Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses
Abstract
:1. Introduction
2. Mechanisms of BF Impact on Plant Hosts
2.1. Developing Specialized Structures
2.2. Secrete Effector Proteins in Plants
2.3. Activation or Deactivating Antioxidant Enzymes
3. Mechanism by Which Effectors May Suppress Plant Defense Responses
Specific Examples and Interactions
4. Mechanism by Which Effectors Induce Plant Defense Responses ETI
4.1. Example: Puccinia graminis in Wheat
4.2. Gene-for-Gene Interaction
4.3. ETI against Other Pathogens
4.4. Comprehensive Overview and Visual Aids
5. Plant Hormones Suppress Plant Defense Responses against BF
5.1. Jasmonic Acid (JA)
5.2. Salicylic Acid (SA)
5.3. Abscisic Acid (ABA)
5.4. Ethylene (ETH)
6. Overcoming ROS to Inactivate Plant Defense Responses
7. Co-Evolutionary Dynamic between BF and Plants
7.1. Plant Defense Mechanisms against BF
7.1.1. Cell Wall Fortification (e.g., Callose Deposition)
7.1.2. Production of Antimicrobial Compounds (Phytoalexins)
7.1.3. Activation of Signaling Pathways
- Salicylic Acid (SA)
- Jasmonic Acid (JA)
7.1.4. Hypersensitive Response and Programmed Cell Death
7.1.5. Systemic Acquired Resistance (SAR)
7.1.6. Evolution of Plant Resistance Genes (NBS-LRR Proteins)
7.2. Strategies of BF to Overcome Plant Defenses
7.2.1. Fungal Effectors That Target and Disrupt Plant Defense Pathways
7.2.2. Diversification of Fungal Effector Repertoires
7.2.3. Adaptive Mechanisms of BF to Evade Plant Immune Detection
7.3. Co-Evolutionary Adaptations of BF
8. Unraveling the Complexity: Known and Emerging Mechanisms in Plant–Fungal Interactions
8.1. Pathogen-Associated Molecular Pattern-Triggered Immunity (PTI)
8.2. Effector-Triggered Immunity (ETI)
8.3. Danger (or Damage)-Associated Molecular Pattern (DAMP)-Triggered Immunity (DTI)
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Z.; McTaggart, A.; Schwessinger, B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet. 2024, 20, e1011207. [Google Scholar] [CrossRef] [PubMed]
- Steins, L.; Duhamel, M.; Klenner-Koch, S.; Begerow, D.; Kemler, M. Resources and tools for studying convergent evolution in different lineages of smut fungi. Mycol. Prog. 2023, 22, 76. [Google Scholar] [CrossRef]
- Michutová, M.; Mieslerová, B.; Šafránková, I.; Jílková, B.; Neoralová, M.; Lebeda, A. Powdery mildews (Erysiphales) species spectrum on plants of family. Plant Protect. Sci. 2024, 60, 139–150. [Google Scholar] [CrossRef]
- Lorrain, C.; Gonçalves dos Santos, K.C.; Germain, H.; Hecker, A.; Duplessis, S. Advances in understanding obligate biotrophy in rust fungi. New Phytol. 2019, 222, 1190–1206. [Google Scholar] [CrossRef] [PubMed]
- Lahlali, R.; Taoussi, M.; Laasli, S.-E.; Gachara, G.; Ezzouggari, R.; Belabess, Z.; Aberkani, K.; Assouguem, A.; Meddich, A.; El Jarroudi, M.; et al. Effects of climate change on plant pathogens and host-pathogen interactions. Crop. Environ. 2024, 3, 159–170. [Google Scholar] [CrossRef]
- Cat, A. Evaluation of genetic variation and host resistance to wheat stem rust psathogen (Puccinia graminis f. sp. tritici) in bread wheat (Triticum aestivum L.) varieties grown in Türkiye. PeerJ 2024, 12, e17633. [Google Scholar] [CrossRef]
- Sahu, A.; Shree, A.; Verma, P.K. Secreted Effectors: A perspective in plant-fungus interaction. In Plant Pathogen Interaction; Springer Nature: Singapore, 2024; pp. 341–362. [Google Scholar] [CrossRef]
- Jennings, C.; Baysal-Gurel, F.; Alexander, L.W. Powdery mildew of bigleaf hydrangea: Biology, control, and breeding strategies for resistance. Horticulturae 2024, 10, 216. [Google Scholar] [CrossRef]
- Rana, V.; Batheja, A.; Sharma, R.; Rana, A.; Priyanka. Powdery mildew of wheat: Research progress, opportunities, and challenges. New Horiz. Wheat Barley Res. Crop Prot. Resour. Manag. 2022, 133–178. [Google Scholar] [CrossRef]
- Bakhat, N.; Vielba-Fernández, A.; Padilla-Roji, I.; Martínez-Cruz, J.; Polonio, Á.; Fernández-Ortuño, D.; Pérez-García, A. Suppression of chitin-triggered immunity by plant fungal pathogens: A case study of the cucurbit powdery mildew fungus Podosphaera xanthii. J. Fungi 2023, 9, 771. [Google Scholar] [CrossRef]
- Mieslerová, B.; Cook, R.T.; Wheater, C.P.; Lebeda, A. Ecology of powdery mildews–influence of abiotic factors on their development and epidemiology. Crit. Rev. Plant Sci. 2022, 41, 365–390. [Google Scholar] [CrossRef]
- Lhamo, D.; Li, G.; Song, G.; Li, X.; Sen, T.Z.; Gu, Y.; Xu, X.; Xu, S.S. Genome-wide association studies on resistance to powdery mildew in cultivated emmer wheat. Plant Genome 2024, e20493. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xia, W.; Li, Y.; Peng, Y.; Zhang, Y.; Tang, J.; Cui, H.; Qu, L.; Yao, T.; Yu, Z.; et al. The novel effector Ue943 is essential for host plant colonization by Ustilago esculenta. J. Fungi 2023, 9, 593. [Google Scholar] [CrossRef] [PubMed]
- Van Der Linde, K.; Göhre, V. How do smut fungi use plant signals to spatiotemporally orientate on and in planta? J. Fungi 2021, 7, 107. [Google Scholar] [CrossRef]
- Xia, W.; Yu, X.; Ye, Z. Smut fungal strategies for the successful infection. Microb. Pathog. 2020, 142, 104039. [Google Scholar] [CrossRef]
- Schuster, M.; Schweizer, G.; Reißmann, S.; Happel, P.; Aßmann, D.; Rössel, N.; Güldener, U.; Mannhaupt, G.; Ludwig, N.; Winterberg, S.; et al. Novel secreted effectors conserved among smut fungi contribute to the virulence of Ustilago maydis. Mol. Plant-Microbe Interact. 2024, 37, 250–263. [Google Scholar] [CrossRef]
- Fei, W.; Liu, Y. Biotrophic fungal pathogens: A critical overview. Appl. Biochem. Biotechnol. 2023, 195, 1–16. [Google Scholar] [CrossRef]
- Ökmen, B.; Doehlemann, G. Inside plant: Biotrophic strategies to modulate host immunity and metabolism. Curr. Opin. Plant Biol. 2014, 20, 19–25. [Google Scholar] [CrossRef]
- Perfect, S.E.; Green, J.R. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol. Plant Pathol. 2001, 2, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, R.; Kiran, K.; Rajarammohan, S.; Dubey, H.; Singh, P.K.; Sharma, Y.; Deshmukh, R.; Sonah, H.; Gupta, N.; Sharma, T. Effector biology of biotrophic plant fungal pathogens: Current advances and future prospects. Microbiol. Res. 2020, 241, 126567. [Google Scholar] [CrossRef]
- Mapuranga, J.; Zhang, N.; Zhang, L.; Chang, J.; Yang, W. Infection strategies and pathogenicity of biotrophic plant fungal pathogens. Front. Microbiol. 2022, 13, 799396. [Google Scholar] [CrossRef]
- Li, X.; Jin, C.; Yuan, H.; Huang, W.; Liu, F.; Fan, R.; Xie, J.; Shen, Q.H. The barley powdery mildew effectors CSEP0139 and CSEP0182 suppress cell death and promote B. graminis fungal virulence in plants. Phytopathol. Res. 2021, 3, 7. [Google Scholar] [CrossRef]
- Gong, B.Q.; Wang, F.Z.; Li, J.F. Hide-and-seek: Chitin-triggered plant immunity and fungal counterstrategies. Trends Plant Sci. 2020, 25, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Sharma, R.; Kumar, K. A perspective on varied fungal virulence factors causing infection in host plants. Mol. Biol. Rep. 2024, 51, 392. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.; Kim, S.; Völz, R.; Lee, Y.H. Nuclear effectors of plant pathogens: Distinct strategies to be one step ahead. Mol. Plant Pathol. 2023, 24, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Bauters, L.; Stojilković, B.; Gheysen, G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. Mol. Plant Pathol. 2021, 22, 1436–1448. [Google Scholar] [CrossRef]
- Tariqjaveed, M.; Mateen, A.; Wang, S.; Qiu, S.; Zheng, X.; Zhang, J.; Bhadauria, V.; Sun, W. Versatile effectors of phytopathogenic fungi target host immunity. J. Integr. Plant Biol. 2021, 63, 1856–1873. [Google Scholar] [CrossRef]
- Park, J.; Son, H. Antioxidant systems of plant pathogenic fungi: Functions in oxidative stress response and their regulatory mechanisms. Plant Pathol. J. 2024, 40, 235. [Google Scholar] [CrossRef]
- Duplessis, S.; Lorrain, C.; Petre, B.; Figueroa, M.; Dodds, P.N.; Aime, M.C. Host adaptation and virulence in heteroecious rust fungi. Annu. Rev. Phytopathol. 2021, 59, 403–422. [Google Scholar] [CrossRef]
- Bunyard, B.A. The Lives of Fungi: A Natural History of Our Planet’s Decomposers; Princeton University Press: Princeton, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Chethana, K.W.T.; Jayawardena, R.S.; Chen, Y.-J.; Konta, S.; Tibpromma, S.; Phukhamsakda, C.; Abeywickrama, P.D.; Samarakoon, M.C.; Senwanna, C.; Mapook, A.; et al. Appressorial interactions with host and their evolution. Fungal Divers. 2021, 110, 75–107. [Google Scholar] [CrossRef]
- Ryder, L.S.; Cruz-Mireles, N.; Molinari, C.; Eisermann, I.; Eseola, A.B.; Talbot, N.J. The appressorium at a glance. J. Cell Sci. 2022, 135, jcs259857. [Google Scholar] [CrossRef]
- Arya, G.C.; Cohen, H. The multifaceted roles of fungal cutinases during infection. J. Fungi 2022, 8, 199. [Google Scholar] [CrossRef]
- Liu, N.; Meng, F.; Tian, C. Appressorium formation is regulated by the Msb2-and Sho1-dependent hierarchical transcriptional network in Colletotrichum gloeosporioides. Plant Pathol. 2024, 73, 301–315. [Google Scholar] [CrossRef]
- da Silva, L.L.; Morgan, T.; Garcia, E.A.; Rosa, R.O.; Mendes, T.A.D.O.; de Queiroz, M.V. Pectinolytic arsenal of Colletotrichum lindemuthianum and other fungi with different lifestyles. J. Appl. Microbiol. 2022, 133, 1857–1871. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Sánchez, I.; Pejenaute-Ochoa, M.D.; Navarrete, B.; Barrales, R.R.; Ibeas, J.I. Ustilago maydis secreted endo-xylanases are involved in fungal filamentation and proliferation on and inside plants. J. Fungi 2021, 7, 1081. [Google Scholar] [CrossRef]
- Li, F.; Lu, D.; Meng, F.; Tian, C. Transcription factor CgSte12 regulates pathogenicity by affecting appressorium structural development in the anthracnose-causing fungus Colletotrichum gloeosporioides. Phytopathology 2024, 114, 1832–1842. [Google Scholar] [CrossRef]
- Baka, Z.A.M. Rust haustoria. In Plant Mycobiome; Rashad, Y.M., Baka, Z.A.M., Moussa, T.A.A., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- De Wit, P.J.; Mehrabi, R.; Van den Burg, H.A.; Stergiopoulos, I. Fungal effector proteins: Past, present and future. Mol. Plant Pathol. 2009, 10, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Chethana, K.W.T.; Jayawardena, R.S.; Chen, Y.-J.; Konta, S.; Tibpromma, S.; Abeywickrama, P.D.; Gomdola, D.; Balasuriya, A.; Xu, J.; Lumyong, S.; et al. Diversity and function of appressoria. Pathogens 2021, 10, 746. [Google Scholar] [CrossRef] [PubMed]
- Varalakshmi, B.; Suganya, V.; Shanmugapriya, A.; Karpagam, T.; Firdous, S.J.; Manikandan, R.; Sridevi, R.; Saradhasri, V.; Abinaya, M. Manipulation of cell wall components and enzymes on plant-microbe interactions. In Plant-Microbe Interaction-Recent Advances in Molecular and Biochemical Approaches; Academic Press: Cambridge, MA, USA, 2023; pp. 303–326. [Google Scholar] [CrossRef]
- Sivaramakrishnan, M.; Veeraganti Naveen Prakash, C.; Chandrasekar, B. Multifaceted roles of plant glycosyl hydrolases during pathogen infections: More to discover. Planta 2024, 259, 113. [Google Scholar] [CrossRef]
- Banuett, F. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu. Rev. Genet. 1995, 29, 179–208. [Google Scholar] [CrossRef]
- Wallen, R.M.; Richardson, K.; Furnish, M.; Mendoza, H.; Dentinger, A.; Khanal, S.; Perlin, M.H. Hungry for sex: Differential roles for Ustilago maydis b locus components in haploid cells vis à vis nutritional availability. J. Fungi 2021, 7, 135. [Google Scholar] [CrossRef]
- Kijpornyongpan, T.; Aime, M.C. Investigating the smuts: Common cues, signaling pathways, and the role of MAT in dimorphic switching and pathogenesis. J. Fungi 2020, 6, 368. [Google Scholar] [CrossRef] [PubMed]
- Ökmen, B.; Jaeger, E.; Schilling, L.; Finke, N.; Klemd, A.; Lee, Y.J.; Wemhöner, R.; Pauly, M.; Neumann, U.; Doehlemann, G. A conserved enzyme of smut fungi facilitates cell-to-cell extension in the plant bundle sheath. Nat. Commun. 2022, 13, 6003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bian, J.; Zhang, Y.; Xia, W.; Li, S.; Ye, Z. An endoglucanase secreted by Ustilago esculenta promotes fungal proliferation. J. Fungi 2022, 8, 1050. [Google Scholar] [CrossRef] [PubMed]
- Corbu, V.M.; Gheorghe-Barbu, I.; Dumbravă, A.; Vrâncianu, C.O.; Șesan, T.E. Current insights in fungal importance—A comprehensive review. Microorganisms 2023, 11, 1384. [Google Scholar] [CrossRef]
- Nakajima, M.; Yamashita, T.; Takahashi, M.; Nakano, Y.; Takeda, T. Identification, cloning, and characterization of β-glucosidase from Ustilago esculenta. Appl. Microbiol. Biotechnol. 2012, 93, 1989–1998. [Google Scholar] [CrossRef]
- Stoffels, P.; Müller, M.J.; Stachurski, S.; Terfrüchte, M.; Schröder, S.; Ihling, N.; Wierckx, N.; Feldbrügge, M.; Schipper, K.; Büchs, J. Complementing the intrinsic repertoire of Ustilago maydis for degradation of the pectin backbone polygalacturonic acid. J. Biotechnol. 2020, 307, 148–163. [Google Scholar] [CrossRef]
- Bouqellah, N.A.; Elkady, N.A.; Farag, P.F. Secretome analysis for a new strain of the blackleg fungus Plenodomus lingam reveals candidate proteins for effectors and virulence factors. J. Fungi 2023, 9, 740. [Google Scholar] [CrossRef]
- Mueller, O.; Kahmann, R.; Aguilar, G.; Trejo-Aguilar, B.; Wu, A.; de Vries, R.P. The secretome of the maize pathogen Ustilago maydis. Fungal Genet. Biol. 2008, 45, S63–S70. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Si, J.; Han, Z.; Chen, D. Action mechanisms of effectors in plant-pathogen interaction. Int. J. Mol. Sci. 2022, 23, 6758. [Google Scholar] [CrossRef]
- McLaughlin, M.S.; Roy, M.; Abbasi, P.A.; Carisse, O.; Yurgel, S.N.; Ali, S. Why do we need alternative methods for fungal disease management in plants? Plants 2023, 12, 3822. [Google Scholar] [CrossRef]
- Sperschneider, J.; Gardiner, D.M.; Dodds, P.N.; Tini, F.; Covarelli, L.; Singh, K.B.; Manners, J.M.; Taylor, J.M. EffectorP: Predicting fungal effector proteins from secretomes using machine learning. New Phytol. 2016, 210, 743–761. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.; Ghosh, S.; Sahoo, D.; Jha, G. Fungal effectors, the double edge sword of phytopathogens. Curr. Genet. 2021, 67, 27–40. [Google Scholar] [CrossRef]
- Cheng, Y.; Yao, J.; Zhang, Y.; Li, S.; Kang, Z. Characterization of a Ran gene from Puccinia striiformis f. sp. tritici involved in fungal growth and anti-cell death. Sci. Rep. 2016, 6, 35248. [Google Scholar] [CrossRef]
- Gebrie, S.A. Biotrophic fungi infection and plant defense mechanism. J. Plant Pathol. Microbiol. 2016, 7, 2. [Google Scholar] [CrossRef]
- McCombe, C.L.; Greenwood, J.R.; Solomon, P.S.; Williams, S.J. Molecular plant immunity against biotrophic, hemibiotrophic, and necrotrophic fungi. Essays Biochem. 2022, 66, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Doohan, F. Fungal pathogens of plants. Fungi Biol. Appl. 2011, 25, 313–344. [Google Scholar] [CrossRef]
- Li, Y.; Roychowdhury, R.; Govta, L.; Jaiwar, S.; Wei, Z.Z.; Shams, I.; Fahima, T. Intracellular reactive oxygen species-aided localized cell death contributing to immune responses against wheat powdery mildew pathogen. Phytopathology 2023, 113, 884–892. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, T.; Zhang, X.; Tang, C.; Zhuang, R.; Zhao, H.; Xu, Q.; Cheng, Y.; Wang, J.; Duplessis, S.; et al. Two stripe rust effectors impair wheat resistance by suppressing import of host Fe–S protein into chloroplasts. Plant Physiol. 2021, 187, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- McCombe, C.L.; Catanzariti, A.; Greenwood, J.R.; Desai, A.M.; Outram, M.A.; Yu, D.S.; Ericsson, D.J.; Brenner, S.E.; Dodds, P.N.; Kobe, B.; et al. A rust-fungus Nudix hydrolase effector decaps mRNA in vitro and interferes with plant immune pathways. New Phytol. 2023, 239, 222–239. [Google Scholar] [CrossRef]
- Todd, J.N.A.; Carreón-Anguiano, K.G.; Islas-Flores, I.; Canto-Canché, B. Fungal effectoromics: A world in constant evolution. Int. J. Mol. Sci. 2022, 23, 13433. [Google Scholar] [CrossRef]
- German, L.; Yeshvekar, R.; Benitez-Alfonso, Y. Callose metabolism and the regulation of cell walls and plasmodesmata during plant mutualistic and pathogenic interactions. Plant Cell Environ. 2023, 46, 391–404. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, L.; Jiang, Y.; Li, T. Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int. J. Biol. Macromol. 2022, 206, 188–202. [Google Scholar] [CrossRef]
- Dou, D.; Zhou, J.M. Phytopathogen effectors subverting host immunity: Different foes, similar battleground. Cell Host Microbe 2012, 12, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, Y.S.; Sadiq, I.Z.; Aarti, A.; Wang, Z.; Zheng, W. Interplay of transport vesicles during plant-fungal pathogen interaction. Stress. Biol. 2023, 3, 35. [Google Scholar] [CrossRef] [PubMed]
- Kalita, P.; Mohapatra, B.; Maruthi, M. Role of effectors in plant–pathogen interactions. In Biotechnological Advances for Disease Tolerance in Plants; Singh, K., Kaur, R., Deshmukh, R., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Ai, G.; Peng, H.; Pan, W.; Li, Y.; Wan, Z.; Yin, Z.; Shen, D.; Dong, S.; Wang, Y.; Dou, D. A catalogue of virulence strategies mediated by phytopathogenic effectors. Fundam. Res. 2024, in press. [CrossRef]
- Rahman, S.; Madina, M.H.; Plourde, M.B.; dos Santos, K.C.G.; Huang, X.; Zhang, Y.; Laliberté, J.-F.; Germain, H. The fungal effector Mlp37347 alters plasmodesmata fluxes and enhances susceptibility to pathogen. Microorganisms 2021, 9, 1232. [Google Scholar] [CrossRef]
- Iswanto, A.B.B.; Vu, M.H.; Pike, S.; Lee, J.; Kang, H.; Son, G.H.; Kim, J.; Kim, S.H. Pathogen effectors: What do they do at plasmodesmata? Mol. Plant Pathol. 2022, 23, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, X.; Liu, W.; Feng, Z.; Chen, Q.; Zhou, Y.; Sun, M.; Gan, L.; Zhou, T.; Xuan, Y. Plasmodesmata function and callose deposition in plant disease defense. Plants 2024, 13, 2242. [Google Scholar] [CrossRef]
- Kumari, P.; Ojha, R.; Varshney, V.; Gupta, V.; Salvi, P. Transcription factors and their regulatory role in plant defence response. In Biotechnological Advances for Disease Tolerance in Plants; Springer Nature: Singapore, 2024; pp. 337–362. [Google Scholar] [CrossRef]
- Dulal, N.; Wilson, R.A. Paths of least resistance: Unconventional effector secretion by fungal and oomycete plant pathogens. Mol. Plant-Microbe Interact. 2024. [Google Scholar] [CrossRef]
- Guangdong, Z.; Dezheng, G.; Wang, L.; Li, H.; Wang, C.; Xingqi, G. Functions of RPM1-interacting protein 4 in plant immunity. Planta 2021, 253, 11. [Google Scholar] [CrossRef]
- Yuan, H.; Jin, C.; Pei, H.; Zhao, L.; Li, X.; Li, J.; Huang, W.; Fan, R.; Liu, W.; Shen, Q.H. The powdery mildew effector CSEP0027 interacts with barley catalase to regulate host immunity. Front. Plant Sci. 2021, 12, 733237. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Samota, M.K.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants 2022, 28, 485–504. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.; Wang, Y.; Du, Y.; Song, C.; Song, P.; Yang, Q.; He, F.; Bai, X.; Huang, L.; et al. Glycine-serine-rich effector PstGSRE4 in Puccinia striiformis f. sp. tritici inhibits the activity of copper zinc superoxide dismutase to modulate immunity in wheat. PLoS Pathog. 2022, 18, e1010702. [Google Scholar] [CrossRef]
- Priyashantha, A.K.H.; Dai, D.-Q.; Bhat, D.J.; Stephenson, S.L.; Promputtha, I.; Kaushik, P.; Tibpromma, S.; Karunarathna, S.C. Plant–fungi interactions: Where it goes? Biology 2023, 12, 809. [Google Scholar] [CrossRef]
- Wang, J.; Chen, T.; Tang, Y.; Zhang, S.; Xu, M.; Liu, M.; Zhang, J.; Loake, G.J.; Jiang, J. The biological roles of Puccinia striiformis f. sp. tritici Effectors during infection of wheat. Biomolecules 2023, 13, 889. [Google Scholar] [CrossRef]
- Hoang, C.V.; Bhaskar, C.K.; Ma, L.S. A novel core effector Vp1 promotes fungal colonization and virulence of Ustilago maydis. J. Fungi 2021, 7, 589. [Google Scholar] [CrossRef]
- Zou, K.; Li, Y.; Zhang, W.; Jia, Y.; Wang, Y.; Ma, Y.; Lv, X.; Xuan, Y.; Du, W. Early infection response of fungal biotroph Ustilago maydis in maize. Front. Plant Sci. 2022, 13, 970897. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pruitt, R.N.; Nuernberger, T.; Wang, Y. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 2022, 20, 449–464. [Google Scholar] [CrossRef]
- Bolus, S.; Akhunov, E.; Coaker, G.; Dubcovsky, J. Dissection of cell death induction by wheat stem rust resistance protein Sr35 and its matching effector AvrSr35. Mol. Plant-Microbe Interact. 2020, 33, 308–319. [Google Scholar] [CrossRef]
- Yu, G.; Matny, O.; Gourdoupis, S.; Rayapuram, N.; Aljedaani, F.R.; Wang, Y.L.; Nürnberger, T.; Johnson, R.; Crean, E.E.; Saur, I.M.-L.; et al. The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase. Nat. Genet. 2023, 55, 921–926. [Google Scholar] [CrossRef]
- Kangara, N.; Kurowski, T.J.; Radhakrishnan, G.V.; Ghosh, S.; Cook, N.M.; Yu, G.; Arora, S.; Steffenson, B.J.; Figueroa, M.; Mohareb, F.; et al. Mutagenesis of Puccinia graminis f. sp. tritici and selection of gain-of-virulence mutants. Front. Plant Sci. 2020, 11, 570180. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Ramachandran, S.R.; Zhai, Y.; Bu, C.; Pappu, H.R.; Hulbert, S.H. A novel fungal effector from Puccinia graminis suppressing RNA silencing and plant defense responses. New Phytol. 2019, 222, 1561–1572. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, Z.; Zheng, W.; Liu, B.; Wang, X.; Xue, X.; Xu, L.; Huang, L.; Han, Q.; Zhao, J.; et al. Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp. tritici. BMC Genom. 2008, 9, 203. [Google Scholar] [CrossRef]
- Wu, N.; Ozketen, A.C.; Cheng, Y.; Jiang, W.; Zhou, X.; Zhao, X.; Guan, Y.; Xiang, Z.; Akkaya, M.S. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. Front. Plant Sci. 2022, 13, 1012216. [Google Scholar] [CrossRef] [PubMed]
- Batool, T.S.; Hussain, M.; Masnoon, J.; Abdullah, A.; Ali, S.; Shahzad, S.; Raza, S. Investigating sequence variation in the PNPi protein gene of Puccinia striiformis f. sp. tritici and its interaction with wheat NPR1 protein. J. Plant Pathol. 2021, 103, 1231–1241. [Google Scholar] [CrossRef]
- Tian, M.; Zhang, Z.; Bi, X.; Xue, Y.; Zhou, J.; Yuan, B.; Feng, Z.; Li, L.; Wang, J. A Putative effector Pst-18220, from Puccinia striiformis f. sp. tritici, participates in rust pathogenicity and plant defense suppression. Biomolecules 2024, 14, 1092. [Google Scholar] [CrossRef]
- Petre, B.; Saunders, D.G.O.; Sklenar, J.; Lorrain, C.; Krasileva, K.V.; Win, J.; Duplessis, S.; Kamoun, S. Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies. PLoS ONE 2016, 11, e0149035. [Google Scholar] [CrossRef]
- Sperschneider, J.; Ying, H.; Dodds, P.N.; Gardiner, D.M.; Upadhyaya, N.M.; Singh, K.B.; Manners, J.M.; Taylor, J.M. Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors. Front. Plant Sci. 2014, 5, 372. [Google Scholar] [CrossRef]
- Su, Y.; Chen, Y.; Chen, J.; Zhang, Z.; Guo, J.; Cai, Y.; Zhu, C.; Li, Z.; Zhang, H. Effectors of Puccinia striiformis f. sp. tritici suppressing the pathogenic-associated molecular pattern-triggered immune response were screened by transient expression of wheat protoplasts. Int. J. Mol. Sci. 2021, 22, 4985. [Google Scholar] [CrossRef]
- Bai, X.; Peng, H.; Goher, F.; Islam, A.; Xu, S.; Guo, J.; Kang, Z.; Guo, J. A candidate effector protein PstCFEM1 contributes to virulence of stripe rust fungus and impairs wheat immunity. Stress Biol. 2022, 2, 21. [Google Scholar] [CrossRef]
- Bao, X.; Hu, Y.; Li, Y.; Chen, X.; Shang, H.; Hu, X. The interaction of two Puccinia striiformis f. sp. tritici effectors modulates high-temperature seedling-plant resistance in wheat. Mol. Plant Pathol. 2023, 24, 1522–1534. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Mei, Y.; Grayczyk, J.P.; Darben, L.M.; Rieker, M.E.G.; Seitz, J.M.; Voegele, R.T.; Whitham, S.A.; Link, T.I. Candidate effectors from Uromyces appendiculatus, the causal agent of rust on common bean, can be discriminated based on suppression of immune responses. Front. Plant Sci. 2019, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.; Neelam, A.; Campbell, K.B.; Lee, J.; Liu, G.; Garrett, W.M.; Scheffler, B.; Tucker, M.L. Protein accumulation in the germinating Uromyces appendiculatus uredospore. Mol. Plant-Microbe Interact. 2007, 20, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Yaeno, T.; Wahara, M.; Nagano, M.; Wanezaki, H.; Toda, H.; Inoue, H.; Eishima, A.; Nishiguchi, M.; Hisano, H.; Kobayashi, K.; et al. RACE1, a japanese Blumeria graminis f. sp. hordei isolate, is capable of overcoming partially mlo-mediated penetration resistance in barley in an allele-specific manner. PLoS ONE 2021, 16, e0256574. [Google Scholar] [CrossRef]
- Amselem, J.; Vigouroux, M.; Oberhaensli, S.; Brown, J.K.M.; Bindschedler, L.V.; Skamnioti, P.; Wicker, T.; Spanu, P.D.; Quesneville, H.; Sacristán, S. Evolution of the EKA family of powdery mildew avirulence-effector genes from the ORF 1 of a LINE retrotransposon. BMC Genom. 2015, 16, 917. [Google Scholar] [CrossRef]
- Stergiopoulos, I.; De Wit, P.J. Fungal effector proteins. Annu. Rev. Phytopathol. 2009, 47, 233–263. [Google Scholar] [CrossRef]
- Li, Z.; Velásquez-Zapata, V.; Elmore, J.M.; Li, X.; Xie, W.; Deb, S.; Tian, X.; Banerjee, S.; Jørgensen, H.J.L.; Pedersen, C.; et al. Powdery mildew effectors AVRA1 and BEC1016 target the ER J-domain protein Hv ERdj3B required for immunity in barley. Mol. Plant Pathol. 2024, 25, e13463. [Google Scholar] [CrossRef]
- Pennington, H.G.; Jones, R.; Kwon, S.; Bonciani, G.; Thieron, H.; Chandler, T.; Luong, P.; Morgan, S.N.; Przydacz, M.; Bozkurt, T.; et al. The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathog. 2019, 15, e1007620. [Google Scholar] [CrossRef]
- Mu, B.; Chen, J.; Wang, H.; Kong, W.; Fan, X.; Wen, Y.Q. An effector CSEP087 from Erysiphe necator targets arginine decarboxylase VviADC to regulate host immunity in grapevine. Sci. Hortic. 2022, 303, 111205. [Google Scholar] [CrossRef]
- Sosa-Zuniga, V.; Vidal Valenzuela, Á.; Barba, P.; Espinoza Cancino, C.; Romero-Romero, J.L.; Arce-Johnson, P. Powdery mildew resistance genes in vines: An opportunity to achieve a more sustainable viticulture. Pathogens 2022, 11, 703. [Google Scholar] [CrossRef]
- Martínez-Soto, D.; Ortiz-Castellanos, L.; Robledo-Briones, M.; León-Ramírez, C.G. Molecular mechanisms involved in the multicellular growth of Ustilaginomycetes. Microorganisms 2020, 8, 1072. [Google Scholar] [CrossRef] [PubMed]
- Lanver, D.; Tollot, M.; Schweizer, G.; Presti, L.L.; Reissmann, S.; Ma, L.-S.; Schuster, M.; Tanaka, S.; Liang, L.; Ludwig, N.; et al. Ustilago maydis effectors and their impact on virulence. Nat. Rev. Microbiol. 2017, 15, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Djamei, A.; Kahmann, R. Ustilago maydis: Dissecting the molecular interface between pathogen and plant. PLoS Pathog. 2012, 8, e1002955. [Google Scholar] [CrossRef]
- Doehlemann, G.; van der Linde, K.; Aßmann, D.; Schwammbach, D.; Hof, A.; Mohanty, A.; Jackson, D.; Kahmann, R. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog. 2009, 5, e1000290. [Google Scholar] [CrossRef]
- Tanaka, S.; Schweizer, G.; Rössel, N.; Fukada, F.; Thines, M.; Kahmann, R. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Nat. Microbiol. 2019, 4, 251–257. [Google Scholar] [CrossRef]
- Cheung, H.K.; Donaldson, M.E.; Storfie, E.R.; Spence, K.L.; Fetsch, J.L.; Harrison, M.C.; Saville, B.J. Zfp1, a putative Zn (II) 2Cys6 transcription factor, influences Ustilago maydis pathogenesis at multiple stages. Plant Pathol. 2021, 70, 1626–1639. [Google Scholar] [CrossRef]
- Rabe, F.; Ajami-Rashidi, Z.; Doehlemann, G.; Kahmann, R.; Djamei, A. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Mol. Microbiol. 2013, 89, 179–188. [Google Scholar] [CrossRef]
- Shu, X.; Yin, D.; Liang, J.; Xu, D.; Jiang, Y.; Xiang, T.; Wang, Y.; Jiao, C.; Li, P.; Zheng, A.; et al. ThSCSP_12: Novel effector in Tilletia horrida that induces cell death and defense responses in non-host plants. Int. J. Mol. Sci. 2022, 23, 14752. [Google Scholar] [CrossRef]
- Wang, A.; Wang, A.; Shu, X.; Xu, D.; Jiang, Y.; Liang, J.; Yi, X.; Zhu, J.; Yang, F.; Jiao, C.; et al. Understanding the rice fungal pathogen Tilletia horrida from multiple perspectives. Rice 2022, 15, 64. [Google Scholar] [CrossRef]
- Teixeira-Silva, N.S.; Schaker PD, C.; Rody HV, S.; Maia, T.; Garner, C.M.; Gassmann, W.; Monteiro-Vitorello, C.B. Leaping into the unknown world of Sporisorium scitamineum candidate effectors. J. Fungi 2020, 6, 339. [Google Scholar] [CrossRef]
- Maia, T.; Rody, H.V.; Bombardelli, R.G.; Souto, T.G.; Camargo LE, A.; Monteiro-Vitorello, C.B. A bacterial type three secretion-based delivery system for functional characterization of Sporisorium scitamineum plant immune suppressing effector proteins. Phytopathology 2022, 112, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Liu, Y.; Naqvi, N.I. Fungal effectors at the crossroads of phytohormone signaling. Curr. Opin. Microbiol. 2018, 46, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Dhalaria, R.; Guleria, S.; Cimler, R.; Sharma, R.; Siddiqui, S.A.; Valko, M.; Nepovimova, E.; Dhanjal, D.S.; Singh, R.; et al. Anti-oxidant potential of plants and probiotic spp. in alleviating oxidative stress induced by H2O2. Biomed. Pharmacother. 2023, 165, 115022. [Google Scholar] [CrossRef]
- Zhang, N.; Lv, F.; Qiu, F.; Han, D.; Xu, Y.; Liang, W. Pathogenic fungi neutralize plant-derived ROS via Srpk1 deacetylation. EMBO J. 2023, 42, e112634. [Google Scholar] [CrossRef]
- Tripathi, A.; Pandey, V.K.; Jha, A.K.; Srivastava, S.; Jakhar, S.; Vijay; Singh, G.; Rustagi, S.; Malik, S.; Choudhary, P. Intricacies of plants’ innate immune responses and their dynamic relationship with fungi: A review. Microbiol. Res. 2024, 285, 127758. [Google Scholar] [CrossRef] [PubMed]
- Jedelská, T.; Luhová, L.; Petřivalský, M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. J. Exp. Bot. 2021, 72, 848–863. [Google Scholar] [CrossRef]
- Mu, B.; Teng, Z.; Tang, R.; Lu, M.; Chen, J.; Xu, X.; Wen, Y.Q. An effector of Erysiphe necator translocates to chloroplasts and plasma membrane to suppress host immunity in grapevine. Hortic. Res. 2023, 10, uhad163. [Google Scholar] [CrossRef]
- Zhang, Z.; Henderson, C.; Gurr, S.J. Blumeria graminis secretes an extracellular catalase during infection of barley: Potential role in suppression of host defence. Mol. Plant Pathol. 2004, 5, 537–547. [Google Scholar] [CrossRef]
- Lamboy, J.S.; Staples, R.C.; Hoch, H.C. Superoxide dismutase: A differentiation protein expressed in Uromyces germlings during early appressorium development. Exp. Mycol. 1995, 19, 284–296. [Google Scholar] [CrossRef]
- Hemetsberger, C.; Herrberger, C.; Zechmann, B.; Hillmer, M.; Doehlemann, G. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog. 2012, 8, e1002684. [Google Scholar] [CrossRef]
- Rocafort, M.; Fudal, I.; Mesarich, C.H. Apoplastic effector proteins of plant-associated fungi and oomycetes. Curr. Opin. Plant Biol. 2020, 56, 9–19. [Google Scholar] [CrossRef]
- Gan, P.H.; Rafiqi, M.; Hardham, A.R.; Dodds, P.N. Effectors of biotrophic fungal plant pathogens. Funct. Plant Biol. 2010, 37, 913–918. [Google Scholar] [CrossRef]
- Remick, B.C.; Gaidt, M.M.; Vance, R.E. Effector-triggered immunity. Annu. Rev. Immunol. 2023, 41, 453–481. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, J.; Wang, Z.; Zhou, H.; Wang, Y.; Qin, W.; Duan, H.; Zhao, H.; Ge, X. Suppression of plant immunity by Verticillium dahliae effector Vd6317 through AtNAC53 association. Plant J. 2024, 119, 1767–1781. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Ngou, B.P.M.; Ding, P.; Xin, X.F. PTI-ETI crosstalk: An integrative view of plant immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Ramlal, A.; Kumar, K.; Rani, A.; Mishra, V. Signaling pathways and downstream effectors of host innate immunity in plants. Int. J. Mol. Sci. 2021, 22, 9022. [Google Scholar] [CrossRef]
- Tyler, B.M.; Rouxel, T. Effectors of fungi and oomycetes: Their virulence and avirulence functions and translocation from pathogen to host cells. In Molecular Plant Immunity; Sessa, G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 123–167. [Google Scholar] [CrossRef]
- Win, J.; Chaparro-Garcia, A.; Belhaj, K.; Saunders, D.G.O.; Yoshida, K.; Dong, S.; Schornack, S.; Zipfel, C.; Robatzek, S.; Hogenhout, S.A.; et al. Effector biology of plant-associated organisms: Concepts and perspectives. In Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012; Volume 77, pp. 235–247. [Google Scholar]
- Jose, J.; Ghantasala, S.; Roy Choudhury, S. Arabidopsis transmembrane receptor-like kinases (RLKs): A bridge between extracellular signal and intracellular regulatory machinery. Int. J. Mol. Sci. 2020, 21, 4000. [Google Scholar] [CrossRef]
- Ijaz, S.; Haq, I.U.; Babar, M.; Nasir, B. Disease resistance genes’ identification, cloning, and characterization in plants. In Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management; Springer Nature: Singapore, 2022; pp. 249–269. [Google Scholar] [CrossRef]
- Nemri, A.; Saunders, D.G.O.; Anderson, C.; Upadhyaya, N.M.; Win, J.; Lawrence, G.J.; Jones, D.A.; Kamoun, S.; Ellis, J.G.; Dodds, P.N. The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Front. Plant Sci. 2014, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Krattinger, S.G.; Keller, B. Molecular genetics and evolution of disease resistance in cereals. New Phytol. 2016, 212, 320–332. [Google Scholar] [CrossRef]
- Sharma, C.; Saripalli, G.; Kumar, S.; Gautam, T.; Kumar, A.; Rani, S.; Jain, N.; Prasad, P.; Raghuvanshi, S.; Jain, M.; et al. A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28. Funct. Plant Biol. 2018, 45, 1046–1064. [Google Scholar] [CrossRef]
- Cesari, S.; Moore, J.; Chen, C.; Webb, D.; Periyannan, S.; Mago, R.; Bernoux, M.; Lagudah, E.S.; Dodds, P.N. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC–NLR proteins. Proc. Natl. Acad. Sci. USA 2016, 113, 10204–10209. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, J.; Drader, T.; Lawrence, P.K.; Yin, C.; Hulbert, S.; Steber, C.M.; Steffenson, B.J.; Szabo, L.J.; von Wettstein, D.; Kleinhofs, A. Concerted action of two avirulent spore effectors activates reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance. Proc. Natl. Acad. Sci. USA 2011, 108, 14676–14681. [Google Scholar] [CrossRef]
- Feechan, A.; Kocsis, M.; Riaz, S.; Zhang, W.; Gadoury, D.M.; Walker, M.A.; Dry, I.B.; Reisch, B.I.; Cadle-Davidson, L.; Fresnedo-Ramírez, J.; et al. Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine powdery mildew informed by studies of race specificity. Phytopathology 2015, 105, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Santillán Martínez, M.I.; Bracuto, V.; Koseoglou, E.; Appiano, M.; Jacobsen, E.; Visser, R.G.; Wolters, A.-M.A.; Bai, Y. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol. 2020, 20, 284. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Yu, D.; Lawson, A.W.; Saur, I.M.L.; Frantzeskakis, L.; Kracher, B.; Logemann, E.; Chai, J.; Maekawa, T.; Schulze-Lefert, P. The leucine-rich repeats in allelic barley MLA immune receptors define specificity towards sequence-unrelated powdery mildew avirulence effectors with a predicted common RNase-like fold. PLoS Pathog. 2021, 17, e1009223. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liu, H.; Gu, T.; Xing, L.; Han, G.; Ma, P.; Li, X.; Zhou, Y.; Fan, J.; Li, L.; et al. PM2b, a CC-NBS-LRR protein, interacts with TaWRKY76-D to regulate powdery mildew resistance in common wheat. Front. Plant Sci. 2022, 13, 973065. [Google Scholar] [CrossRef]
- Zhao, Y.-B.; Liu, M.-X.; Chen, T.-T.; Ma, X.; Li, Z.-K.; Zheng, Z.; Zheng, S.-R.; Chen, L.; Li, Y.-Z.; Tang, L.-R.; et al. Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Sci. Adv. 2022, 8, eabq5108. [Google Scholar] [CrossRef]
- Sharma Poudel, R.; Richards, J.; Shrestha, S.; Solanki, S.; Brueggeman, R. Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance. BMC Genom. 2019, 20, 985. [Google Scholar] [CrossRef]
- Wei, W.; Wu, X.; Garcia, A.; McCoppin, N.; Viana, J.P.G.; Murad, P.S.; Walker, D.R.; Hartman, G.L.; Domier, L.L.; Hudson, M.E.; et al. An NBS-LRR protein in the Rpp1 locus negates the dominance of Rpp1-mediated resistance against Phakopsora pachyrhizi in soybean. Plant J. 2023, 113, 915–933. [Google Scholar] [CrossRef]
- Castel, B.; Ngou, P.-M.; Cevik, V.; Redkar, A.; Kim, D.-S.; Yang, Y.; Ding, P.; Jones, J.D.G. Diverse NLR immune receptors activate defence via the RPW 8-NLR NRG 1. New Phytol. 2019, 222, 966–980. [Google Scholar] [CrossRef]
- Saur, I.M.; Hückelhoven, R. Recognition and defence of plant-infecting fungal pathogens. J. Plant Physiol. 2021, 256, 153324. [Google Scholar] [CrossRef] [PubMed]
- Boissot, N.; Chovelon, V.; Rittener-Ruff, V.; Giovinazzo, N.; Mistral, P.; Pitrat, M.; Charpentier, M.; Troadec, C.; Bendahmane, A.; Dogimont, C. A highly diversified NLR cluster in melon contains homologs that confer powdery mildew and aphid resistance. Hortic. Res. 2024, 11, uhad256. [Google Scholar] [CrossRef]
- Kuppireddy, V.S. Identification and functional characterization of effectors from an anther smut fungus, Microbotryum lychnidis-dioicae. Ph.D. Thesis, University of Louisville, Louisville, KY, USA, 2018. paper 3078. [Google Scholar] [CrossRef]
- Thynne, E.; Ali, H.; Seong, K.; Abukhalaf, M.; Guerreiro, M.A.; Flores-Nunez, V.M.; Hansen, R.; Bergues, A.; Salman, M.J.; Rudd, J.J.; et al. An array of Zymoseptoria tritici effectors suppress plant immune responses. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Liu, M.; Peng, Y.; Li, H.; Deng, L.; Wang, X.; Kang, Z. TaSYP71, a Qc-SNARE, Contributes to wheat resistance against Puccinia striiformis f. sp. tritici. Front. Plant Sci. 2016, 7, 544. [Google Scholar] [CrossRef] [PubMed]
- Dinh, H.X.; Singh, D.; Periyannan, S.; Park, R.F.; Pourkheirandish, M. Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl. Genet. 2020, 133, 2035–2050. [Google Scholar] [CrossRef]
- Lubega, J.; Figueroa, M.; Dodds, P.N.; Kanyuka, K. Comparative analysis of the avirulence effectors produced by the fungal stem rust pathogen of wheat. Mol. Plant-Microbe Interact. 2024, 37, 171–178. [Google Scholar] [CrossRef]
- Hatta, M.A.M.; Arora, S.; Ghosh, S.; Matny, O.; Smedley, M.A.; Yu, G.; Chakraborty, S.; Bhatt, D.; Xia, X.; Steuernagel, B.; et al. The wheat Sr22, Sr33, Sr35 and Sr45 genes confer resistance against stem rust in barley. Plant Biotechnol. J. 2021, 19, 273–284. [Google Scholar] [CrossRef]
- Gao, F.; Wu, X.; Sun, H.; Wang, Z.; Chen, S.; Zou, L.; Yang, J.; Wei, Y.; Ni, X.; Sun, Q.; et al. Identification of stem rust resistance genes in triticum wheat cultivars and evaluation of their resistance to Puccinia graminis f. sp. tritici. Agriculture 2024, 14, 198. [Google Scholar] [CrossRef]
- Prasad, P.; Savadi, S.; Bhardwaj, S.C.; Gangwar, O.P.; Kumar, S. Rust pathogen effectors: Perspectives in resistance breeding. Planta 2019, 250, 1–22. [Google Scholar] [CrossRef]
- Noei, F.G.; Imami, M.; Didaran, F.; Ghanbari, M.A.; Zamani, E.; Ebrahimi, A.; Aliniaeifard, S.; Farzaneh, M.; Javan-Nikkhah, M.; Feechan, A.; et al. Stb6 mediates stomatal immunity, photosynthetic functionality, and the antioxidant system during the Zymoseptoria tritici-wheat interaction. Front. Plant Sci. 2022, 13, 1004691. [Google Scholar] [CrossRef]
- Tan, K.C.; Oliver, R.P. Regulation of proteinaceous effector expression in phytopathogenic fungi. PLoS Pathog. 2017, 13, e1006241. [Google Scholar] [CrossRef]
- Roussin-Léveillée, C.; Rossi, C.A.; Castroverde CD, M.; Moffett, P. The plant disease triangle facing climate change: A molecular perspective. Trends Plant Sci. 2024, 29, 895–914. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Rathjen, J.P.; Dodds, P.N. Direct recognition of pathogen effectors by plant NLR immune receptors and downstream signalling. Essays Biochem. 2022, 66, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, Q.; Bajwa, R.T.; Li, G.; Long, Y.; Wu, M.; Zhang, J.; Rashid, I. Application of system biology in plant–fungus interaction. In Phytomycology and Molecular Biology of Plant Pathogen Interactions; CRC Press: Boca Raton, FL, USA, 2022; pp. 171–189. [Google Scholar] [CrossRef]
- He, Q.; McLellan, H.; Boevink, P.C.; Birch, P.R. All roads lead to susceptibility: The many modes of action of fungal and oomycete intracellular effectors. Plant Commun. 2020, 4, 100050–100062. [Google Scholar] [CrossRef]
- Karibasappa, C.S.; Singh, Y.; Aravind, T.; Singh, K.P. Concept of effectors and receptors in improving plant immunity. In Emerging Trends in Plant Pathology; Singh, K.P., Jahagirdar, S., Sarma, B.K., Eds.; Springer: Singapore, 2021; pp. 475–497. [Google Scholar] [CrossRef]
- Dey, N.; Roy, U.K.; Aditya, M.; Bhattacharjee, S. Defensive strategies of ROS in programmed cell death associated with hypertensive response in plant pathogenesis. Ann. Syst. Biol. 2020, 3, 001–009. [Google Scholar]
- Dalio, R.J.D.; Paschoal, D.; Arena, G.D.; Magalhães, D.M.; Oliveira, T.S.; Merfa, M.V.; Maximo, H.J.; Machado, M.A.A. Hypersensitive response: From NLR pathogen recognition to cell death response. Ann. Appl. Biol. 2021, 178, 268–280. [Google Scholar] [CrossRef]
- Zehra, A.; Raytekar, N.A.; Meena, M.; Swapnil, P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Curr. Res. Microb. Sci. 2021, 2, 100054. [Google Scholar] [CrossRef]
- Koeck, M.; Hardham, A.R.; Dodds, P.N. The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell. Microbiol. 2011, 13, 1849–1857. [Google Scholar] [CrossRef]
- Hurley, B.; Subramaniam, R.; Guttman, D.S.; Desveaux, D. Proteomics of effector-triggered immunity (ETI) in plants. Virulence 2014, 5, 752–760. [Google Scholar] [CrossRef]
- Dodds, P.N. From gene-for-gene to resistosomes: Flor’s enduring legacy. Mol. Plant-Microbe Interact. 2023, 36, 461–467. [Google Scholar] [CrossRef]
- Ramachandran, S.R.; Yin, C.; Kud, J.; Tanaka, K.; Mahoney, A.K.; Xiao, F.; Hulbert, S.H. Effectors from wheat rust fungi suppress multiple plant defense responses. Phytopathology 2017, 107, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Li, T.Y.; Ma, Y.C.; Wu, X.X.; Chen, S.; Xu, X.F.; Wang, H.; Cao, Y.Y.; Xuan, Y.H. Race and virulence characterization of Puccinia graminis f. sp. tritici in China. PLoS ONE 2018, 13, e0197579. [Google Scholar] [CrossRef]
- Amangeldikyzy, Z.; Galymbek, K.; Gabdulov, M.; Amangeldi, N.; Irkitbay, A.; Suleimanova, G.; Sapakhova, Z. Identification of new sources of wheat stem rust resistance genes. Res. Crop. 2023, 24, 15–27. [Google Scholar] [CrossRef]
- Chen, S.; Rouse, M.N.; Zhang, W.; Jin, Y.; Akhunov, E.; Wei, Y.; Dubcovsky, J. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor. Appl. Genet. 2015, 128, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, W.; Wang, L.; Cheng, X.; Tian, X.; Du, Z.; Kang, Z.; Zhao, J. Evaluation of the potential risk of the emerging Yr5-virulent races of Puccinia striiformis f. sp. tritici to 165 Chinese wheat cultivars. Plant Dis. 2022, 106, 1867–1874. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, J.; Yan, B.; Hao, Q.; Zhang, C.; Lyu, B.; Ni, F.; Caplan, A.; Wu, J.; Fu, D. Remapping of the stripe rust resistance gene Yr10 in common wheat. Theor. Appl. Genet. 2018, 131, 1253–1262. [Google Scholar] [CrossRef]
- Esmail, S.M.; Draz, I.S.; Ashmawy, M.A.; El-Orabey, W.M. Emergence of new aggressive races of Puccinia striiformis f. sp. tritici causing yellow rust epiphytotic in Egypt. Physiol. Mol. Plant Pathol. 2021, 114, 101612. [Google Scholar] [CrossRef]
- Milus, E.A.; Lee, K.D.; Brown-Guedira, G. Characterization of stripe rust resistance in wheat lines with resistance gene Yr17 and implications for evaluating resistance and virulence. Phytopathology 2015, 105, 1123–1130. [Google Scholar] [CrossRef]
- Lu, X.; Kracher, B.; Saur, I.M.L.; Bauer, S.; Ellwood, S.R.; Wise, R.; Yaeno, T.; Maekawa, T.; Schulze-Lefert, P. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proc. Natl. Acad. Sci. USA 2016, 113, E6486–E6495. [Google Scholar] [CrossRef]
- Oh, S.; Choi, D. Receptor-mediated nonhost resistance in plants. Essays Biochem. 2022, 66, 435–445. [Google Scholar] [CrossRef]
- Backes, G.; Madsen, L.; Jaiser, H.; Stougaard, J.; Herz, M.; Mohler, V.; Jahoor, A. Localisation of genes for resistance against Blumeria graminis f. sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line. Theor. Appl. Genet. 2003, 106, 353–362. [Google Scholar] [CrossRef]
- Tamborski, J.; Krasileva, K.V. Evolution of plant NLRs: From natural history to precise modifications. Annu. Rev. Plant Biol. 2020, 71, 355–378. [Google Scholar] [CrossRef] [PubMed]
- Märkle, H.; Saur, I.M.; Stam, R. Evolution of resistance (R) gene specificity. Essays Biochem. 2022, 66, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Upadhaya, A.; Upadhaya, S.G.; Brueggeman, R. The wheat stem rust (Puccinia graminis f. sp. tritici) population from Washington contains the most virulent isolates reported on barley. Plant Dis. 2022, 106, 223–230. [Google Scholar] [PubMed]
- Kaur, B.; Bhatia, D.; Mavi, G.S. Eighty years of gene-for-gene relationship and its applications in identification and utilization of R genes. J. Genet. 2021, 100, 50. [Google Scholar] [CrossRef]
- Hernandez, J.; del Blanco, A.; Filichkin, T.P.; Fisk, S.P.; Gallagher, L.W.; Helgerson, L.J.; Meints, B.; Mundt, C.; Steffenson, B.J.; Hayes, P. A Genome-wide association study of resistance to Puccinia striiformis f. sp. hordei and P. graminis f. sp. tritici in barley and development of resistant germplasm. Phytopathology 2020, 110, 1082–1092. [Google Scholar] [CrossRef]
- Kleinhofs, A.; Brueggeman, R.; Nirmala, J.; Zhang, L.; Mirlohi, A.; Druka, A.; Rostoks, N.; Steffenson, B.J. Barley stem rust resistance genes: Structure and function. Plant Genome 2009, 2, 109–120. [Google Scholar] [CrossRef]
- Hulbert, S.H. Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu. Rev. Phytopathol. 1997, 35, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Nabi, Z.; Manzoor, S.; Nabi, S.U.; Wani, T.A.; Gulzar, H.; Farooq, M.; Arya, V.M.; Baloch, F.S.; Vlădulescu, C.; Popescu, S.M.; et al. Pattern-Triggered Immunity and Effector-Triggered Immunity: Crosstalk and cooperation of PRR and NLR-mediated plant defense pathways during host–pathogen interactions. Physiol. Mol. Biol. Plants 2024, 30, 587–604. [Google Scholar] [CrossRef]
- Mishra, A.N.; Tiwari, K.N.; Prakasha, T.L.; Prasad, S.S. Use of host resistance for management wheat rusts. In Innovative Approaches in Diagnosis and Management of Crop Diseases; Apple Academic Press: Cambridge, MA, USA, 2021; pp. 269–301. [Google Scholar] [CrossRef]
- Brabham, H.J.; De La Cruz, D.G.; Were, V.; Shimizu, M.; Saitoh, H.; Hernández-Pinzón, I.; Green, P.; Lorang, J.; Fujisaki, K.; Sato, K.; et al. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. Plant Cell 2024, 36, 447–470. [Google Scholar] [CrossRef]
- Dreiseitl, A. Mlo-mediated broad-spectrum and durable resistance against powdery mildews and its current and future applications. Plants 2024, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Yang, L.; Hu, Z.; Mo, C.; Geng, S.; Zhao, X.; He, Q.; Xiao, L.; Lu, L.; Wang, D.; et al. Multiplex gene editing reveals cucumber MILDEW RESISTANCE LOCUS O family roles in powdery mildew resistance. Plant Physiol. 2024, 195, 1069–1088. [Google Scholar] [CrossRef] [PubMed]
- Quade, A.; Ash, G.J.; Park, R.F.; Stodart, B. Resistance in maize (Zea mays) to isolates of Puccinia sorghi from Eastern Australia. Phytopathology 2021, 111, 1751–1757. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, J.; Bala, R.; Srivastava, P.; Raheja, S.; Biswas, B. Evaluation of monogenic lines with known Lr genes and commercial wheat cultivars for leaf rust (Puccinia triticina) resistance across different environments in Punjab, India. Cereal Res. Commun. 2024, 52, 691–704. [Google Scholar] [CrossRef]
- Upadhaya, A.; Upadhaya, S.G.; Brueggeman, R. Association mapping with a diverse population of Puccinia graminis f. sp. tritici identified avirulence loci interacting with the barley Rpg1 stem rust resistance gene. BMC Genom. 2024, 25, 751. [Google Scholar] [CrossRef]
- Gao, Q.; Zheng, R.; Lu, J.; Li, X.; Wang, D.; Cai, X.; Ren, X.; Kong, Q. Trends in the potential of stilbenes to improve plant stress tolerance: Insights of plant defense mechanisms in response to biotic and abiotic stressors. J. Agric. Food Chem. 2024, 72, 7655–7671. [Google Scholar] [CrossRef] [PubMed]
- Muha-Ud-Din, G.; Ali, F.; Hameed, A.; Naqvi, S.A.H.; Nizamani, M.M.; Jabran, M.; Sarfraz, S.; Yong, W. CRISPR/Cas9-based genome editing: A revolutionary approach for crop improvement and global food security. Physiol. Mol. Plant Pathology 2023, 129, 102191. [Google Scholar] [CrossRef]
- Poltronieri, P.; Brutus, A.; Reca, I.B.; Francocci, F.; Cheng, X.; Stigliano, E. Engineering plant leucine-rich repeat receptors for enhanced pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). In Applied Plant Biotechnology for Improving Resistance to Biotic Stress; Academic Press: Cambridge, MA, USA, 2020; pp. 1–31. [Google Scholar] [CrossRef]
- Wu, X.; Bian, Q.; Gao, Y.; Ni, X.; Sun, Y.; Xuan, Y.; Cao, Y.; Li, T. Evaluation of resistance to powdery mildew and identification of resistance genes in wheat cultivars. PeerJ 2021, 9, e10425. [Google Scholar] [CrossRef]
- Chen, Y.; Chao, Q.; Tan, G.; Zhao, J.; Zhang, M.; Ji, Q.; Xu, M. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor. Appl. Genet. 2008, 117, 1241–1252. [Google Scholar] [CrossRef]
- Hossain, M.T.; Akhter, M.S.; Islam, M.M.; Faruk, M.I.; Chung, Y.R. Cross-talks about hemibiotrophic-necrotrophic pathogens by endophytic Bacillus-based EMOs. In Plant Endophytes and Secondary Metabolites; Academic Press: Cambridge, MA, USA, 2024; pp. 235–253. [Google Scholar] [CrossRef]
- Gul, S.; Mendoza-Rojas, G.; Hessler, N.; Galle, S.; Smits, S.H.; Altegoer, F.; Gohre, V. Jasmonic acid signalling is targeted by a smut fungal Tin2-fold effector. bioRxiv 2024. [Google Scholar] [CrossRef]
- Gutjahr, C.; Paszkowski, U. Weights in the balance: Jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol. Plant-Microbe Interact. 2009, 22, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Annan, E.N.; Huang, L. Molecular mechanisms of the Co-evolution of Wheat and Rust pathogens. Plants 2023, 12, 1809. [Google Scholar] [CrossRef] [PubMed]
- Aerts, N.; Pereira Mendes, M.; Van Wees, S.C. Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J. 2021, 105, 489–504. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, C.; Wang, L.; Zhao, C.; Kang, Z.; Wang, X. Haustoria–arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2020, 21, 83–94. [Google Scholar] [CrossRef]
- Patkar, R.N.; Naqvi, N.I. Fungal manipulation of hormone-regulated plant defense. PLoS Pathog. 2017, 13, e1006334. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Qi, X. Signaling in plant disease resistance and symbiosis. J. Integr. Plant Biol. 2008, 50, 799–807. [Google Scholar] [CrossRef]
- Alves, M.S.; Soares, Z.G.; Vidigal, P.M.P.; Barros, E.G.; Poddanosqui, A.M.P.; Aoyagi, L.N.; Abdelnoor, R.V.; Marcelino-Guimarães, F.C.; Fietto, L.G. Differential expression of four soybean bZIP genes during Phakopsora pachyrhizi infection. Funct. Integr. Genom. 2015, 15, 685–696. [Google Scholar] [CrossRef]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Takahashi, H.; Kanayama, Y.; Zheng, M.S.; Kusano, T.; Hase, S.; Ikegami, M.; Shah, J. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol. 2004, 45, 803–809. [Google Scholar] [CrossRef]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef]
- Sahu, R.; Prabhakaran, N.; Kundu, P.; Kumar, A. Differential response of phytohormone signalling network determines nonhost resistance in rice during wheat stem rust (Puccinia graminis f. sp. tritici) colonization. Plant Pathol. 2021, 70, 1409–1420. [Google Scholar] [CrossRef]
- Iqbal, N.; Czékus, Z.; Ördög, A.; Poór, P. The main fungal pathogens and defense-related hormonal signaling in crops. In Plant Hormones in Crop Improvement; Academic Press: Cambridge, MA, USA, 2023; pp. 307–331. [Google Scholar] [CrossRef]
- Dixit, S.; Grover, A.; Pushkar, S.; Singh, S.B. ABA-induced SA accumulation causes higher susceptibility in B. juncea as compared to tolerant genotypes against A. brassicae. bioRxiv 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Li, T.; Chen, Y.; Zhang, L.; Zhao, G.; Zhuang, J.; Zhao, W.; Gao, L.; Xia, T. Airborne fungus-induced biosynthesis of anthocyanins in Arabidopsis thaliana via jasmonic acid and salicylic acid signaling. Plant Sci. 2020, 300, 110635. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Long, J.; Cui, Y.; Wang, Z.; Liu, C.; Liu, F.; Wang, Z.; Li, Q. Regulation of hormone pathways in wheat infested by Blumeria graminis f. sp. tritici. BMC Plant Biol. 2023, 23, 554. [Google Scholar] [CrossRef]
- Dallery, J.-F.; Zimmer, M.; Halder, V.; Suliman, M.; Pigné, S.; Le Goff, G.; Gianniou, D.D.; Trougakos, I.P.; Ouazzani, J.; Gasperini, D.; et al. Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B. J. Exp. Bot. 2020, 71, 2910–2921. [Google Scholar] [CrossRef]
- Pelgrom, A.J.; Van den Ackerveken, G. Microbial pathogen effectors in plant disease. In eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Oblessuc, P.R.; Obulareddy, N.; DeMott, L.; Matiolli, C.C.; Thompson, B.K.; Melotto, M. JAZ4 is involved in plant defense, growth, and development in Arabidopsis. Plant J. 2020, 101, 371–383. [Google Scholar] [CrossRef]
- Fonseca, S.; Radhakrishnan, D.; Prasad, K.; Chini, A. Fungal production and manipulation of plant hormones. Curr. Med. Chem. 2018, 25, 253–267. [Google Scholar] [CrossRef]
- Fatima, U.; Senthil-Kumar, M. Plant and pathogen nutrient acquisition strategies. Front. Plant Sci. 2015, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- Mierziak, J.; Wojtasik, W. Epigenetic weapons of plants against fungal pathogens. BMC Plant Biol. 2024, 24, 175. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Hada, A.; Biswas, S.; Mishra, S.; Prusty, M.R.; Das, S.P.; Ray, S.; Kumar, A.; Sarker, U. Jasmonic Acid (JA) in plant immune response: Unravelling complex molecular mechanisms and networking of defence signalling against pathogens. J. Plant Growth Regul. 2024, 1–26. [Google Scholar] [CrossRef]
- Mishra, S.; Roychowdhury, R.; Ray, S.; Hada, A.; Kumar, A.; Sarker, U.; Aftab, T.; Das, R. Salicylic acid (SA)-mediated plant immunity against biotic stresses: An insight on molecular components and signaling mechanism. Plant Stress 2024, 11, 100427. [Google Scholar] [CrossRef]
- Spoel, S.H.; Dong, X. Salicylic acid in plant immunity and beyond. Plant Cell 2024, 36, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Kazan, K.; Lyons, R. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 2014, 26, 2285–2309. [Google Scholar] [CrossRef]
- Ghosh, P.; Roychoudhury, A. Molecular basis of salicylic acid–phytohormone crosstalk in regulating stress tolerance in plants. Braz. J. Bot. 2024, 47, 735–750. [Google Scholar] [CrossRef]
- Han, X.; Kahmann, R. Manipulation of phytohormone pathways by effectors of filamentous plant pathogens. Front. Plant Sci. 2019, 10, 822. [Google Scholar] [CrossRef]
- He, Q.; Liu, Y.; Liang, P.; Liao, X.; Li, X.; Li, X.; Shi, D.; Liu, W.; Lin, C.; Zheng, F.; et al. A novel chorismate mutase from Erysiphe quercicola performs dual functions of synthesizing amino acids and inhibiting plant salicylic acid synthesis. Microbiol. Res. 2021, 242, 126599. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.-N.; Li, Y.-T.; Wu, Y.-Z.; Li, T.; Geng, R.; Cao, J.; Zhang, W.; Tan, X.-L. Plant disease resistance-related signaling pathways: Recent progress and future prospects. Int. J. Mol. Sci. 2022, 23, 16200. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 2019, 50, 29–36. [Google Scholar] [CrossRef]
- Liu, T.; Song, T.; Zhang, X.; Yuan, H.; Su, L.; Li, W.; Xu, J.; Liu, S.; Chen, L.; Chen, T.; et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat. Commun. 2014, 5, 4686. [Google Scholar] [CrossRef]
- Zheng, X.; Long, Y.; Liu, X.; Han, G.; Geng, X.; Ju, X.; Chen, W.; Xu, T.; Tang, N. RcWRKY40 regulates the antagonistic SA–JA pathway in response to Marssonina rosae infection. Sci. Hortic. 2024, 332, 113178. [Google Scholar] [CrossRef]
- Macioszek, V.K.; Jęcz, T.; Ciereszko, I.; Kononowicz, A.K. Jasmonic acid as a mediator in plant response to necrotrophic fungi. Cells 2023, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Hückelhoven, R. Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol. Lett. 2005, 245, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Caillaud, M.C.; Asai, S.; Rallapalli, G.; Piquerez, S.; Fabro, G.; Jones, J.D. A downy mildew effector attenuates salicylic acid–triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol. 2013, 11, e1001732. [Google Scholar] [CrossRef]
- Saja, D.; Janeczko, A.; Barna, B.; Skoczowski, A.; Dziurka, M.; Kornaś, A.; Gullner, G. Powdery mildew-induced hormonal and photosynthetic changes in barley near isogenic lines carrying various resistant genes. Int. J. Mol. Sci. 2020, 21, 4536. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, R.; Rajarammohan, S.; Dubey, H.; Kiran, K.; Rawal, H.; Sonah, H.; Deshmukh, R.; Sharma, T.R. intrinsically disordered kiwellin protein-like effectors target plant chloroplasts and are extensively present in rust fungi. Mol. Biotechnol. 2024, 66, 845–864. [Google Scholar] [CrossRef]
- García-Carnero, L.C.; Martínez-Álvarez, J.A.; Salazar-García, L.M.; Lozoya-Pérez, N.E.; González-Hernández, S.E.; Tamez-Castrellón, A.K. Recognition of fungal components by the host immune system. Curr. Protein Pept. Sci. 2020, 21, 245–264. [Google Scholar] [CrossRef]
- Kataria, R.; Kaundal, R. Deciphering the host–pathogen interactome of the wheat–common bunt system: A step towards enhanced resilience in next generation wheat. Int. J. Mol. Sci. 2022, 23, 2589. [Google Scholar] [CrossRef]
- Tanaka, S.; Han, X.; Kahmann, R. Microbial effectors target multiple steps in the salicylic acid production and signaling pathway. Front. Plant Sci. 2015, 6, 349. [Google Scholar] [CrossRef]
- Zhong, Q.; Hu, H.; Fan, B.; Zhu, C.; Chen, Z. Biosynthesis and roles of salicylic acid in balancing stress response and growth in plants. Int. J. Mol. Sci. 2021, 22, 11672. [Google Scholar] [CrossRef]
- Yu, C.; Qi, J.; Han, H.; Wang, P.; Liu, C. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. Mol. Plant Pathol. 2023, 24, 495–509. [Google Scholar] [CrossRef]
- Saado, I.; Chia, K.-S.; Betz, R.; Alcântara, A.; Pettkó-Szandtner, A.; Navarrete, F.; D’Auria, J.C.; Kolomiets, M.V.; Melzer, M.; Feussner, I.; et al. Effector-mediated relocalization of a maize lipoxygenase protein triggers susceptibility to Ustilago maydis. Plant Cell 2022, 34, 2785–2805. [Google Scholar] [CrossRef]
- Elhamouly, N.A.; Hewedy, O.A.; Zaitoon, A.; Miraples, A.; Elshorbagy, O.T.; Hussien, S.; El-Tahan, A.; Peng, D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Front. Plant Sci. 2022, 13, 1044896. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Roychoudhury, A. Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant Cell Rep. 2023, 42, 961–974. [Google Scholar] [CrossRef]
- Gietler, M.; Fidler, J.; Labudda, M.; Nykiel, M. Abscisic acid—Enemy or savior in the response of cereals to abiotic and biotic stresses? Int. J. Mol. Sci. 2020, 21, 4607. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; He, Q.; Li, S.; Liu, W.; Lin, C.; Miao, W. A candidate secreted effector protein of rubber tree powdery mildew fungus contributes to infection by regulating plant ABA biosynthesis. Front. Microbiol. 2020, 11, 591387. [Google Scholar] [CrossRef]
- García-Andrade, J.; González, B.; Gonzalez-Guzman, M.; Rodriguez, P.L.; Vera, P. The role of ABA in plant immunity is mediated through the PYR1 receptor. Int. J. Mol. Sci. 2020, 21, 5852. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Yuan, W.; Xu, W.; Zhang, Q. Mechanisms of abscisic acid-mediated drought stress responses in plants. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar] [CrossRef]
- Vidhyasekaran, P.; Vidhyasekaran, P. Bioengineering and molecular manipulation of salicylic acid signaling system to activate plant immune responses for crop disease management. In Plant Innate Immunity Signals and Signaling Systems: Bioengineering and Molecular Manipulation for Crop Disease Management; Springer: Dordrecht, The Netherlands, 2020; pp. 169–221. [Google Scholar] [CrossRef]
- Li, Z.; Ahammed, G.J. Salicylic acid and jasmonic acid in elevated CO2-induced plant defense response to pathogens. J. Plant Physiol. 2023, 286, 154019. [Google Scholar] [CrossRef] [PubMed]
- Correr, F.H.; Hosaka, G.K.; Gómez, S.G.P.; Cia, M.C.; Vitorello, C.B.M.; Camargo, L.E.A.; Massola, N.S.; Carneiro, M.S.; Margarido, G.R.A.A. Time-series expression profiling of sugarcane leaves infected with Puccinia kuehnii reveals an ineffective defense system leading to susceptibility. Plant Cell Rep. 2020, 39, 873–889. [Google Scholar] [CrossRef]
- Jensen, M.K.; Hagedorn, P.H.; De Torres-Zabala, M.; Grant, M.R.; Rung, J.H.; Collinge, D.B.; Lyngkjaer, M.F. Transcriptional regulation by an NAC (NAM–ATAF1, 2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J. 2008, 56, 867–880. [Google Scholar] [CrossRef]
- Son, G.H.; Wan, J.; Kim, H.J.; Nguyen, X.C.; Chung, W.S.; Hong, J.C.; Stacey, G. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Mol. Plant-Microbe Interact. 2012, 25, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Li, Y.; Sheng, J.; Shen, L. Recent advances in dissecting the function of ethylene in interaction between host and pathogen. J. Agric. Food Chem. 2024, 72, 4552–4563. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; Liao, W. The involvement of gaseous signaling molecules in plant MAPK cascades: Function and signal transduction. Planta 2021, 254, 127. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, L.; Xing, Q.; Zhao, Y.; Qi, H. CmPIF8-CmERF27-CmACS10-mediated ethylene biosynthesis modulates red light-induced powdery mildew resistance in oriental melon. Plant Cell Environ. 2024. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Y.; Guo, Z.; Wang, N.; Wegner, A.; Wang, J.; Zou, X.; Hu, J.; Liu, M.; Zhang, H.; et al. MoIug4 is a novel secreted effector promoting rice blast by counteracting host OsAHL1-regulated ethylene gene transcription. New Phytol. 2022, 235, 1163–1178. [Google Scholar] [CrossRef]
- Van der Ent, S.; Pieterse, C.M. Ethylene: Multi-tasker in plant–attacker interactions. Annu. Plant Rev. Vol. 44 Plant Horm. Ethyl. 2012, 44, 343–377. [Google Scholar] [CrossRef]
- Jia, M.; Li, X.; Wang, W.; Li, T.; Dai, Z.; Chen, Y.; Zhang, K.; Zhu, H.; Mao, W.; Feng, Q.; et al. SnRK2 subfamily I protein kinases regulate ethylene biosynthesis by phosphorylating HB transcription factors to induce ACO1 expression in apple. New Phytol. 2022, 234, 1262–1277. [Google Scholar] [CrossRef] [PubMed]
- Akram, S.; Ahmed, A.; He, P.; He, P.; Liu, Y.; Wu, Y.; Munir, S.; He, Y. Uniting the role of endophytic fungi against plant pathogens and their interaction. J. Fungi 2023, 9, 72. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Hoang, N.-H.; Tao, F.; Fu, T.-T.; Guo, S.-J.; Guo, C.-M.; Zhou, C.-B.; Thanh, T.-L.; Buensanteai, K. Transcriptomics and phytohormone metabolomics provide comprehensive insights into the response mechanism of tea against blister blight disease. Sci. Hortic. 2024, 324, 112611. [Google Scholar] [CrossRef]
- Hawku, M.D.; He, F.; Bai, X.; Islam, M.A.; Huang, X.; Kang, Z.; Guo, J. A R2R3 MYB transcription factor, TaMYB391, is positively involved in wheat resistance to Puccinia striiformis f. sp. tritici. Int. J. Mol. Sci. 2022, 23, 14070. [Google Scholar] [CrossRef]
- Zhang, W.; Forester, N.T.; Moon, C.D.; Maclean, P.H.; Gagic, M.; Arojju, S.K.; Card, S.D.; Matthew, C.; Johnson, R.D.; Johnson, L.J.; et al. Epichloë seed transmission efficiency is influenced by plant defense response mechanisms. Front. Plant Sci. 2022, 13, 1025698. [Google Scholar] [CrossRef] [PubMed]
- Langin, G.; Gouguet, P.; Üstün, S. Microbial effector proteins–a journey through the proteolytic landscape. Trends Microbiol. 2020, 28, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Ma, L.; Zhang, Y.; Wang, Q.; Gao, X. Dissection of the complex transcription and metabolism regulation networks associated with maize resistance to Ustilago maydis. Genes. 2021, 12, 1789. [Google Scholar] [CrossRef] [PubMed]
- Mapuranga, J.; Chang, J.; Zhang, L.; Zhang, N.; Yang, W. Fungal secondary metabolites and small RNAs enhance pathogenicity during plant-fungal pathogen interactions. J. Fungi 2022, 9, 4. [Google Scholar] [CrossRef]
- Ghozlan, M.H.; Eman, E.A.; Tokgöz, S.; Lakshman, D.K.; Mitra, A. Plant defense against necrotrophic pathogens. Am. J. Plant Sci. 2020, 11, 2122–2138. [Google Scholar] [CrossRef]
- Kou, M.Z.; Bastías, D.A.; Christensen, M.J.; Zhong, R.; Nan, Z.B.; Zhang, X.X. The plant salicylic acid signalling pathway regulates the infection of a biotrophic pathogen in grasses associated with an Epichloë endophyte. J. Fungi 2021, 7, 633. [Google Scholar] [CrossRef] [PubMed]
- Govrin, E.M.; Levine, A. Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR). Plant Mol. Biol. 2002, 48, 267–276. [Google Scholar] [CrossRef]
- Liu, J.Z.; Lam, H.M. Signal transduction pathways in plants for resistance against pathogens. Int. J. Mol. Sci. 2019, 20, 2335. [Google Scholar] [CrossRef]
- Singh, Y.; Nair, A.M.; Verma, P.K. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. Plant Commun. 2021, 2, 100142. [Google Scholar] [CrossRef]
- Wang, X.; Che, M.Z.; Khalil, H.B.; McCallum, B.D.; Bakkeren, G.; Rampitsch, C.; Saville, B.J. The role of reactive oxygen species in the virulence of wheat leaf rust fungus Puccinia triticina. Environ. Microbiol. 2020, 22, 2956–2967. [Google Scholar] [CrossRef]
- Zakaria, W.G.E.; Atia, M.M.; Ali, A.Z.; Abbas, E.E.A.; Salim, B.M.A.; Marey, S.A.; Hatamleh, A.A.; Elnahal, A.S.M. Assessing the effectiveness of eco-friendly management approaches for controlling wheat yellow rust and their impact on antioxidant enzymes. Plants 2023, 12, 2954. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Qin, Y.; Du, Y.; Song, C.; Kang, Z.; Guo, J.; Guo, J. Stripe rust effector Pst03724 modulates host immunity by inhibiting NAD kinase activation by a calmodulin. Plant Physiol. 2024, 195, 1624–1641. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, J.; Zhao, X.; Yu, L.; Wang, X.; Zhao, C.; Nasab, H.R.; Tang, C.; Wang, X. Stripe rust effector Pst_9302 inhibits wheat immunity to promote susceptibility. Plants 2023, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Bueno, T.V.; Fontes, P.P.; Abe, V.Y.; Utiyama, A.S.; Senra, R.L.; Oliveira, L.S.; dos Santos, A.B.; Ferreira, E.G.C.; Darben, L.M.; de Oliveira, A.B.; et al. A Phakopsora pachyrhizi effector suppresses PAMP-triggered immunity and interacts with a soybean glucan endo-1, 3-β-glucosidase to promote virulence. Mol. Plant-Microbe Interact. 2022, 35, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Grayczyk, J.P.; Seitz, J.M.; Lee, Y.; Link, T.I.; Choi, D.; Pedley, K.F.; Voegele, R.T.; Baum, T.J.; Whitham, S.A. Suppression or activation of immune responses by predicted secreted proteins of the soybean rust pathogen Phakopsora pachyrhizi. Mol. Plant-Microbe Interact. 2018, 31, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Mapuranga, J.; Zhang, N.; Zhang, L.; Liu, W.; Chang, J.; Yang, W. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. Front. Plant Sci. 2022, 13, 951095. [Google Scholar] [CrossRef]
- Gao, H.; Niu, J.; Zhao, W.; Zhang, D.; Li, S.; Liu, Y. Effect of powdery mildew on antioxidant enzymes of wheat grain. Plant Pathol. 2022, 71, 901–916. [Google Scholar] [CrossRef]
- Zandi, P.; Schnug, E. Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology 2022, 11, 155. [Google Scholar] [CrossRef]
- Biswas, K.; Adhikari, S.; Tarafdar, A.; Kumar, R.; Saha, S.; Ghosh, P. Reactive oxygen species and antioxidant defence systems in plants: Role and crosstalk under biotic stress. In Sustainable Agriculture in the Era of Climate Change; Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 265–292. [Google Scholar] [CrossRef]
- Mattila, H.; Österman-Udd, J.; Mali, T.; Lundell, T. Basidiomycota fungi and ROS: Genomic perspective on key enzymes involved in generation and mitigation of reactive oxygen species. Front. Fungal Biol. 2022, 3, 837605. [Google Scholar] [CrossRef]
- Ghanta, S.; Chattopadhyay, S. Glutathione as a signaling molecule-another challenge to pathogens: Another challenge to pathogens. Plant Signal. Behav. 2011, 6, 783–788. [Google Scholar] [CrossRef]
- Liu, R.; Meng, X.; Mo, C.; Wei, X.; Ma, A. Melanin of fungi: From classification to application. World J. Microbiol. Biotechnol. 2022, 38, 228. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, W.; Gu, Z.; Wang, L.; Guo, L.; Ma, S.; Li, C.; Sun, J.; Han, B.; Chang, J. Recent advances and progress on melanin: From source to application. Int. J. Mol. Sci. 2023, 24, 4360. [Google Scholar] [CrossRef]
- Baker, R.P.; Casadevall, A.; Camacho, E.; Cordero, R.J.B.; Waghmode, A.; Liporagi-Lopes, L.; Liu, A.; Mattoon, E.R.; Mudrak, N. The role of melanin in fungal disease. In Melanins: Functions, Biotechnological Production, and Applications; Gosset, G., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef] [PubMed]
- Juárez, O.; Guerra, G.; Velázquez, I.; Flores-Herrera, O.; Rivera-Pérez, R.E.; Pardo, J.P. The physiologic role of alternative oxidase in Ustilago maydis. FEBS J. 2006, 273, 4603–4615. [Google Scholar] [CrossRef] [PubMed]
- Jwa, N.S.; Hwang, B.K. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front. Plant Sci. 2017, 8, 1687. [Google Scholar] [CrossRef]
- Kunjeti, S.G.; Iyer, G.; Johnson, E.; Li, E.; Broglie, K.E.; Rauscher, G.; Rairdan, G.J. Identification of Phakopsora pachyrhizi candidate effectors with virulence activity in a distantly related pathosystem. Front. Plant Sci. 2016, 7, 269. [Google Scholar] [CrossRef]
- Romero-Aguilar, L.; Vázquez-Meza, H.; Guerra-Sánchez, G.; Luqueño-Bocardo, O.I.; Pardo, J.P. The mitochondrial alternative oxidase in ustilago maydis is not involved in response to oxidative stress induced by Paraquat. J. Fungi 2022, 8, 1221. [Google Scholar] [CrossRef]
- Mathur, V.; Sinha, P.G.; Noor, S.A. Unraveling the coevolutionary arms race: Insights into the dynamic interplay of plants, insects and associated organisms. In Plant Resistance to Insects in Major Field Crops; Springer Nature: Singapore, 2024; pp. 13–36. [Google Scholar] [CrossRef]
- de Souza, C.R.; Serrão, C.P.; Barros, N.L.F.; dos Reis, S.P.; Marques, D.N. Plant bZIP proteins: Potential use in agriculture-A review. Curr. Protein Pept. Sci. 2024, 25, 107–119. [Google Scholar] [CrossRef]
- Rajesh, N.; Gupta, M.K.; Gouda, G.; Donde, R.; Sabarinathan, S.; Dash, G.K.; Ponnana, M.; Behera, L. Plant pathogen co-evolution in rice crop. In Applications of Bioinformatics in Rice Research; Springer: Singapore, 2021; pp. 297–314. [Google Scholar]
- Lorrai, R.; Ferrari, S. Host cell wall damage during pathogen infection: Mechanisms of perception and role in plant-pathogen interactions. Plants 2021, 10, 399. [Google Scholar] [CrossRef]
- Voigt, C.A.; Somerville, S.C. Callose in biotic stress (pathogenesis): Biology, biochemistry and molecular biology of callose in plant defence: Callose deposition and turnover in plant–pathogen interactions. In Chemistry, Biochemistry, and Biology of 1–3 Beta Glucans and Related Polysaccharides; Academic Press: Cambridge, MA, USA, 2009; pp. 525–562. [Google Scholar] [CrossRef]
- Mehta, S.; Chakraborty, A.; Roy, A.; Singh, I.K.; Singh, A. Fight hard or die trying: Current status of lipid signaling during plant–pathogen interaction. Plants 2021, 10, 1098. [Google Scholar] [CrossRef]
- Croll, D.; McDonald, B.A. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Mol. Ecol. 2017, 26, 2027–2040. [Google Scholar] [CrossRef] [PubMed]
- Sood, M.; Kapoor, D.; Kumar, V.; Kalia, N.; Bhardwaj, R.; Sidhu, G.P.; Sharma, A. Mechanisms of plant defense under pathogen stress: A review. Curr. Protein Pept. Sci. 2021, 22, 376–395. [Google Scholar] [CrossRef]
- Tiku, A.R. Antimicrobial compounds (phytoanticipins and phytoalexins) and their role in plant defense. In Co-Evolution of Secondary Metabolites; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 845–868. [Google Scholar] [CrossRef]
- Ahmed, S.; Kovinich, N. Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochem. Rev. 2021, 20, 483–505. [Google Scholar] [CrossRef]
- Pontes JG, D.M.; Fernandes, L.S.; dos Santos, R.V.; Tasic, L.; Fill, T.P. Virulence factors in the phytopathogen–host interactions: An overview. J. Agric. Food Chem. 2020, 68, 7555–7570. [Google Scholar] [CrossRef]
- Dev, M.; Dev, V.; Singh, K.; Pant, P.; Rawat, S. Chapter 7 Role of phytoalexins in plant disease resistance. In Biorationals and Biopesticides: Pest Management; Kumar, R., de Oliveira, M., de Aguiar Andrade, E., Suyal, D., Soni, R., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2024; pp. 127–140. [Google Scholar] [CrossRef]
- Salinas, P.; Velozo, S.; Herrera-Vásquez, A. Recent insights into salicylic acid accumulation: Emerging molecular players and novel perspectives on plant development and nutrition. J. Exp. Bot. 2024, erae309. [Google Scholar] [CrossRef]
- Ali, B. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatal. Agric. Biotechnol. 2021, 31, 101884. [Google Scholar] [CrossRef]
- Ponce de Leon, I.; Schmelz, E.A.; Gaggero, C.; Castro, A.; Alvarez, A.; Montesano, M. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. Mol. Plant Pathol. 2012, 13, 960–974. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.J.; Gonzales-Huerta, L.E.; Armstrong-James, D. Fungal-induced programmed cell death. J. Fungi 2021, 7, 231. [Google Scholar] [CrossRef]
- Jogawat, A.; Yadav, B.; Chhaya Lakra, N.; Singh, A.K.; Narayan, O.P. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. Physiol. Plant. 2021, 172, 1106–1132. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Cai, X.; Han, Z.; Si, J.; Chen, D. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. Int. J. Mol. Sci. 2022, 23, 3945. [Google Scholar] [CrossRef]
- Scott, B.; Mesarich, C. (Eds.) . Plant Relationships: Fungal-Plant Interactions; Springer Nature: Cham, Switzerland, 2022; Volume 5. [Google Scholar] [CrossRef]
- Proietti, S.; Bertini, L.; Timperio, A.M.; Zolla, L.; Caporale, C.; Caruso, C. Crosstalk between salicylic acid and jasmonate in Arabidopsis investigated by an integrated proteomic and transcriptomic approach. Mol. BioSystems 2013, 9, 1169–1187. [Google Scholar] [CrossRef] [PubMed]
- Walling, L.L. Adaptive defense responses to pathogens and insects. Adv. Bot. Res. 2009, 51, 551–612. [Google Scholar] [CrossRef]
- Noman, A.; Aqeel, M.; Qari, S.H.; Al Surhanee, A.A.; Yasin, G.; Alamri, S.; Hashem, M.; Al-Saadi, A.M. Plant hypersensitive response vs pathogen ingression: Death of few gives life to others. Microb. Pathog. 2020, 145, 104224. [Google Scholar] [CrossRef] [PubMed]
- Nürnberger, T.; Kemmerling, B. Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. Annu. Plant Rev. 2009, 34, 16–47. [Google Scholar] [CrossRef]
- Duan, Y.; Ma, S.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. Transcriptome changes associated with apple (Malus domestica) root defense response after Fusarium proliferatum f. sp. Malus domestica infection. BMC Genom. 2022, 23, 484. [Google Scholar]
- Arya, G.C.; Sarkar, S.; Manasherova, E.; Aharoni, A.; Cohen, H. The plant cuticle: An ancient guardian barrier set against long-standing rivals. Front. Plant Sci. 2021, 12, 663165. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Yang, Y. Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiol. Biochem. 2021, 165, 200–206. [Google Scholar] [CrossRef]
- Arora, J.; Goyal, S.; Ramawat, K.G. Co-evolution of pathogens, mechanism involved in pathogenesis and biocontrol of plant diseases: An overview. In Plant Defence: Biological Control; Springer: Dordrecht, The Netherlands, 2012; pp. 3–22. [Google Scholar] [CrossRef]
- Kamle, M.; Borah, R.; Bora, H.; Jaiswal, A.K.; Singh, R.K.; Kumar, P. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): Role and mechanism of action against phytopathogens. In Fungal Biotechnology and Bioengineering; Springer: Cham, Switzerland, 2020; pp. 457–470. [Google Scholar] [CrossRef]
- Kashyap, S.; Agarwala, N.; Sunkar, R. Understanding plant stress memory traits can provide a way for sustainable agriculture. Plant Sci. 2023, 340, 111954. [Google Scholar] [CrossRef]
- Campos, M.D.; Patanita, M.; Varanda, C.; Materatski, P.; Felix MD, R. Plant-pathogen interaction. Biology 2021, 10, 444. [Google Scholar] [CrossRef]
- Kusch, S.; Qian, J.; Loos, A.; Kümmel, F.; Spanu, P.D.; Panstruga, R. Long-term and rapid evolution in powdery mildew fungi. Mol. Ecol. 2024, 33, e16909. [Google Scholar] [CrossRef]
- Abdul Malik, N.A.; Kumar, I.S.; Nadarajah, K. Elicitor and receptor molecules: Orchestrators of plant defense and immunity. Int. J. Mol. Sci. 2020, 21, 963. [Google Scholar] [CrossRef]
- Bezerra-Neto, J.P.; Araújo, F.C.; Ferreira-Neto, J.R.; Silva, R.L.; Borges, A.N.; Matos, M.K.; Silva, J.B.; Silva, M.D.; Kido, E.A.; Benko-Iseppon, A.M. NBS-LRR genes—Plant health sentinels: Structure, roles, evolution and biotechnological applications. In Applied Plant Biotechnology for Improving Resistance to Biotic Stress; Academic Press: Cambridge, MA, USA, 2020; pp. 63–120. [Google Scholar] [CrossRef]
- Bent, A.F.; Mackey, D. Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 2007, 45, 399–436. [Google Scholar] [CrossRef] [PubMed]
- Marone, D.; Russo, M.A.; Laidò, G.; De Leonardis, A.M.; Mastrangelo, A.M. Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: Active guardians in host defense responses. Int. J. Mol. Sci. 2013, 14, 7302–7326. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.N.A.; Carreón-Anguiano, K.G.; Islas-Flores, I.; Canto-Canché, B. Microbial effectors: Key determinants in plant health and disease. Microorganisms 2022, 10, 1980. [Google Scholar] [CrossRef]
- Can, H.; Seymen, M.; Turkmen, O. beneficial fungal strain: Molecular approaches in plant disease management. In Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management; Springer International Publishing: Cham, Switzerland, 2022; Volume 1, pp. 1–32. [Google Scholar] [CrossRef]
- Ab Rahman, S.F.S.; Singh, E.; Pieterse, C.M.; Schenk, P.M. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 2018, 267, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Selin, C.; De Kievit, T.R.; Belmonte, M.F.; Fernando, W.D. Elucidating the role of effectors in plant-fungal interactions: Progress and challenges. Front. Microbiol. 2016, 7, 600. [Google Scholar] [CrossRef] [PubMed]
- Witte, T.E.; Villeneuve, N.; Boddy, C.N.; Overy, D.P. Accessory chromosome-acquired secondary metabolism in plant pathogenic fungi: The evolution of biotrophs into host-specific pathogens. Front. Microbiol. 2021, 12, 664276. [Google Scholar] [CrossRef]
- Akhtar, N.; Perween, S.; Ansari, A.M.; Ahmad, M.R. Life style of fungi from biotrophy to necrotrophy and saprotrophy. Int. J. Agric. Appl. Sci. 2020, 1, 93–103. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Yan, J.; Guo, M.; Xu, L.; Hou, L.; Zou, Q. Comparative genome analysis of plant ascomycete fungal pathogens with different lifestyles reveals distinctive virulence strategies. BMC Genom. 2022, 23, 34. [Google Scholar] [CrossRef]
- Saharan, G.S.; Mehta, N.K.; Meena, P.D.; Saharan, G.S.; Mehta, N.K.; Meena, P.D. Molecular mechanisms of disease resistance. In Molecular Mechanism of Crucifer’s Host-Resistance; Springer: Singapore, 2021; pp. 1–75. [Google Scholar] [CrossRef]
- Hartmann, F.E.; Rodríguez de la Vega, R.C.; Carpentier, F.; Gladieux, P.; Cornille, A.; Hood, M.E.; Giraud, T. Understanding adaptation, coevolution, host specialization, and mating system in castrating anther-smut fungi by combining population and comparative genomics. Annu. Rev. Phytopathol. 2019, 57, 431–457. [Google Scholar] [CrossRef]
- Sharma, N.; Gautam, A.K. Early pathogenicity events in plant pathogenic fungi: A comprehensive review. Biol. Forum Int. J. 2019, 11, 24–34. [Google Scholar]
- Brown, N.A.; Hammond-Kosack, K.E. Secreted biomolecules in fungal plant pathogenesis. In Fungal Biomolecules: Sources, Applications and Recent Developments; Gupta, V.K., Mach, R.L., Sreenivasaprasad, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 263–310. [Google Scholar] [CrossRef]
- Mahadevakumar, S.; Sridhar, K.R. Diversity of pathogenic fungi in agricultural crops. In Plant, Soil and Microbes in Tropical Ecosystems; Dubey, S.K., Verma, S.K., Eds.; Springer: Singapore, 2021; pp. 101–149. [Google Scholar] [CrossRef]
- Pandit, M.A.; Kumar, J.; Gulati, S.; Bhandari, N.; Mehta, P.; Katyal, R.; Rawat, C.D.; Mishra, V.; Kaur, J. Major biological control strategies for plant pathogens. Pathogens 2022, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Doehlemann, G.; Wahl, R.; Horst, R.J.; Voll, L.M.; Usadel, B.; Poree, F.; Stitt, M.; Pons-Kühnemann, J.; Sonnewald, U.; Kahmann, R.; et al. Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 2008, 56, 181–195. [Google Scholar] [CrossRef]
- König, A.; Müller, R.; Mogavero, S.; Hube, B. Fungal factors involved in host immune evasion, modulation and exploitation during infection. Cell. Microbiol. 2021, 23, e13272. [Google Scholar] [CrossRef]
- Toruño, T.Y.; Stergiopoulos, I.; Coaker, G. Plant-pathogen effectors: Cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 2016, 54, 419–441. [Google Scholar] [CrossRef] [PubMed]
- Mesny, F.; Hacquard, S.; Thomma, B.P. Co-evolution within the plant holobiont drives host performance. EMBO Rep. 2023, 24, e57455. [Google Scholar] [CrossRef] [PubMed]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal evolution: Cellular, genomic and metabolic complexity. Biol. Rev. 2020, 95, 1198–1232. [Google Scholar] [CrossRef]
- Dodds, P.N.; Chen, J.; Outram, M.A. Pathogen perception and signaling in plant immunity. Plant Cell 2024, 36, 1465–1481. [Google Scholar] [CrossRef]
- Iqbal, Z.; Iqbal, M.S.; Hashem, A.; Abd_Allah, E.F.; Ansari, M.I. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front. Plant Sci. 2021, 12, 631810. [Google Scholar] [CrossRef]
- Peng, Y.; van Wersch, R.; Zhang, Y. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant-Microbe Interact. 2018, 31, 403–409. [Google Scholar] [CrossRef]
- Teixeira PJ, P.; Colaianni, N.R.; Fitzpatrick, C.R.; Dangl, J.L. Beyond pathogens: Microbiota interactions with the plant immune system. Curr. Opin. Microbiol. 2019, 49, 7–17. [Google Scholar] [CrossRef]
- Huang, S.; Jia, A.; Ma, S.; Sun, Y.; Chang, X.; Han, Z.; Chai, J. NLR signaling in plants: From resistosomes to second messengers. Trends Biochem. Sci. 2023, 48, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Andersen, E.J.; Ali, S.; Byamukama, E.; Yen, Y.; Nepal, M.P. Disease resistance mechanisms in plants. Genes 2018, 9, 339. [Google Scholar] [CrossRef]
- Appu, M.; Ramalingam, P.; Sathiyanarayanan, A.; Huang, J. An overview of plant defense-related enzymes responses to biotic stresses. Plant Gene 2021, 27, 100302. [Google Scholar] [CrossRef]
- Han, M.; Wang, C.; Zhu, W.; Pan, Y.; Huang, L.; Nie, J. Extracellular perception of multiple novel core effectors from the broad host-range pear anthracnose pathogen Colletotrichum fructicola in the nonhost Nicotiana benthamiana. Hortic. Res. 2024, 11, uhae078. [Google Scholar] [CrossRef]
- Liu, Y.; Jackson, E.; Liu, X.; Huang, X.; van der Hoorn, R.A.; Zhang, Y.; Li, X. Proteolysis in plant immunity. Plant Cell 2024, 36, 3099–3115. [Google Scholar] [CrossRef]
- Moreira, C.J.; Escórcio, R.; Bento, A.; Bjornson, M.; Tomé, A.S.; Martins, C.; Fanuel, M.; Martins, I.; Bakan, B.; Zipfel, C.; et al. Cutin-derived oligomers act as damage-associated molecular patterns in Arabidopsis thaliana. bioRxiv 2023. [Google Scholar] [CrossRef]
- Hou, S.; Liu, Z.; Shen, H.; Wu, D. Damage-associated molecular pattern-triggered immunity in plants. Front. Plant Sci. 2019, 10, 646. [Google Scholar] [CrossRef] [PubMed]
- Mapuranga, J.; Zhang, L.; Zhang, N.; Yang, W. The haustorium: The root of biotrophic fungal pathogens. Front. Plant Sci. 2022, 13, 963705. [Google Scholar] [CrossRef]
- Johns, L.E.; Goldman, G.H.; Ries, L.N.; Brown, N.A. Nutrient sensing and acquisition in fungi: Mechanisms promoting pathogenesis in plant and human hosts. Fungal Biol. Rev. 2021, 36, 1–14. [Google Scholar] [CrossRef]
- Bakkeren, G.; Szabo, L.J. Progress on molecular genetics and manipulation of rust fungi. Phytopathology 2020, 110, 532–543. [Google Scholar] [CrossRef] [PubMed]
Biotrophic Fungi | Effector Molecules | References |
---|---|---|
(rust fungi) | ||
Puccinia graminis | AvrSr35, AvrSr43, AvrSr45, PgtSR1 | [85,86,87,88] |
Puccinia striiformis | Ps87, PEC6, PNPi, Pst02549, Pst18220, Pst03196, Pst05023, Shr1, PstSCR1, PSEC2, PstCFEM1, PstCEP1 | [62,81,89,90,91,92,93,94,95,96,97] |
Uromyces appendiculatus | Uaca family (1–46), Ua-RTP1 | [98,99] |
(powdery mildew fungi) | ||
Blumeria graminis | AVRA1, Avrk1, Avr10, BEC1016, CSEP0064/BEC1054, CSEP0264/BEC1011, CSEP0105 | [77,100,101,102,103,104] |
Uncinula necator | CSEP087, EqCSEP01276 | [105,106] |
(smut fungi) | ||
Ustilago maydis | Hum3, Rsp1, Pit2, Pep1, Tin2, See1, Shy1, CMU1 | [16,107,108,109,110,111,112,113] |
Tilletia horrida | ThSCSP_12, gsr1, uan2 | [114,115] |
Sporisorium scitaminea | g2666, g3970, g6610, g1513, g3890, g4549, g1052, g4554, g5159 | [116,117] |
Gene/Protein | Type | Plant Species | BF | Function | Reference |
---|---|---|---|---|---|
RLP1 | RLP | Zea mays | Ustilago maydis | Targeted by effector Tin2, leading to degradation and suppression of defense responses | [111] |
Rp1, Rp3 | RLP | Zea mays, Triticum aestivum | Rust fungi | Recognizes specific avirulence effectors produced by rust fungi | [136] |
AvrL567 | Effector | Linum usitatissimum | Melampsora lini | Targets transcription factor TaSPT6 | [137] |
Lr10 | LRR-RLK | Triticum aestivum | Puccinia graminis f. sp. tritici | Confers resistance by recognizing pathogen-derived molecules | [138] |
Lr21 | LRR-RLK | Triticum aestivum | Puccinia triticina | Confers resistance by recognizing specific avirulence effectors | [139] |
Sr33 | LRR-RLK | Triticum aestivum | Puccinia graminis f. sp. tritici | Confers resistance by recognizing AvrSr33 effector | [140] |
Rpg1 | LRR-RLK | Hordeum vulgare | Puccinia graminis f. sp. hordei | Confers resistance by recognizing specific avirulence effectors | [141] |
REN1 | LRR-RLK | Vitis vinifera | Erysiphe necator | Confers resistance by recognizing specific avirulence effectors | [142] |
PMR4 | LRR-RLK | Arabidopsis thaliana | Golovinomyces cichoracearum | Confers resistance by recognizing specific pathogen-derived molecules | [143] |
Mla | LRR-RLK | Hordeum vulgare | Blumeria graminis f. sp. hordei | Confers resistance by recognizing specific Avr proteins | [144] |
Pm3 | LRR-RLK | Triticum aestivum | Blumeria graminis f. sp. tritici | Confers resistance by recognizing Avr proteins | [145] |
Mlo | LRR-RLK | Hordeum vulgare | Blumeria graminis f. sp. hordei | Confers broad-spectrum resistance when mutated | [100] |
Sr33 | NLR | Triticum aestivum | Puccinia graminis f. sp. tritici | Confers resistance by recognizing AvrSr33 effector | [140] |
Sr35 | NLR | Triticum aestivum | Puccinia graminis f. sp. tritici | Confers resistance by recognizing AvrSr35 effector | [146] |
Rpg1 | NLR | Hordeum vulgare | Puccinia graminis f. sp. hordei | Confers resistance by recognizing AvrRpg1 effector | [147] |
Rpp1 | NLR | Glycine max | Phakopsora pachyrhizi | Confers resistance by recognizing AvrRpp1 effector | [148] |
RPW8-NLR | NLR | Arabidopsis thaliana | Oidium spp. | Confers resistance against powdery mildew | [149] |
MLA-NLR | NLR | Hordeum vulgare | Blumeria graminis f. sp. hordei | Confers resistance by recognizing specific Avr effectors | [150] |
PMR4-NLR | NLR | Arabidopsis thaliana | Oidium spp. | Confers resistance by triggering defense responses | [151] |
SERK3, SERK1 | SERK | Solanum lycopersicum | Cladsporium fulvum | Involved in recognition of Avr9 effector | [152] |
TaWRKY1 | WRKY | Triticum aestivum | Puccinia striiformis f. sp. tritici | Targeted by AvrStb6, triggering ETI responses against Zymoseptoria tritici | [153] |
TaSYP71 | Syntaxin | Triticum aestivum | Blumeria graminis f. sp. tritici | Involved in vesicle trafficking and defense responses, targeted by AvrPm3b | [154] |
Mechanism | Description | Details | References |
---|---|---|---|
1. Disruption of defense signaling pathways | Effectors disrupt the defense signaling pathways of host plants | Effectors target key signaling components, leading to compromised defense responses. | [162] |
1.1. Interference with downstream signaling components involved in defense responses | Effectors interfere with the activation of defense-related genes or signaling cascades. | Interference with activation of defense-related genes or signaling cascades | [53] |
2. Mimic or block recognition of PAMPs | Effectors may mimic or block the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). | Effector molecules mimic PAMPs or block PRR binding sites. | [163] |
3. Interaction with host proteins | Effector molecules interact with specific host proteins such as receptor-like kinases (RLKs) and transcription factors. | Interaction with RLKs disrupts defense signal perception; Interaction with transcription factors manipulates gene expression. | [164,165] |
Fungal Group | Example Species | Penetration Mechanism | Key Effectors | Nutrient Acquisition Mechanism | Reproduction Strategy |
---|---|---|---|---|---|
Rust Fungi | Puccinia graminis f. sp. tritici, Melampsora lini, Uromyces appendiculatus | Appressoria formation at the tip of infection pegs, breaching cuticle and cell wall using enzymes and mechanical force | AvrSr35, AvrSr43, AvrSr45, PgtSR1, Ps87, PEC6, PNPi, Pst02549, Pst18220, Pst03196, Pst05023, Shr1, PstSCR1, PSEC2, PstCFEM1, PstCEP1, Uaca family (1–46), Ua-RTP1, Ua-RTP1 | Haustorium formation within plant cell | Growth and reproduction through extraction of nutrients from plant cells, multiplication of new fungal structures |
Powdery mildew fungi | Blumeria graminis, Uncinula necator, Leveilulla taurica | Conidia germination, germ tube differentiation into appressoria, mechanical breaching of the cell wall | AVRA1, Avrk1, Avr10, BEC1016, CSEP0064/BEC1054, CSEP0264/BEC1011, CSEP0105, CSEP087, EqCSEP01276 | Haustorium secretion of protein effectors to silence plant defenses | Rapid colonization and infection through asexual spores called conidia, dispersed by wind |
Smut Fungi | Ustilago maydis, Tilletia tritici, Sporisorium scitamineum | Teliospore germination, formation of dikaryotic infection hyphae, appressorium development at hyphae tips | Hum3, Rsp1, Pit2, Pep1, Tin2, See1, Shy1, CMU1, ThSCSP_12, gsr1, uan2, g2666, g3970, g6610, g1513, g3890, g4549, g1052, g1084, g4554, g5159 | Systemic colonization via intercellular hyphae, nutrient extraction from plant tissues | Systemic colonization, followed by meiosis and production of diploid teliospores, dispersed by wind or rain |
Mechanism | Description | Details | References |
---|---|---|---|
Effector-Triggered Immunity (ETI) | Plants respond to pathogenic microorganisms by detecting specific effectors secreted by the pathogens. | Recognition of effectors by plant resistance proteins (R proteins) leads to activation of a signaling cascade and subsequent defense responses such as hypersensitive response (HR), production of reactive oxygen species (ROS), and antimicrobial compounds. | [191] |
Gene-for-Gene Interaction | Each R protein recognizes a corresponding effector molecule produced by the pathogen. | Recognition of specific effectors secreted by Puccinia graminis by R genes such as Sr33, Sr35, Sr39, Sr21 | [192] |
ETI against P. striiformis involves the recognition of specific effectors by R proteins in wheat. | R genes Yr5, Yr10, Yr15, and Yr17 confer resistance against P. striiformis. | [81] | |
Recognition of specific effectors by R genes in barley and wheat leading to resistance against powdery mildew. | Mla and Mlo genes in barley; PMR (Powdery mildew resistance genes) in wheat | [193,194,195] | |
ETI against U. maydis involves the recognition of specific effectors by plant R genes. | Rp1-D, Rp3, Rp6 in maize conferring resistance against rust diseases. | [196] |
Biotrophic Fungus | Plant Defense | R Genes | References |
---|---|---|---|
(rust fungi) | |||
Puccinia graminis | LRR-RLK | Lr10, Lr21 | [197] |
Puccinia graminis | LRR-RLK | Sr22, Sr33, Sr35 | [157] |
Puccinia graminis | NLRs | Rpg1 | [198] |
(powdery mildew fungi) | |||
Uncinula necator | LRR-RLK | REN1 | [199] |
Oidium neolycopersici | LRR-RLK | PMR4 | [200] |
Blumeria graminis | LRR-RLK | Mla | [185] |
Blumeria graminis | LRR-RLK | Pm3 | [201] |
Blumeria graminis | LRR-RLK | Mlo | [202] |
(smut fungi) | |||
Ustilago maydis | RLPs | Rp1 and Rp3 | [203] |
Plant Hormones | Mechanism | Details | References |
---|---|---|---|
Jasmonic Acid (JA) | Manipulation of JA pathway by secreting effector molecules, interfering with JA signaling, and suppressing activation of defense responses | Inhibition of defense-related genes and production and secondary metabolites | [210,272] |
Interfering with JA biosynthesis or perception, promoting JA accumulation, and suppressing SA | Evasion of plant immune responses by suppressing JA-mediated defense pathways | [238,273] | |
Salicylic Acid (SA) | Direct targeting of SA pathway components, inhibiting SA biosynthesis, perception, or signaling | Inactivation of defense responses, including hypersensitive response (HR) and systemic acquired resistance (SAR) | [59,274,275] |
Promotion of JA or ETH synthesis while suppressing SA, shifting defense response away from SA-mediated defenses | Inhibition of SA-mediated defenses, facilitating colonization by BF | [274] | |
Abscisic Acid (ABA) | Suppression of ABA synthesis | Inhibition of ABA biosynthesis pathways, reducing ABA levels | [252] |
Interference with ABA signaling pathways | Manipulation of ABA receptors or downstream signaling components | [276] | |
Manipulation of hormonal balance | Modulation of the balance between ABA and other hormones such as JA, SA, and ETH | [231] | |
Ethylene (ETH) | Disruption of ETH signaling pathway, inhibition of ETH biosynthesis or perception, leading to reduced ETH production | Induction of ETH-responsive genes involved in defense responses against BF | [59] |
Biotrophic Fungus | Mechanisms | Examples | References |
---|---|---|---|
Puccinia graminis | Production of antioxidant enzymes (SOD, CAT, POX) to neutralize ROS, secretion of effector molecules to interfere with ROS production or signaling pathways | SOD, CAT, POX, effector molecules | [295] |
Phakopsora pachyrhizi | Secretion of effector molecules to potentially manipulate host plant defenses, including modulation of ROS production or signaling pathways | Effector molecules | [296] |
Ustilago maydis | Production of antioxidant enzymes (SOD, CAT, POX), synthesis of glutathione, melanin pigments with antioxidant properties | SOD, CAT, POX, glutathione, melanin | [297] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva-Mora, M.; Capdesuñer, Y.; Villalobos-Olivera, A.; Moya-Jiménez, R.; Saa, L.R.; Martínez-Montero, M.E. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J. Fungi 2024, 10, 635. https://doi.org/10.3390/jof10090635
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. Journal of Fungi. 2024; 10(9):635. https://doi.org/10.3390/jof10090635
Chicago/Turabian StyleLeiva-Mora, Michel, Yanelis Capdesuñer, Ariel Villalobos-Olivera, Roberto Moya-Jiménez, Luis Rodrigo Saa, and Marcos Edel Martínez-Montero. 2024. "Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses" Journal of Fungi 10, no. 9: 635. https://doi.org/10.3390/jof10090635
APA StyleLeiva-Mora, M., Capdesuñer, Y., Villalobos-Olivera, A., Moya-Jiménez, R., Saa, L. R., & Martínez-Montero, M. E. (2024). Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. Journal of Fungi, 10(9), 635. https://doi.org/10.3390/jof10090635