; Bhunjun, C.S.; Hyde, K.D.; Gentekaki, E.; Itthayakorn, P. Colletotrichum lifestyles, biology, morpho-species, species complexes and accepted species. Mycosphere 2021, 12, 519–669. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Rossi, C.; Grande-Tovar, C.D.; Chaves-López, C. Green management of postharvest anthracnose caused by Colletotrichum gloeosporioides. J. Fungi 2023, 9, 623. [Google Scholar] [CrossRef]
- Freeman, S.; Katan, T.; Shabi, E. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis. 1998, 82, 596–605. [Google Scholar] [CrossRef]
- Koike, S.T.; Gladders, P.; Paulus, A.O. Vegetable Diseases: A Color Handbook; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Sharma, M.; Kulshrestha, S. Colletotrichum gloeosporioides: An anthracnose causing pathogen of fruits and vegetables. Biosci. Biotechnol. Res. Asia 2015, 12, 1233–1246. [Google Scholar] [CrossRef]
- Jayawardena, R.S.; Hyde, K.D.; Damm, U.; Cai, L.; Liu, M.; Li, X.H.; Zhang, W.; Zhao, W.S.; Yan, J.Y. Notes on currently accepted species of Colletotrichum. Mycosphere 2016, 7, 1192–1260. [Google Scholar] [CrossRef]
- Zakaria, L. Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops—A review. Agriculture 2021, 11, 297. [Google Scholar] [CrossRef]
- Talhinhas, P.; Baroncelli, R. Colletotrichum species and complexes: Geographic distribution, host range and conservation status. Fungal Divers. 2021, 110, 109–198. [Google Scholar] [CrossRef]
- Dofuor, A.K.; Quartey, N.A.; Osabutey, A.F.; Antwi-Agyakwa, A.K.; Asante, K.; Boateng, B.O.; Ablormeti, F.K.; Lutuf, H.; Osei-Owusu, J.; Osei, J.H.N.; et al. Mango Anthracnose Disease: The current situation and direction for future research. Front. Microbiol. 2023, 14, 1168203. [Google Scholar] [CrossRef]
- Suprapta, D.N. Biocontrol of anthracnose disease on chilli pepper using a formulation containing Paenibacillus polymyxa C1. Front. Sustain. Food Syst. 2022, 5. [Google Scholar] [CrossRef]
- Kimaru, K.S.; Muchemi, K.P.; Mwangi, J.W. Effects of anthracnose disease on avocado production in Kenya. Cogent Food Agric. 2020, 6, 782425. [Google Scholar] [CrossRef]
- Mohammed, A. An overview of distribution, biology and the management of common bean anthracnose. J. Plant Pathol. Microbiol. 2013, 4, 193. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, A.; Mbeyagala, E.K.; Barbetti, M.J.; Basandrai, A.; Basandrai, D.; Nair, R.M.; Lamichhane, J.R. Anthracnose resistance in legumes for cropping system diversification. Crit. Rev. Plant Sci. 2023, 42, 177–216. [Google Scholar] [CrossRef]
- Glawe, D.A. The powdery mildews: A review of the world’s most familiar (yet poorly known) plant pathogens. Annu. Rev. Phytopathol. 2008, 46, 27–51. [Google Scholar] [CrossRef]
- Bradshaw, M.; Tobin, P.C. Sequencing herbarium specimens of a common detrimental plant disease (powdery mildew). Phytopathology 2020, 110, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Mapuranga, J.; Chang, J.; Yang, W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. Front. Plant Sci. 2022, 13, 1102908. [Google Scholar] [CrossRef] [PubMed]
- Fondevilla, S.; Rubiales, D. Powdery mildew control in pea. A review. Agron. Sustain. Dev. 2012, 32, 401–409. [Google Scholar] [CrossRef]
- Kushalappa, A.C.; Eskes, A.B. Advances in coffee rust research. Annu. Rev. Phytopathol. 1989, 27, 503–531. [Google Scholar] [CrossRef]
- Horton, J.S.; Bakkeren, G.; Klosterman, S.J.; Garcia-Pedrajas, M.; Gold, S.E. Genetics of Morphogenesis in Basidiomycetes. Appl. Mycol. Biotechnol. 2005, 5, 353–422. [Google Scholar]
- Huerta-Espino, J.; Singh, R.P.; Germán, S.; McCallum, B.D.; Park, R.F.; Chen, W.Q.; Bhardwaj, S.C.; Goyeau, H. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 2011, 179, 143–160. [Google Scholar] [CrossRef]
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Läderach, P.; Anzueto, F.; Hruska, A.J.; Morales, C. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef]
- Raghunandan, K.; Tanwar, J.; Patil, S.N.; Chandra, A.K.; Tyagi, S.; Agarwal, P.; Mallick, N.; Murukan, N.; Kumari, J.; Sahu, T.K.; et al. Identification of novel broad-spectrum leaf rust resistance sources from Khapli wheat landraces. Plants 2022, 11, 1965. [Google Scholar] [CrossRef]
- Horst, R.K. Plant diseases and their Pathogens. In Westcott’s Plant Disease Handbook; Springer: Boston, MA, USA, 1990. [Google Scholar]
- Kankam, F.; Akpatsu, I.B.; Tengey, T.K. Leaf spot disease of groundnut: A review of existing research on management strategies. Cogent Food Agric. 2022, 8, 2118650. [Google Scholar] [CrossRef]
- Ilyas, S.; Ali, S.; Habib, A.; Ali, M.; Zeshan, M.A.; Iftikhar, Y.; Ghani, M.U.; Umair, M. Unveiling the factors affecting leaf spot disease in mungbean and its management. Pak. J. Agric. Res. 2023, 36, 147–154. [Google Scholar] [CrossRef]
- Hoheneder, F.; Hofer, K.; Groth, J.; Herz, M.; Heb, M.; Hückelhoven, R. Ramularia leaf spot disease of barley is highly host genotype-dependent and suppressed by continuous drought stress in the field. J. Plant Dis. Prot. 2021, 128, 749–767. [Google Scholar] [CrossRef]
- Okungbowa, F.I.; Shittu, H.O. Fusarium wilts: An overview. Environ. Res. J. 2012, 6, 83–102. [Google Scholar]
- Gordon, T.R. Fusarium oxysporum and the Fusarium wilt syndrome. Annu. Rev. Phytopathol. 2017, 55, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R. A review of Fusarium oxysporum on its plant interaction and industrial use. J. Med. Plants Stud. 2018, 6, 112–115. [Google Scholar] [CrossRef]
- Bahadur, A. Current status of Fusarium and their management strategies. In Fusarium—An Overview of the Genus; Mirmajlessi, S.M., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Tiwari, N.; Ahmed, S.; Kumar, S.; Sarker, A. Fusarium wilt: A killer disease of Lentil. In Fusarium; Askun, T., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Jacobsen, B.J. Root rot diseases of sugar beet. Zb. Matice Srp. Prir. Nauk. 2006, 110, 9–19. [Google Scholar] [CrossRef]
- Misra, V.; Mall, A.K.; Singh, D. Rhizoctonia root-rot diseases in sugar beet: Pathogen diversity, pathogenesis and cutting-edge advancements in management research. Microbe 2023, 1, 100011. [Google Scholar] [CrossRef]
- Aydin, M.H. Rhizoctonia solani and its biological control. Turk. J. Agric. Res. 2022, 9, 118–135. [Google Scholar] [CrossRef]
- Bodah, E. Root rot diseases in plants: A review of common causal agents and management strategies. Agric. Res. Technol. 2017, 5, 56–63. [Google Scholar]
- Shekhawat, D.S.; Bagri, R.K.; Yadav, A.L.; Bhati, P.; Yadav, B.B.; Kumawat, S. Studies on different host range of root rot (Rhizoctonia solani Kühn) under pot house. Int. J. Plant Soil Sci. 2023, 35, 393–397. [Google Scholar] [CrossRef]
- Williamson-Benavides, B.A.; Dhingra, A. Understanding root rot disease in agricultural crops. Horticulturae 2021, 7, 33. [Google Scholar] [CrossRef]
- Hansen, E.M. Phytophthora root rot. In Growing Healthy Seedlings; Hamm, P.B., Campbell, S.J., Hansen, E.M., Eds.; Oregon State University: Corvallis, OR, USA, 1990. [Google Scholar]
- Giachero, M.L.; Declerck, S.; Marquez, N. Phytophthora root rot: Importance of the disease, current and novel methods of control. Agronomy 2022, 12, 610. [Google Scholar] [CrossRef]
- Bose, T.; Spies, C.F.J.; Hammerbacher, A.; Coutinho, T.A. Phytophthora: An underestimated threat to agriculture, forestry, and natural ecosystems in Sub-Saharan Africa. Mycol. Prog. 2023, 22, 78. [Google Scholar] [CrossRef]
- Naegele, R.P.; Hausbeck, M.K. Phytophthora root rot resistance and its correlation with fruit rot resistance in Capsicum annuum. HortScience 2020, 55, 1931–1937. [Google Scholar] [CrossRef]
- Ploper, L.D.; Backman, P.A. Nature and management of fungal diseases affecting soybean stems, pods, and seeds. In Pest Management in Soybean; Copping, L.G., Green, M.B., Rees, R.T., Eds.; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Lu, X.; Robertson, A.E.; Byamukama, E.Z.; Nutter, F.W., Jr. Evaluating the importance of stem canker of soybean in Iowa. Plant Dis. 2010, 94, 167–173. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Njau, P.; Wanyera, R.; Herrera-Foessel, S.A.; Ward, R.W. Will stem rust destroy the world’s wheat crop? In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2008; Volume 98, pp. 271–309. [Google Scholar]
- Pardey, P.G.; Beddow, J.M.; Kriticos, D.J.; Hurley, T.M.; Park, R.F.; Duveiller, E.; Sutherst, R.W.; Burdon, J.J.; Hodson, D. Right-sizing stem-rust research. Science 2013, 340, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Akhtar, N.; Msimbira, L.A.; Antar, M.; Ashraf, S.; Khan, S.N.; Smith, D.L. Neocosmospora rubicola, a stem rot disease in potato: Characterization, distribution and management. Front. Microbiol. 2022, 13, 953097. [Google Scholar] [CrossRef]
- Woodside, J.V.; Young, I.S.; McKinley, M.C. Fruits and vegetables: Measuring intake and encouraging increased consumption. In Proceedings of the Nutrition Society, Cambridge, UK, 28 March 2013; Cambridge University Press: Cambridge, UK, 2013; pp. 236–245. [Google Scholar]
- Massoud, M.S. Survey of fungal diseases of some vegetables and fruits in Aswan, EGYPT. IOSR J. Pharm. Biol. Sci. 2013, 6, 39–42. [Google Scholar]
- Guarnaccia, V.; Kraus, C.; Markakis, E.; Alves, A.; Armengol, J.; Eichmeier, A.; Compant, S.; Gramaje, D. Fungal trunk diseases of fruit trees in Europe: Pathogens, spread and future directions. Phytopathol. Mediterr. 2023, 61, 563–599. [Google Scholar] [CrossRef]
- Suprapta, D.N. Potential of microbial antagonists as biocontrol agents against plant fungal pathogens. J. Int. Soc. Southeast Asian Agric. Sci. 2012, 18, 1–8. [Google Scholar]
- Nair, K.P.P. Cocoa (Theobroma cacao L.). In the Agronomy and Economy of Important Tree Crops of the Developing World; Elsevier: Amsterdam, The Netherlands, 2010; pp. 131–180. [Google Scholar]
- Dowling, M.; Peres, N.; Villani, S.; Schnabel, G. Managing Colletotrichum on fruit crops: A “complex” challenge. Plant Dis. 2020, 104, 2301–2316. [Google Scholar] [CrossRef]
- Gunasinghe, N.; Barbetti, M.J.; You, M.P.; Burrell, D.; Neate, S. White leaf spot caused by Neopseudocercosporella capsellae: A re-emerging disease of brassicaceae. Front. Cell. Infect. Microbiol. 2020, 10, 588090. [Google Scholar] [CrossRef]
- Husna, A.; Zakaria, L.; Nor, N.M.I.M. Fusarium commune associated with wilt and root rot disease in rice. Plant Pathol. 2020, 70, 123–132. [Google Scholar] [CrossRef]
- Wang, A.R.; Lin, W.W.; Chen, X.T.; Lu, G.D.; Zhou, J.; Wang, Z.H. Isolation and identification of Sclerotinia stem rot causal pathogen in Arabidopsis thaliana. J. Zhejiang Univ. Sci. B 2008, 9, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Raghuwanshi, R.; Gupta, V.K.; Singh, H.B. Chilli anthracnose: The epidemiology and management. Front. Microbiol. 2016, 7, 1527. [Google Scholar] [CrossRef] [PubMed]
- Różewicz, M.; Wyzińska, M.; Grabiński, J. The most important fungal diseases of cereals—Problems and possible solutions. Agronomy 2021, 11, 714. [Google Scholar] [CrossRef]
- Wegulo, S.N. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins 2012, 4, 1157–1180. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Stevens-Green, R.; Johal, D.; Buchanan, R.; Geddes-McAlister, J. Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host defense, and resistance. J. Plant Physiol. 2022, 269, 153593. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Hodson, D.P.; Jin, Y.; Lagudah, E.S.; Ayliffe, M.A.; Bhavani, S.; Rouse, M.N.; Pretorius, Z.A.; Szabo, L.J.; Huerta-Espino, J.; et al. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology 2015, 105, 872–884. [Google Scholar] [CrossRef]
- Chen, X.M. Review Article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am. J. Plant Sci. 2013, 4, 608–627. [Google Scholar] [CrossRef]
- Troch, V.; Audenaert, K.; Wyand, R.A.; Haesaert, G.; Höfte, M.; Brown, J.K.M. Formae speciales of cereal powdery mildew: Close or distant relatives? Mol. Plant Pathol. 2014, 15, 304–314. [Google Scholar] [CrossRef]
- Zhan, J.; Pettway, R.E.; McDonald, B.A. The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet. Biol. 2003, 38, 286–297. [Google Scholar] [CrossRef]
- Upadhyay, K.; Bhatta, B. Rice blast (Magnaporthe oryzae) management: A review. Agric. J. 2020, 15, 42–48. [Google Scholar] [CrossRef]
- Jeger, M.J.; Eden-Green, S.; Thresh, J.M.; Johanson, A.; Waller, J.M.; Brown, A.E. Banana Diseases. In Bananas and Plantains; Gowen, S., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 2–6. [Google Scholar]
- Amani, M.; Avagyan, G.; Sarpeleh, A. Anthracnose Disease of Banana Fruits in Iran; Ball State University: Fishers, IN, USA, 2011. [Google Scholar]
- Schwartz, H.F.; Singh, S.P. Breeding common bean for resistance to white mold: A review. Crop Sci. 2013, 53, 1832–1844. [Google Scholar] [CrossRef]
- Landeras, E.; Trapiello, E.; Braña, M.; González, A.J. Short communication: Occurrence of angular leaf spot caused by Pseudocercospora griseola in Phaseolus vulgaris in Asturias, Spain. Span. J. Agric. Res. 2017, 15, e10SC03. [Google Scholar] [CrossRef]
- Deng, D.; Sun, S.; Wu, W.; Duan, C.; Wang, Z.; Zhang, S.; Zhu, Z. Identification of causal agent inciting powdery mildew on common bean and screening of resistance cultivars. Plants 2022, 11, 874. [Google Scholar] [CrossRef]
- Degu, T.; Yaregal, W.; Gudisa, T. Status of common bean (Phaseolus vulgaris L.) diseases in Metekel zone, North West Ethiopia. J. Plant Pathol. Microbiol. 2020, 11, 5 . [Google Scholar] [CrossRef]
- Wafula, B.W.; Arunga, E.E.; Rotich, F. Prevalence and host resistance to common bean rust disease in Western and Central Kenya. Int. J. Agron. 2023, 2023, 6064130. [Google Scholar] [CrossRef]
- Lu, L.; Tibpromma, S.; Karunarathna, S.C.; Jayawardena, R.S.; Lumyong, S.; Xu, J.; Hyde, K.D. Comprehensive review of fungi on coffee. Pathogens 2022, 11, 411. [Google Scholar] [CrossRef] [PubMed]
- Rehman, F.U.; Adnan, M.; Kalsoom, M.; Naz, N.; Husnain, M.G.; Ilahi, H.; Ilyas, M.A.; Yousaf, G.; Tahir, R.; Ahmad, U. Seed-borne fungal diseases of Maize (Zea Mays L.): A Review. Agrinula J. Agroteknol. Perkeb. 2021, 4, 43–60. [Google Scholar] [CrossRef]
- Marasas, W.F.O.; Ploetz, R.C.; Wingfield, M.J.; Wingfield, B.D.; Steenkamp, E.T. Mango Malformation Disease and the Associated Fusarium Species. Phytopathology 2006, 96, 667–672. [Google Scholar] [CrossRef]
- Prakash, O. Diseases and disorders of mango and their management. In Diseases of Fruits and Vegetables; Naqvi, S.A.M.H., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume I, pp. 511–619. [Google Scholar]
- Alam, M.W.; Rehman, A.; Malik, A.U.; Ahmad, S.; Haider, M.S.; Amin, M.; Sarwar, M.; Mehboob, S.; Rosli, H.; Gleason, M.L. Dynamics of stem end rot disease of mango fruit and its management. Pak. J. Agric. Sci. 2020, 57, 63–71. [Google Scholar]
- Sanzo-Miró, M.; Simms, D.M.; Rezwan, F.I.; Terry, L.A.; Alamar, M.C. An integrated approach to control and manage potato black dot disease: A review. Am. J. Potato Res. 2023, 100, 362–370. [Google Scholar] [CrossRef]
- Arora, R.K.; Sharma, S.; Singh, B.P. Late blight disease of potato and its management. Potato J. 2014, 41, 1849. [Google Scholar]
- Wale, S.; Platt, B.; Cattlin, N.D. Diseases, Pests and Disorders of Potatoes: A Colour Handbook; Manson Publishing: London, UK, 2008. [Google Scholar]
- Singh, R.; Sunder, S.; Kumar, P. Sheath blight of rice: Current status and perspectives. Indian Phytopathol. 2016, 69, 340–351. [Google Scholar]
- Ou, S.H. Rice Diseases, 2nd ed.; CABI Publishing: Wallingford, UK, 1985. [Google Scholar]
- Sunder, S.; Singh, R.A.M.; Agarwal, R. Brown spot of rice: An overview. Indian Phytopathol. 2014, 67, 201–215. [Google Scholar]
- Pandey, A.K.; Sinniah, G.D.; Babu, A.; Tanti, A. How the global tea industry copes with fungal diseases—Challenges and opportunities. Plant Dis. 2021, 105, 1868–1879. [Google Scholar] [CrossRef]
- Kumar, S.P.; Srinivasulu, A.; Babu, K.R. Symptomology of major fungal diseases on tomato and its management. J. Pharmacogn. Phytochem. 2018, 7, 1817–1821. [Google Scholar]
- Kayim, M.; Nawaz, H.; Alsalmo, A. Fungal diseases of wheat. In Wheat; IntechOpen: London, UK, 2022. [Google Scholar]
- Ogle, H.; Dale, M. Disease management: Cultural practices. In Plant Pathogens and Plant Diseases; Brown, J., Ogle, H., Eds.; Rockvale Publishers: Burlington, MA, USA, 1997; pp. 390–404. [Google Scholar]
- Walters, D. Managing crop disease through cultural practices. In Disease Control in Crops: Biological and Environmentally Friendly Approaches; Blackwell Publishing: Hoboken, NJ, USA, 2009; pp. 7–26. [Google Scholar]
- Yoon, M.Y.; Cha, B.; Kim, J.C. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 2013, 29, 1–9. [Google Scholar] [CrossRef]
- Bolognesi, C.; Merlo, F.D. Pesticides: Human health effects. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Ballu, A.; Deredec, A.; Walker, A.S.; Carpentier, F. Are efficient-dose mixtures a solution to reduce fungicide load and delay evolution of resistance? An experimental evolutionary approach. Microorganisms 2021, 9, 2324. [Google Scholar] [CrossRef]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An overlooked pesticide class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef]
- Leadbeater, A.J. Plant health management: Fungicides and antibiotics. In Encyclopedia of Agriculture and Food Systems; van-Alfen, N.K., Ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Deresa, E.M.; Diriba, T.F. Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon 2023, 9, e13810. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J. Bot. 2012, 2012, 135479. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Hwang, B.K. Microbial fungicides in the control of plant diseases. J. Phytopathol. 2007, 155, 641–653. [Google Scholar] [CrossRef]
- Panchalingam, H.; Powell, D.; Adra, C.; Foster, K.; Tomlin, R.; Quigley, B.L.; Nyari, S.; Hayes, R.A.; Shapcott, A.; Kurtböke, D.İ. Assessing the various antagonistic mechanisms of Trichoderma strains against the brown root rot pathogen Pyrrhoderma noxium infecting heritage Fig Trees. J. Fungi 2022, 8, 1105. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, D.; Cai, P.; Lin, H.; Ying, H.; Hu, Q.N.; Wu, A. Elimination of Fusarium mycotoxin Deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives. Trends Food Sci. Technol. 2022, 124, 96–107. [Google Scholar] [CrossRef]
- Zhao, X.; Hou, D.; Xu, J.; Wang, K.; Hu, Z. Antagonistic activity of fungal strains against Fusarium crown rot. Plants 2022, 11, 255. [Google Scholar] [CrossRef]
- Adnan, M.; Islam, W.; Shabbir, A.; Khan, K.A.; Ghramh, H.A.; Huang, Z.; Chen, H.Y.H.; Lu, G.-D. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb. Pathog. 2019, 129, 7–18. [Google Scholar] [CrossRef]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef]
- Druzhinina, I.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B.A.; Kenerley, C.M.; Monte, E.; Mukherjee, P.K.; Zeilinger, S.; Grigoriev, I.V.; Kubicek, C.P. Trichoderma: The genomics of opportunistic success. Nat. Rev. Microbiol. 2011, 9, 749–759. [Google Scholar] [CrossRef]
- Abdel-Hafez, S.I.I.; Abo-Elyousr, K.A.M.; Abdel-Rahim, I.R. Leaf surface and endophytic fungi associated with onion leaves and their antagonistic activity against Alternaria porri. Czech mycol. 2015, 67, 1–22. [Google Scholar] [CrossRef]
- Dou, K.; Pang, G.; Cai, F.; Chenthamara, K.; Zhang, J.; Liu, H.; Druzhinina, I.S.; Chen, J. Functional genetics of Trichoderma mycoparasitism. In Advances in Trichoderma Biology for Agricultural Applications; Fungal Biology; Amaresan, N., Sankaranarayanan, A., Dwivedi, M.K., Druzhinina, I.S., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Lopez-Lopez, M.E.; Del-Toro-Sanchez, C.L.; Gutierrez-Lomeli, M.; Ochoa-Ascencio, S.; Aguilar-Lopez, J.A.; Robles-Garcia, M.A.; Plascencia-Jatomea, M.; Bernal-Mercado, A.T.; Martinez-Cruz, O.; Avila-Novoa, M.G.; et al. Isolation and characterization of Trichoderma spp. for antagonistic activity against avocado (Persea americana Mill) fruit pathogens. Horticulturae 2022, 8, 714. [Google Scholar] [CrossRef]
- Al-Askar, A.A.; Saber, W.I.A.; Ghoneem, K.M.; Hafez, E.E.; Ibrahim, A.A. Crude citric acid of Trichoderma asperellum: Tomato growth promotor and suppressor of Fusarium oxysporum f. sp. lycopersici. Plants 2021, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- Matarese, F.; Sarrocco, S.; Gruber, S.; Seidl-Seiboth, V.; Vannacci, G. Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 2012, 158, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Sornakili, A.; Thankappan, S.; Sridharan, A.P.; Nithya, P.; Uthandi, S. Antagonistic fungal endophytes and their metabolite-mediated interactions against phytopathogens in rice. Physiol. Mol. Plant Pathol. 2020, 112, 101525. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.; Al-Askar, A.A. In vitro antagonistic activity of Trichoderma spp. against fungal pathogens causing black point disease of wheat. J. Taibah Univ. Sci. 2022, 16, 57–65. [Google Scholar] [CrossRef]
- Elad, Y.; Chet, I.; Katan, J. Trichoderma harzianum: A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology 1980, 70, 119–121. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.; Al-Askar, A.; Sayed, S.R.M.; Rady, A.M. Antagonistic activity of Trichoderma harzianum and Trichoderma viride strains against some Fusarium pathogens causing stalk rot disease of maize. J. King Saud Univ.-Sci. 2021, 33, 101363. [Google Scholar] [CrossRef]
- Degani, O.; Khatib, S.; Becher, P.; Gordani, A.; Harris, R. Trichoderma asperellum secreted 6-pentyl-α-pyrone to control Magnaporthiopsis maydis, the maize late wilt disease agent. Biology 2021, 10, 897. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Hu, Y.; Peng, Z.; Ren, S.; Xue, M.; Liu, Z.; Hou, J.; Xing, M.; Liu, T. A novel salt-tolerant strain Trichoderma atroviride HN082102.1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum. BMC Microbiol. 2022, 22, 67. [Google Scholar] [CrossRef]
- Xu, H.; Yan, L.; Zhang, M.; Chang, X.; Zhu, D.; Wei, D.; Naeem, M.; Song, C.; Wu, X.; Liu, T.; et al. Changes in the density and composition of rhizosphere pathogenic Fusarium and beneficial Trichoderma contributing to reduced root rot of intercropped soybean. Pathogens 2022, 11, 478. [Google Scholar] [CrossRef]
- Ruangwong, O.U.; Pornsuriya, C.; Pitija, K.; Sunpapao, A. Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. J. Fungi 2021, 7, 276. [Google Scholar] [CrossRef] [PubMed]
- Damodaran, T.; Rajan, S.; Muthukumar, M.; Gopal, R.; Yadav, K.; Kumar, S.; Ahmad, I.; Kumari, N.; Mishra, V.K.; Jha, S.K. Biological management of banana fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 using antagonistic fungal isolate CSR-T-3 (Trichoderma reesei). Front. Microbiol. 2020, 11, 595845. [Google Scholar] [CrossRef]
- El-Hasan, A.; Walker, F.; Klaiber, I.; Schöne, J.; Pfannstiel, J.; Voegele, R.T. New approaches to manage Asian soybean rust (Phakopsora pachyrhizi) using Trichoderma spp. or their antifungal secondary metabolites. Metabolites 2022, 12, 507. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huan, Q.; Zhen, G.; Junjie, W.; Xiu, Z. Identification and antifungal activity of endophytic fungus Trichoderma samuelsii 2–63 strain from Thymus mongolicus Ronn. Chin. J. Pestic. Sci. 2023, 25, 377–387. [Google Scholar]
- Naglot, A.; Goswami, S.; Rahman, I.; Shrimali, D.D.; Yadav, K.K.; Gupta, V.K.; Rabha, A.J.; Gogoi, H.K.; Veer, V. Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in North East India. Plant Pathol. J. 2015, 31, 278–289. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, L.; Shu, N.; Jiang, M.; Wang, H.; Huang, Y.; Tong, H. Pestalotiopsis-like species causing grey blight disease on Camellia sinensis in China. Plant Dis. 2018, 102, 98–106. [Google Scholar] [CrossRef]
- Kumhar, K.; Babu, A.; Bordoloi, M.; Banerjee, P.; Dey, T. Biological and chemical control of Fusarium solani, causing dieback disease of tea Camellia sinensis (L): An in vitro study. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 955–963. [Google Scholar]
- Dutta, P.; Deb, L.; Pandey, A.K. Trichoderma—From lab bench to field application: Looking back over 50 years. Front. Agron. 2022, 4, 932839. [Google Scholar] [CrossRef]
- Toghueo, R.M.K.; Boyom, F.F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2019, 10, 107. [Google Scholar] [CrossRef]
- Shafique, S.; Attia, U.; Shafique, S.; Tabassum, B.; Akhtar, N.; Naeem, A.; Abbas, Q. Management of mung bean leaf spot disease caused by Phoma herbarum through Penicillium janczewskii metabolites mediated by MAPK signaling cascade. Sci. Rep. 2023, 13. [Google Scholar] [CrossRef]
- De Cal, A.; Pascual, S.; Melgarejo, P. Biological control of Fusarium oxysporum f. sp. lycopersici. Plant Pathol. 1995, 44, 909–914. [Google Scholar] [CrossRef]
- Larena, I.; Melgarejo, P.; De Cal, A. Drying of conidia of Penicillium oxalicum, a biological control agent against Fusarium wilt of tomato. J. Phytopathol. 2003, 151, 600–606. [Google Scholar] [CrossRef]
- Sabuquillo, P.; Cal, A.D.; Melgarejo, P. Biocontrol of tomato wilt by Penicillium oxalicum formulations in different crop conditions. Biol. Control 2006, 37, 256–265. [Google Scholar] [CrossRef]
- Kurjogi, M.; Basavesha, K.N.; Savalgi, V.P. 2—Impact of potassium solubilizing fungi as biopesticides and its role in crop improvement. In Biocontrol Agents and Secondary Metabolites; Woodhead Publishing: Sawston, UK, 2021; pp. 23–39. [Google Scholar]
- Fang, J.G.; Tsao, P.H. Efficacy of Penicillium funiculosum as a biological control agent against Phytophthora root rots of azalea and citrus. Phytopathology 1995, 85, 871–878. [Google Scholar] [CrossRef]
- Ting, A.S.Y.; Mah, S.W.; Tee, C.S. Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for fusarium wilt in banana plantlets. Biol. Control 2012, 61, 155–159. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Strobel, G.A.; Hess, W.M.; Vargas, P.N.; Ezra, D. Muscudor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers. 2008, 31, 37–43. [Google Scholar]
- Guimaraes, S.S.; Santos, I.A.; Nunes, P.S.; Mengez, G.A.; Monteiro, M.C.; Resende, L.V.; Cardoso, P.G. Muscodor spp. controls tomato wilt disease by Ralstonia solanacearum and increases yield and total soluble solids content in tomatoes. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Mota, S.F.; Pádua, P.F.; Ferreira, A.N.; de Barros, W.G.L.; Dias, M.A.; Souza, E.A.; Pereira, O.L.; Cardoso, P.G. Biological control of common bean diseases using endophytic Induratia spp. Biol. Control 2021, 159, 104629. [Google Scholar] [CrossRef]
- Mao, L.-J.; Chen, J.-J.; Xia, C.-Y.; Feng, X.-X.; Kong, D.-D.; Qi, Z.-Y.; Liu, F.; Chen, D.; Lin, F.-C.; Zhang, C.-L. Identification and characterization of new Muscodor endophytes from gramineous plants in Xishuangbanna, China. MicrobiologyOpen 2019, 8, e00666. [Google Scholar] [CrossRef]
- Strobel, G.A.; Sears, J.; Dirkse, E.; Markworth, C. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 2001, 147, 2943–2950. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.K.; Raizada, M.N. Natural disease control in cereal grains. In Encyclopedia of Food Grains; Elsevier: Amsterdam, The Netherlands, 2016; pp. 257–263. [Google Scholar]
- Banerjee, D.; Strobel, G.; Geary, B.; Sears, J.; Ezra, D.; Liarzi, O.; Coombs, J. Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology 2010, 1, 179–186. [Google Scholar] [CrossRef]
- Meshram, V.; Kapoor, N.; Chopra, G.; Saxena, S. Muscodor camphora, a new endophytic species from Cinnamomum camphora. Mycosphere 2017, 8, 568–582. [Google Scholar] [CrossRef]
- Gomes, A.A.M.; Paes, S.A.; Ferreira, A.P.S.; Pinho, D.B.; Cardeal, Z.; Menezes, H.C.; Cardoso, P.G.; Pereira, O.L. Endophytic species of Induratia from coffee and carqueja plants from Brazil and its potential for the biological control of toxicogenic fungi on coffee beans by means of antimicrobial volatiles. Braz. J. Microbiol. 2023, 54, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Mathivanan, N.; Prabavathy, V.R.; Vijayanandraj, V.R. The effect of fungal secondary metabolites on bacterial and fungal pathogens. In Secondary Metabolites in Soil Ecology; Karlovsky, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 283–305. [Google Scholar]
- Saxena, S.; Strobel, G.A. Marvellous Muscodor spp.: Update on their biology and applications. Microb. Ecol. 2021, 82, 5–20. [Google Scholar] [CrossRef]
- Sawai, K.; Okuno, T.; Terada, Y.; Harada, Y.; Sawamura, K.; Sasaki, H.; Takao, S. Isolation and properties of two antifungal substances from Fusarium solani. Agric. Biol. Chem. 1981, 45, 1223–1228. [Google Scholar] [CrossRef]
- Al-Badi, R.S.; Karunasinghe, T.G.; Al-Sadi, A.M.; Al-Mahmooli, I.H.; Velazhahan, R. In vitro antagonistic activity of endophytic fungi isolated from shirazi thyme (Zataria multiflora Boiss.) against Monosporascus cannonballus. Pol. J. Microbiol. 2020, 69, 379–383. [Google Scholar] [CrossRef]
- Landum, M.C.; do Rosário Félix, M.; Alho, J.; Garcia, R.; Cabrita, M.J.; Rei, F.; Varanda, C.M.R. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiol. Res. 2016, 183, 100–108. [Google Scholar] [CrossRef]
- Demirci, E.; Dane, E.; Eken, C. In vitro antagonistic activity of fungi isolated from sclerotia on potato tubers against Rhizoctonia solani. Turk. J. Biol. 2011, 35, 457–462. [Google Scholar] [CrossRef]
- Hashem, M.; Alamri, S. The Biocontrol of Postharvest Disease (Botryodiplodia theobromae) of Guava (Psidium guajava L.) by the Application of Yeast Strains. Postharvest Biol. Technol. 2009, 53, 123–130. [Google Scholar]
- Chaibub, A.A.; de Sousa, T.P.; de Araújo, L.G.; de Filippi, M.C.C. Molecular and morphological characterization of rice phylloplane fungi and determination of the antagonistic activity against rice pathogens. Microbiol. Res. 2020, 231, 126353. [Google Scholar] [CrossRef] [PubMed]
- Cosoveanu, A.; Gimenez-Marino, C.; Cabrara, Y.; Hernandez, G.; Cabrera, G.H. Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopathogenic fungi. Int. J. Agric. Crop Sci. 2014, 7, 1497–1503. [Google Scholar]
- Khunnamwong, P.; Lertwattanasakul, N.; Jindamorakot, S.; Suwannarach, N.; Matsui, K.; Limtong, S. Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiol. 2020, 65, 573–590. [Google Scholar] [CrossRef]
- Tchamgoue, E.N.; Fanche, S.A.Y.; Ndjakou, B.L.; Matei, F.; Nyegue, M.A. Diversity of endophytic fungi of Psidium guajava (Myrtaceae) and their antagonistic activity against two banana pathogens. J. Adv. Microbiol. 2020, 20, 86–101. [Google Scholar] [CrossRef]
- Lugtenberg, B.J.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92, fiw194. [Google Scholar] [CrossRef]
- Simamora, A.V.; Hahuly, M.V.; Henuk, J.B.D. Endophytic fungi as potential biocontrol agents of Phytophthora palmivora in the cocoa plant. Biodiversitas 2021, 22, 2601–2609. [Google Scholar] [CrossRef]
- Putri, N.D.; Sulistyowati, L.; Aini, L.Q.; Muhibuddin, A.; Trianti, I. Screening of endophytic fungi as potential antagonistic agents of Pyricularia oryzae and evaluation of their ability in producing hydrolytic enzymes. Biodiversitas 2022, 23. [Google Scholar] [CrossRef]
- Yang, E.-F.; Karunarathna, S.C.; Tibpromma, S.; Stephenson, S.L.; Promputtha, I.; Elgorban, A.M.; Al-Rejaie, S.; Chomnunti, P. Endophytic fungi associated with mango show in vitro antagonism against bacterial and fungal Pathogens. Agronomy 2023, 13, 169. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; El-Wakil, D.A.; Hashem, A.H.; Al-Askar, A.A.; AbdElgawad, H.; Attia, M.S. Efficient role of endophytic Aspergillus terreus in biocontrol of Rhizoctonia solani causing damping-off disease of Phaseolus vulgaris and Vicia faba. Microorganisms 2023, 11, 1487. [Google Scholar] [CrossRef]
- Sopialena, S. Controlling diseases in porang plants (Amorphophallus muelleri Blume) using endophytic fungi in vitro. Asian J. Agric. Hortic. Res. 2024, 11, 141–152. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Xu, S.; Li, S.; Zeng, L.; Shang, H.; Li, X.; Fan, H.; Zheng, S.-J. Biological control of the native endophytic fungus Pochonia chlamydosporia from the root nodule of Dolichos lablab on fusarium wilt of banana TR4. Front. Microbiol. 2024, 15, 1371336. [Google Scholar] [CrossRef] [PubMed]
- Hawar, S.N.; Taha, Z.K.; Hamied, A.S.; Al-Shmgani, H.S.; Sulaiman, G.M.; Elsilk, S.E. Antifungal activity of bioactive compounds produced by the endophytic fungus Paecilomyces sp. (JN227071.1) against Rhizoctonia solani. Int. J. Biomater. 2023, 2023, 2411555. [Google Scholar] [CrossRef]
- Yabaneri, C.; Sevim, A. Endophytic fungi from the common walnut and their in vitro antagonistic activity against Ophiognomonia leptostyla. Biologia 2022, 78, 361–371. [Google Scholar] [CrossRef]
- Khan, M.S.; Gao, J.; Munir, I.; Zhang, M.; Liu, Y.; Moe, T.S.; Xue, J.; Zhang, X. Characterization of endophytic fungi, Acremonium sp., from Lilium davidii and analysis of its antifungal and plant growth-promoting effects. BioMed Res. Int. 2021, 2021, 9930210. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.S.; Hashem, A.H.; Badawy, A.A.; Abdelaziz, A.M. Biocontrol of early blight disease of eggplant using endophytic Aspergillus terreus: Improving plant immunological, physiological and antifungal activities. Bot. Stud. 2022, 63, 26. [Google Scholar] [CrossRef]
- Muñoz-Guerrero, J.; Guerra-Sierra, B.E.; Alvarez, J.C. Fungal endophytes of Tahiti lime (Citrus citrus × latifolia) and their potential for control of Colletotrichum acutatum J. H. Simmonds causing anthracnose. Front. Bioeng. Biotechnol. 2021, 9, 650351. [Google Scholar] [CrossRef]
- Horner, N.R.; Grenville-Bridge, L.J.; van West, P. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation. Fungal Biol. 2012, 116, 24–41. [Google Scholar] [CrossRef]
- Martin, F.N.; Hancock, J.G. The use of Pythium oligandrum for the biological control of damping-off caused by P. ultimum. Phytopathology 1987, 77, 1013–1020. [Google Scholar] [CrossRef]
- Benhamou, N.; Rey, P.; Chérif, M.; Hockenhull, J.; Tirilly, Y. Treatment with the Mycoparasite Pythium oligandrum Triggers Induction of Defense-Related Reactions in Tomato Roots When Challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 1997, 87, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Cwalina-Ambroziak, B.; Nowak, M. The effects of biological and chemical controls on fungal communities colonising tomato (Lycopersicon esculentum Mill.) plants and soil. Folia Hortic. 2012, 24, 13–20. [Google Scholar] [CrossRef]
- Ng, C.A.; Pernica, M.; Yap, J.; Belakova, S.; Vaculova, K.; Branyik, T. Biocontrol effect of Pythium oligandrum on artificial Fusarium culmorum infection during malting of wheat. J. Cereal Sci. 2021, 100, 103258. [Google Scholar] [CrossRef]
- Postulkova, M.; Rezanina, J.; Fiala, J.; Ruzicka, M.C.; Dostalek, P.; Branyik, T. Suppression of fungal contamination by Pythium oligandrumduring malting of barley. J. Inst. Brew. 2018, 124, 336–340. [Google Scholar] [CrossRef]
- Akram, S.; Ahmed, A.; He, P.; He, P.; Liu, Y.; Wu, Y.; Munir, S.; He, Y. Uniting the role of endophytic fungi against plant pathogens and their interaction. J. Fungi 2023, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Gerbore, J.; Vallance, J.; Yacoub, A.; Delmotte, F.; Grizard, D.; Regnault-Roger, C.; Rey, P. Characterization of Pythium oligandrum populations that colonize the rhizosphere of vines from the Bordeaux region. FEMS Microbiol. Ecol. 2014, 90, 153–167. [Google Scholar] [CrossRef] [PubMed]
Host Plant | Endophytic Fungus | Hormone Secreted | Function of the Hormone | References |
---|---|---|---|---|
Cucumis sativus (Cucumber) | Phoma glomerate and Penicillium sp. | Gibberellic acid, IAA | Enhance plant biomass and growth parameters, facilitate the assimilation of essential nutrients, and reduce Na toxicity in drought conditions | [38] |
Glycine max (Soybean) | Cladosporium sphaerospermum | Gibberellic acid | Stimulate plant growth of rice and soybean | [37] |
Porostereum spandiceum | Gibberellins | Promote seed germination of soybean, while saving plants from normal and salt-affected conditions, increase chlorophyll content | [39] | |
Helianthus annus (Sunflower) | Penicillium citrinum, Aspergillus terreus | IAA, Gibberellic acid | Promote plant growth of sunflower and regulate hormone signaling networks | [40] |
Oryza granulata (Wild rice) | Falciphora oryzae | IAA | Improve lateral root growth, while reducing the primary root length | [41] |
Oryza sativa (Rice) | Phoma sp. and Penicillium sp. | Gibberellins, IAA | Promote shoot and growth of rice during stress conditions such as salinity and drought | [38] |
Trapa japonica (Water chestnut) | Galactomyces geotrichum | Jasmonic acid | Induce systemic resistance in soybean | |
Withenia somnifera (Ashwagandha/Winter cherry) | Aspergillus awamori | Indole-3-acetic acid (IAA) | Stimulate plant growth of maize | [42] |
Zea mays (Maize) | Trichoderma atrovorode | Salicylic acid, Absisic acid, Jasmonic acid | Control pathogenicity of Fusarium verticillioides in maize | [43] |
Host Plant | Endophytic Fungus | Secondary Metabolite | Bioactivity | References |
---|---|---|---|---|
Camellia sinensis Theaceae (Tea) | Pestalotiopsis theae | Punctaporonin H | Cytotoxicity and antibacterial activity | [34] |
Chaetomium seminudum (Brown rice) | Chaetomium seminudum | Chaetosemins B | Antifungal activity against Gibberella saubinetti and Magnaporthe oryzae (Pyricularia oryzae) | |
Chaetomium seminudum | Chaetosemins C | Antioxidant activity | ||
Garcinia adulcis (Yellow mangosteen/Mundu) | Phomopsis spp. | Phomoenamide, Phomonitroester | Antitubercular activity against Mycobacterium tuberculosis | [37] |
Ginkgo biloba (Gingko/Maidenhair) | Fusarium oxysporum | Ginkolide B | Antiallergic and anti-inflammatory properties | [22] |
Mangifera casturi Kosterm (Kasturi mango) | Aspergillus oryzae | Kojic acid | Antioxidant activity | [44] |
Aspergillus minisclerotigens | Dihydropyran | Antioxidant activity | ||
Oryza sativa (Rice) | Biscogniauxia cylindrospora | Isofraxidin | Antibacterial, anticancer, and antioxidant activities | [22] |
Annulohypoxylon boveri var. microspora | Cinnamic acid | Antibacterial and antioxidant activities | ||
Pandanus amaryllifolius (Pandan) | Diaporthe sp. | Benzopyran, Diaportheone A and B | Antitubercular activity against Mycobacterium tuberculosis | [37] |
Piper nigrum (Black pepper) | Colletotrichum gloeosporioides | Piperine | Antioxidant, antidiabetic, antibacterial, and antidiarrheal activities | [22] |
Triticum aestivum (Wheat) | Nigrospora oryzae | Pipecolisporin | Antiparasitic activity against Trypanosoma cruzi and Plasmodium falciparum | [45] |
Vanilla albindia (Vanilla) | Phomopsis archeri | Phomoxanthones A–C | Antimalarial activity | [37] |
Zea mays (Maize) | Acremonium zeae | Pyrrocidine A and B | Antibacterial activity | [46] |
Zea mays (Maize) | Fusarium sp. | Caffeine | Antifungal activity against Alternaria alternata | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manathunga, K.K.; Gunasekara, N.W.; Meegahakumbura, M.K.; Ratnaweera, P.B.; Faraj, T.K.; Wanasinghe, D.N. Exploring Endophytic Fungi as Natural Antagonists against Fungal Pathogens of Food Crops. J. Fungi 2024, 10, 606. https://doi.org/10.3390/jof10090606
Manathunga KK, Gunasekara NW, Meegahakumbura MK, Ratnaweera PB, Faraj TK, Wanasinghe DN. Exploring Endophytic Fungi as Natural Antagonists against Fungal Pathogens of Food Crops. Journal of Fungi. 2024; 10(9):606. https://doi.org/10.3390/jof10090606
Chicago/Turabian StyleManathunga, Kumudu K., Niranjan W. Gunasekara, Muditha K. Meegahakumbura, Pamoda B. Ratnaweera, Turki Kh. Faraj, and Dhanushka N. Wanasinghe. 2024. "Exploring Endophytic Fungi as Natural Antagonists against Fungal Pathogens of Food Crops" Journal of Fungi 10, no. 9: 606. https://doi.org/10.3390/jof10090606
APA StyleManathunga, K. K., Gunasekara, N. W., Meegahakumbura, M. K., Ratnaweera, P. B., Faraj, T. K., & Wanasinghe, D. N. (2024). Exploring Endophytic Fungi as Natural Antagonists against Fungal Pathogens of Food Crops. Journal of Fungi, 10(9), 606. https://doi.org/10.3390/jof10090606