Septin Organization and Dynamics for Budding Yeast Cytokinesis
Abstract
:1. Introduction
2. Budding Yeast Septins and Their Localization
3. Septin Organization and Cytokinesis in Budding Yeast
4. The Control of Septin Dynamics during the Cell Cycle
4.1. Septin Recruitment and Ring Assembly
4.2. Maturation into the Septin Collar
4.3. Transition into the Septin Double Ring
5. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Nishihama, R.; Onishi, M.; Pringle, J.R. New Insights into the Phylogenetic Distribution and Evolutionary Origins of the Septins. Biol. Chem. 2011, 392, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Shuman, B.; Momany, M. Septins From Protists to People. Front. Cell Dev. Biol. 2022, 9, 824850. [Google Scholar] [CrossRef] [PubMed]
- Hartwell, L.H.; Culotti, J.; Reid, B. Genetic Control of the Cell-Division Cycle in Yeast, I. Detection of Mutants. Proc. Natl. Acad. Sci. USA 1970, 66, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Hartwell, L.H. Genetic Control of the Cell Division Cycle in Yeast. IV. Genes Controlling Bud Emergence and Cytokinesis. Exp. Cell Res. 1971, 69, 265–276. [Google Scholar] [CrossRef]
- Hartwell, L.H.; Mortimer, R.K.; Culotti, J.; Culotti, M. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of Cdc Mutants. Genetics 1973, 74, 267–286. [Google Scholar] [CrossRef]
- Byers, B.; Goetsch, L. A Highly Ordered Ring of Membrane-Associated Filaments in Budding Yeast. J. Cell Biol. 1976, 69, 717–721. [Google Scholar] [CrossRef]
- Ford, S.K.; Pringle, J.R. Cellular Morphogenesis in the Saccharomyces Cerevisiae Cell Cycle: Localization of the CDC11 Gene Product and the Timing of Events at the Budding Site. Dev. Genet. 1991, 12, 281–292. [Google Scholar] [CrossRef]
- Haarer, B.K.; Pringle, J.R. Immunofluorescence Localization of the Saccharomyces Cerevisiae CDC12 Gene Product to the Vicinity of the 10-Nm Filaments in the Mother-Bud Neck. Mol. Cell. Biol. 1987, 7, 3678–3687. [Google Scholar]
- De Virgilio, C.; DeMarini, D.J.; Pringle, J.R. SPR28, a Sixth Member of the Septin Gene Family in Saccharomyces Cerevisiae That Is Expressed Specifically in Sporulating Cells. Microbiology 1996, 142 Pt 10, 2897–2905. [Google Scholar] [CrossRef]
- Mino, A.; Tanaka, K.; Kamei, T.; Umikawa, M.; Fujiwara, T.; Takai, Y. Shs1p: A Novel Member of Septin That Interacts with Spa2p, Involved in Polarized Growth inSaccharomyces Cerevisiae. Biochem. Biophys. Res. Commun. 1998, 251, 732–736. [Google Scholar] [CrossRef]
- Ozsarac, N.; Bhattacharyya, M.; Dawes, I.W.; Clancy, M.J. The SPR3 Gene Encodes a Sporulation-Specific Homologue of the Yeast CDC3/10/11/12 Family of Bud Neck Microfilaments and Is Regulated by ABFI. Gene 1995, 164, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Barral, Y.; Mermall, V.; Mooseker, M.S.; Snyder, M. Compartmentalization of the Cell Cortex by Septins Is Required for Maintenance of Cell Polarity in Yeast. Mol. Cell 2000, 5, 841–851. [Google Scholar] [CrossRef]
- Castillon, G.A.; Adames, N.R.; Rosello, C.H.; Seidel, H.S.; Longtine, M.S.; Cooper, J.A.; Heil-Chapdelaine, R.A. Septins Have a Dual Role in Controlling Mitotic Exit in Budding Yeast. Curr. Biol. 2003, 13, 654–658. [Google Scholar] [CrossRef]
- Longtine, M.S.; Theesfeld, C.L.; McMillan, J.N.; Weaver, E.; Pringle, J.R.; Lew, D.J. Septin-Dependent Assembly of a Cell Cycle-Regulatory Module in Saccharomyces Cerevisiae. Mol. Cell Biol. 2000, 20, 4049–4061. [Google Scholar] [CrossRef] [PubMed]
- Sakchaisri, K.; Asano, S.; Yu, L.-R.; Shulewitz, M.J.; Park, C.J.; Park, J.-E.; Cho, Y.-W.; Veenstra, T.D.; Thorner, J.; Lee, K.S. Coupling Morphogenesis to Mitotic Entry. Proc. Natl. Acad. Sci. USA 2004, 101, 4124–4129. [Google Scholar] [CrossRef] [PubMed]
- Kusch, J.; Meyer, A.; Snyder, M.P.; Barral, Y. Microtubule Capture by the Cleavage Apparatus Is Required for Proper Spindle Positioning in Yeast. Genes. Dev. 2002, 16, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- DeMarini, D.J.; Adams, A.E.M.; Fares, H.; Virgilio, C.D.; Valle, G.; Chuang, J.S.; Pringle, J.R. A Septin-Based Hierarchy of Proteins Required for Localized Deposition of Chitin in the Saccharomyces Cerevisiae Cell Wall. J. Cell Biol. 1997, 139, 75. [Google Scholar] [CrossRef]
- Wloka, C.; Nishihama, R.; Onishi, M.; Oh, Y.; Hanna, J.; Pringle, J.R.; Krauss, M.; Bi, E. Evidence That a Septin Diffusion Barrier Is Dispensable for Cytokinesis in Budding Yeast. Biol. Chem. 2011, 392, 813–829. [Google Scholar] [CrossRef]
- Estey, M.P.; Di Ciano-Oliveira, C.; Froese, C.D.; Bejide, M.T.; Trimble, W.S. Distinct Roles of Septins in Cytokinesis: SEPT9 Mediates Midbody Abscission. J. Cell Biol. 2010, 191, 741–749. [Google Scholar] [CrossRef]
- Joo, E.; Surka, M.C.; Trimble, W.S. Mammalian SEPT2 Is Required for Scaffolding Nonmuscle Myosin II and Its Kinases. Dev. Cell 2007, 13, 677–690. [Google Scholar] [CrossRef]
- Karasmanis, E.P.; Hwang, D.; Nakos, K.; Bowen, J.R.; Angelis, D.; Spiliotis, E.T. A Septin Double Ring Controls the Spatiotemporal Organization of the ESCRT Machinery in Cytokinetic Abscission. Curr. Biol. 2019, 29, 2174–2182.e7. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Froese, C.D.; Estey, M.P.; Trimble, W.S. SEPT9 Occupies the Terminal Positions in Septin Octamers and Mediates Polymerization-Dependent Functions in Abscission. J. Cell Biol. 2011, 195, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, M.J.; Liu, J.; Lavoie, B.D.; Wilde, A. Anillin-Dependent Organization of Septin Filaments Promotes Intercellular Bridge Elongation and Chmp4B Targeting to the Abscission Site. Open Biol. 2014, 4, 130190. [Google Scholar] [CrossRef]
- Surka, M.C.; Tsang, C.W.; Trimble, W.S. The Mammalian Septin MSF Localizes with Microtubules and Is Required for Completion of Cytokinesis. Mol. Biol. Cell 2002, 13, 3532–3545. [Google Scholar] [CrossRef] [PubMed]
- Tokhtaeva, E.; Capri, J.; Marcus, E.A.; Whitelegge, J.P.; Khuzakhmetova, V.; Bukharaeva, E.; Deiss-Yehiely, N.; Dada, L.A.; Sachs, G.; Fernandez-Salas, E.; et al. Septin Dynamics Are Essential for Exocytosis. J. Biol. Chem. 2015, 290, 5280–5297. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Yan, M.; Collins, R.F.; DiCiccio, J.E.; Grinstein, S.; Trimble, W.S. Mammalian Septins Are Required for Phagosome Formation. Mol. Biol. Cell 2008, 19, 1717–1726. [Google Scholar] [CrossRef]
- Hu, J.; Bai, X.; Bowen, J.R.; Dolat, L.; Korobova, F.; Yu, W.; Baas, P.W.; Svitkina, T.; Gallo, G.; Spiliotis, E.T. Septin-Driven Coordination of Actin and Microtubule Remodeling Regulates the Collateral Branching of Axons. Curr. Biol. 2012, 22, 1109–1115. [Google Scholar] [CrossRef]
- Li, C.-R.; Lee, R.T.-H.; Wang, Y.-M.; Zheng, X.-D.; Wang, Y. Candida Albicans Hyphal Morphogenesis Occurs in Sec3p-Independent and Sec3p-Dependent Phases Separated by Septin Ring Formation. J. Cell Sci. 2007, 120, 1898–1907. [Google Scholar] [CrossRef]
- Nguyen, P.A.; Field, C.M.; Groen, A.C.; Mitchison, T.J.; Loose, M. Using Supported Bilayers to Study the Spatiotemporal Organization of Membrane Bound Proteins. Methods Cell Biol. 2015, 128, 223–241. [Google Scholar] [CrossRef]
- Tada, T.; Simonetta, A.; Batterton, M.; Kinoshita, M.; Edbauer, D.; Sheng, M. Role of Septin Cytoskeleton in Spine Morphogenesis and Dendrite Development in Neurons. Curr. Biol. 2007, 17, 1752–1758. [Google Scholar] [CrossRef]
- Xie, Y.; Vessey, J.P.; Konecna, A.; Dahm, R.; Macchi, P.; Kiebler, M.A. The GTP-Binding Protein Septin 7 Is Critical for Dendrite Branching and Dendritic-Spine Morphology. Curr. Biol. 2007, 17, 1746–1751. [Google Scholar] [CrossRef]
- Hu, Q.; Milenkovic, L.; Jin, H.; Scott, M.P.; Nachury, M.V.; Spiliotis, E.T.; Nelson, W.J. A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution. Science 2010, 329, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Shindo, A.; Park, T.J.; Oh, E.C.; Ghosh, S.; Gray, R.S.; Lewis, R.A.; Johnson, C.A.; Attie-Bittach, T.; Katsanis, N.; et al. Planar Cell Polarity Acts through Septins to Control Collective Cell Movement and Ciliogenesis. Science 2010, 329, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Palander, O.; El-Zeiry, M.; Trimble, W.S. Uncovering the Roles of Septins in Cilia. Front. Cell Dev. Biol. 2017, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Tooley, A.J.; Gilden, J.; Jacobelli, J.; Beemiller, P.; Trimble, W.S.; Kinoshita, M.; Krummel, M.F. Amoeboid T Lymphocytes Require the Septin Cytoskeleton for Cortical Integrity and Persistent Motility. Nat. Cell Biol. 2009, 11, 17–26. [Google Scholar] [CrossRef]
- Dolat, L.; Hunyara, J.L.; Bowen, J.R.; Karasmanis, E.P.; Elgawly, M.; Galkin, V.E.; Spiliotis, E.T. Septins Promote Stress Fiber–Mediated Maturation of Focal Adhesions and Renal Epithelial Motility. J. Cell Biol. 2014, 207, 225–235. [Google Scholar] [CrossRef]
- Ihara, M.; Kinoshita, A.; Yamada, S.; Tanaka, H.; Tanigaki, A.; Kitano, A.; Goto, M.; Okubo, K.; Nishiyama, H.; Ogawa, O.; et al. Cortical Organization by the Septin Cytoskeleton Is Essential for Structural and Mechanical Integrity of Mammalian Spermatozoa. Dev. Cell 2005, 8, 343–352. [Google Scholar] [CrossRef]
- Chen, F.; Yan, B.; Ren, J.; Lyu, R.; Wu, Y.; Guo, Y.; Li, D.; Zhang, H.; Hu, J. FIT2 Organizes Lipid Droplet Biogenesis with ER Tubule-Forming Proteins and Septins. J. Cell Biol. 2021, 220, e201907183. [Google Scholar] [CrossRef]
- Moreno-Castellanos, N.; Rodríguez, A.; Rabanal-Ruiz, Y.; Fernández-Vega, A.; López-Miranda, J.; Vázquez-Martínez, R.; Frühbeck, G.; Malagón, M.M. The Cytoskeletal Protein Septin 11 Is Associated with Human Obesity and Is Involved in Adipocyte Lipid Storage and Metabolism. Diabetologia 2017, 60, 324–335. [Google Scholar] [CrossRef]
- Nurullin, L.F.; Khuzakhmetova, V.F.; Khaziev, E.F.; Samigullin, D.V.; Tsentsevitsky, A.N.; Skorinkin, A.I.; Bukharaeva, E.A.; Vagin, O. Reorganization of Septins Modulates Synaptic Transmission at Neuromuscular Junctions. Neuroscience 2019, 404, 91–101. [Google Scholar] [CrossRef]
- Tsang, C.W.; Estey, M.P.; DiCiccio, J.E.; Xie, H.; Patterson, D.; Trimble, W.S. Characterization of Presynaptic Septin Complexes in Mammalian Hippocampal Neurons. Biol. Chem. 2011, 392, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-M.; Fedchyshyn, M.J.; Grande, G.; Aitoubah, J.; Tsang, C.W.; Xie, H.; Ackerley, C.A.; Trimble, W.S.; Wang, L.-Y. Septins Regulate Developmental Switching from Microdomain to Nanodomain Coupling of Ca2+ Influx to Neurotransmitter Release at a Central Synapse. Neuron 2010, 67, 100–115. [Google Scholar] [CrossRef]
- Mostowy, S.; Bonazzi, M.; Hamon, M.A.; Tham, T.N.; Mallet, A.; Lelek, M.; Gouin, E.; Demangel, C.; Brosch, R.; Zimmer, C.; et al. Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures. Cell Host Microbe 2010, 8, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Krokowski, S.; Lobato-Márquez, D.; Chastanet, A.; Pereira, P.M.; Angelis, D.; Galea, D.; Larrouy-Maumus, G.; Henriques, R.; Spiliotis, E.T.; Carballido-López, R.; et al. Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes. Cell Host Microbe 2018, 24, 866–874.e4. [Google Scholar] [CrossRef] [PubMed]
- Dolat, L.; Hu, Q.; Spiliotis, E.T. Septin Functions in Organ System Physiology and Pathology. Biol. Chem. 2014, 395, 123–141. [Google Scholar] [CrossRef]
- Versele, M.; Gullbrand, B.; Shulewitz, M.J.; Cid, V.J.; Bahmanyar, S.; Chen, R.E.; Barth, P.; Alber, T.; Thorner, J. Protein-Protein Interactions Governing Septin Heteropentamer Assembly and Septin Filament Organization in Saccharomyces Cerevisiae. Mol. Biol. Cell 2004, 15, 4568–4583. [Google Scholar] [CrossRef]
- Cavini, I.A.; Leonardo, D.A.; Rosa, H.V.D.; Castro, D.K.S.V.; D’Muniz Pereira, H.; Valadares, N.F.; Araujo, A.P.U.; Garratt, R.C. The Structural Biology of Septins and Their Filaments: An Update. Front. Cell Dev. Biol. 2021, 9, 765085. [Google Scholar] [CrossRef]
- Bertin, A.; McMurray, M.A.; Pierson, J.; Thai, L.; McDonald, K.L.; Zehr, E.A.; García, G.; Peters, P.; Thorner, J.; Nogales, E. Three-Dimensional Ultrastructure of the Septin Filament Network in Saccharomyces Cerevisiae. Mol. Biol. Cell 2012, 23, 423–432. [Google Scholar] [CrossRef]
- Bridges, A.A.; Zhang, H.; Mehta, S.B.; Occhipinti, P.; Tani, T.; Gladfelter, A.S. Septin Assemblies Form by Diffusion-Driven Annealing on Membranes. Proc. Natl. Acad. Sci. USA 2014, 111, 2146–2151. [Google Scholar] [CrossRef]
- John, C.M.; Hite, R.K.; Weirich, C.S.; Fitzgerald, D.J.; Jawhari, H.; Faty, M.; Schläpfer, D.; Kroschewski, R.; Winkler, F.K.; Walz, T.; et al. The Caenorhabditis Elegans Septin Complex Is Nonpolar. EMBO J. 2007, 26, 3296–3307. [Google Scholar] [CrossRef]
- Rodal, A.A.; Kozubowski, L.; Goode, B.L.; Drubin, D.G.; Hartwig, J.H. Actin and Septin Ultrastructures at the Budding Yeast Cell Cortex. MBoC 2005, 16, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Sirajuddin, M.; Farkasovsky, M.; Hauer, F.; Kühlmann, D.; Macara, I.G.; Weyand, M.; Stark, H.; Wittinghofer, A. Structural Insight into Filament Formation by Mammalian Septins. Nature 2007, 449, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Field, C.M.; al-Awar, O.; Rosenblatt, J.; Wong, M.L.; Alberts, B.; Mitchison, T.J. A Purified Drosophila Septin Complex Forms Filaments and Exhibits GTPase Activity. J. Cell Biol. 1996, 133, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Arbizzani, F.; Mavrakis, M.; Hoya, M.; Ribas, J.C.; Brasselet, S.; Paoletti, A.; Rincon, S.A. Septin Filament Compaction into Rings Requires the Anillin Mid2 and Contractile Ring Constriction. Cell Rep. 2022, 39, 110722. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Morrell, J.L.; Jennings, J.L.; Link, A.J.; Gould, K.L. Requirements of Fission Yeast Septins for Complex Formation, Localization, and Function. Mol. Biol. Cell 2004, 15, 5551–5564. [Google Scholar] [CrossRef]
- Wu, J.Q.; Kuhn, J.R.; Kovar, D.R.; Pollard, T.D. Spatial and Temporal Pathway for Assembly and Constriction of the Contractile Ring in Fission Yeast Cytokinesis. Dev. Cell 2003, 5, 723–734. [Google Scholar] [CrossRef]
- Bertin, A.; McMurray, M.A.; Grob, P.; Park, S.S.; Garcia, G., 3rd; Patanwala, I.; Ng, H.L.; Alber, T.; Thorner, J.; Nogales, E. Saccharomyces Cerevisiae Septins: Supramolecular Organization of Heterooligomers and the Mechanism of Filament Assembly. Proc. Natl. Acad. Sci. USA 2008, 105, 8274–8279. [Google Scholar] [CrossRef]
- Garcia, G., 3rd; Bertin, A.; Li, Z.; Song, Y.; McMurray, M.A.; Thorner, J.; Nogales, E. Subunit-Dependent Modulation of Septin Assembly: Budding Yeast Septin Shs1 Promotes Ring and Gauze Formation. J. Cell Biol. 2011, 195, 993–1004. [Google Scholar] [CrossRef]
- Taveneau, C.; Blanc, R.; Péhau-Arnaudet, G.; Di Cicco, A.; Bertin, A. Synergistic Role of Nucleotides and Lipids for the Self-Assembly of Shs1 Septin Oligomers. Biochem. J. 2020, 477, 2697–2714. [Google Scholar] [CrossRef]
- Beber, A.; Alqabandi, M.; Prévost, C.; Viars, F.; Lévy, D.; Bassereau, P.; Bertin, A.; Mangenot, S. Septin-Based Readout of PI(4,5)P2 Incorporation into Membranes of Giant Unilamellar Vesicles. Cytoskeleton 2019, 76, 92–103. [Google Scholar] [CrossRef]
- Szuba, A.; Bano, F.; Castro-Linares, G.; Iv, F.; Mavrakis, M.; Richter, R.P.; Bertin, A.; Koenderink, G.H. Membrane Binding Controls Ordered Self-Assembly of Animal Septins. eLife 2021, 10, e63349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kong, C.; Xie, H.; McPherson, P.S.; Grinstein, S.; Trimble, W.S. Phosphatidylinositol Polyphosphate Binding to the Mammalian Septin H5 Is Modulated by GTP. Curr. Biol. 1999, 9, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Bertin, A.; McMurray, M.A.; Thai, L.; Garcia, G.; Votin, V.; Grob, P.; Allyn, T.; Thorner, J.; Nogales, E. Phosphatidylinositol-4,5-Bisphosphate Promotes Budding Yeast Septin Filament Assembly and Organization. J. Mol. Biol. 2010, 404, 711–731. [Google Scholar] [CrossRef] [PubMed]
- Tanaka-Takiguchi, Y.; Kinoshita, M.; Takiguchi, K. Septin-Mediated Uniform Bracing of Phospholipid Membranes. Curr. Biol. 2009, 19, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Garrenton, L.S.; Stefan, C.J.; McMurray, M.A.; Emr, S.D.; Thorner, J. Pheromone-Induced Anisotropy in Yeast Plasma Membrane Phosphatidylinositol-4,5-Bisphosphate Distribution Is Required for MAPK Signaling. Proc. Natl. Acad. Sci. USA 2010, 107, 11805–11810. [Google Scholar] [CrossRef]
- Rodríguez-Escudero, I.; Roelants, F.M.; Thorner, J.; Nombela, C.; Molina, M.; Cid, V.J. Reconstitution of the Mammalian PI3K/PTEN/Akt Pathway in Yeast. Biochem. J. 2005, 390, 613–623. [Google Scholar] [CrossRef]
- Casamayor, A.; Snyder, M. Molecular Dissection of a Yeast Septin: Distinct Domains Are Required for Septin Interaction, Localization, and Function. Mol. Cell. Biol. 2003, 23, 2762–2777. [Google Scholar] [CrossRef]
- Omrane, M.; Camara, A.S.; Taveneau, C.; Benzoubir, N.; Tubiana, T.; Yu, J.; Guérois, R.; Samuel, D.; Goud, B.; Poüs, C.; et al. Septin 9 Has Two Polybasic Domains Critical to Septin Filament Assembly and Golgi Integrity. iScience 2019, 13, 138–153. [Google Scholar] [CrossRef]
- Alaoui, F.E.; Al-Akiki, I.; Ibanes, S.; Lyonnais, S.; Sanchez-Fuentes, D.; Desgarceaux, R.; Cazevieille, C.; Blanchard, M.-P.; Parmeggiani, A.; Carretero-Genevrier, A.; et al. Septin Filament Assembly Assist the Lateral Organization of Membranes. bioRxiv 2024, preprint. [Google Scholar]
- Beber, A.; Taveneau, C.; Nania, M.; Tsai, F.-C.; Di Cicco, A.; Bassereau, P.; Lévy, D.; Cabral, J.T.; Isambert, H.; Mangenot, S.; et al. Membrane Reshaping by Micrometric Curvature Sensitive Septin Filaments. Nat. Commun. 2019, 10, 420. [Google Scholar] [CrossRef]
- Bridges, A.A.; Jentzsch, M.S.; Oakes, P.W.; Occhipinti, P.; Gladfelter, A.S. Micron-Scale Plasma Membrane Curvature Is Recognized by the Septin Cytoskeleton. J. Cell Biol. 2016, 213, 23–32. [Google Scholar] [CrossRef]
- Cannon, K.S.; Woods, B.L.; Crutchley, J.M.; Gladfelter, A.S. An Amphipathic Helix Enables Septins to Sense Micrometer-Scale Membrane Curvature. J. Cell Biol. 2019, 218, 1128–1137. [Google Scholar] [CrossRef]
- Ewers, H.; Tada, T.; Petersen, J.D.; Racz, B.; Sheng, M.; Choquet, D. A Septin-Dependent Diffusion Barrier at Dendritic Spine Necks. PLoS ONE 2014, 9, e113916. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.C.; Lin, Y.H.; Chen, H.I.; Wang, Y.Y.; Chiou, Y.W.; Lin, H.H.; Pan, H.A.; Wu, C.M.; Su, S.M.; Hsu, C.C.; et al. SEPT12 Mutations Cause Male Infertility with Defective Sperm Annulus. Hum. Mutat. 2012, 33, 710–719. [Google Scholar] [CrossRef]
- Khan, A.; Newby, J.; Gladfelter, A.S. Control of Septin Filament Flexibility and Bundling by Subunit Composition and Nucleotide Interactions. MBoC 2018, 29, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Frazier, J.A.; Wong, M.L.; Longtine, M.S.; Pringle, J.R.; Mann, M.; Mitchison, T.J.; Field, C. Polymerization of Purified Yeast Septins: Evidence That Organized Filament Arrays May Not Be Required for Septin Function. J. Cell Biol. 1998, 143, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Booth, E.A.; Vane, E.W.; Dovala, D.; Thorner, J. A Förster Resonance Energy Transfer (FRET)-Based System Provides Insight into the Ordered Assembly of Yeast Septin Hetero-Octamers*. J. Biol. Chem. 2015, 290, 28388–28401. [Google Scholar] [CrossRef] [PubMed]
- McMurray, M.A.; Bertin, A.; Garcia, G.; Lam, L.; Nogales, E.; Thorner, J. Septin Filament Formation Is Essential in Budding Yeast. Dev. Cell 2011, 20, 540–549. [Google Scholar] [CrossRef]
- Garcia, G.; Finnigan, G.C.; Heasley, L.R.; Sterling, S.M.; Aggarwal, A.; Pearson, C.G.; Nogales, E.; McMurray, M.A.; Thorner, J. Assembly, Molecular Organization, and Membrane-Binding Properties of Development-Specific Septins. J. Cell Biol. 2016, 212, 515–529. [Google Scholar] [CrossRef]
- Heasley, L.R.; McMurray, M.A. Roles of Septins in Prospore Membrane Morphogenesis and Spore Wall Assembly in Saccharomyces Cerevisiae. MBoC 2016, 27, 442–450. [Google Scholar] [CrossRef]
- Cid, V.J.; Adamikova, L.; Sanchez, M.; Molina, M.; Nombela, C. Cell Cycle Control of Septin Ring Dynamics in the Budding Yeast. Microbiology 2001, 147, 1437–1450. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Haarer, B.K.; Pringle, J.R. Cellular Morphogenesis in the Saccharomycescerevisiae Cell Cycle: Localization of the CDC3 Gene Product and the Timing of Events at the Budding Site. J. Cell Biol. 1991, 112, 535–544. [Google Scholar] [CrossRef]
- Caviston, J.P.; Longtine, M.; Pringle, J.R.; Bi, E. The Role of Cdc42p GTPase-Activating Proteins in Assembly of the Septin Ring in Yeast. Mol. Biol. Cell 2003, 14, 4051–4066. [Google Scholar] [CrossRef] [PubMed]
- Dobbelaere, J.; Gentry, M.S.; Hallberg, R.L.; Barral, Y. Phosphorylation-Dependent Regulation of Septin Dynamics during the Cell Cycle. Dev. Cell 2003, 4, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Longtine, M.S.; Fares, H.; Pringle, J.R. Role of the Yeast Gin4p Protein Kinase in Septin Assembly and the Relationship between Septin Assembly and Septin Function. J. Cell Biol. 1998, 143, 719–736. [Google Scholar] [CrossRef]
- Tartakoff, A.M.; Aylyarov, I.; Jaiswal, P. Septin-Containing Barriers Control the Differential Inheritance of Cytoplasmic Elements. Cell Rep. 2013, 3, 223–236. [Google Scholar] [CrossRef]
- Fares, H.; Goetsch, L.; Pringle, J.R. Identification of a Developmentally Regulated Septin and Involvement of the Septins in Spore Formation in Saccharomyces Cerevisiae. J. Cell Biol. 1996, 132, 399–411. [Google Scholar] [CrossRef]
- Heasley, L.R.; Singer, E.; Cooperman, B.J.; McMurray, M.A. Saccharomyces Spores Are Born Prepolarized to Outgrow Away from Spore–Spore Connections and Penetrate the Ascus Wall. Yeast 2021, 38, 90–101. [Google Scholar] [CrossRef]
- Joseph-Strauss, D.; Zenvirth, D.; Simchen, G.; Barkai, N. Spore Germination in Saccharomyces Cerevisiae: Global Gene Expression Patterns and Cell Cycle Landmarks. Genome Biol. 2007, 8, R241. [Google Scholar] [CrossRef]
- Spiliotis, E.T.; Nakos, K. Cellular Functions of Actin- and Microtubule-Associated Septins. Curr. Biol. 2021, 31, R651–R666. [Google Scholar] [CrossRef]
- Ong, K.; Wloka, C.; Okada, S.; Svitkina, T.; Bi, E. Architecture and Dynamic Remodelling of the Septin Cytoskeleton during the Cell Cycle. Nat. Commun. 2014, 5, 5698. [Google Scholar] [CrossRef] [PubMed]
- Vrabioiu, A.M.; Mitchison, T.J. Structural Insights into Yeast Septin Organization from Polarized Fluorescence Microscopy. Nature 2006, 443, 466–469. [Google Scholar] [CrossRef] [PubMed]
- McQuilken, M.; Jentzsch, M.S.; Verma, A.; Mehta, S.B.; Oldenbourg, R.; Gladfelter, A.S. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy. Front. Cell Dev. Biol. 2017, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Demay, B.S.; Bai, X.; Howard, L.; Occhipinti, P.; Meseroll, R.A.; Spiliotis, E.T.; Oldenbourg, R.; Gladfelter, A.S. Septin Filaments Exhibit a Dynamic, Paired Organization That Is Conserved from Yeast to Mammals. J. Cell Biol. 2011, 193, 1065–1081. [Google Scholar] [CrossRef]
- Tamborrini, D.; Juanes, M.A.; Ibanes, S.; Rancati, G.; Piatti, S. Recruitment of the Mitotic Exit Network to Yeast Centrosomes Couples Septin Displacement to Actomyosin Constriction. Nat. Commun. 2018, 9, 4308. [Google Scholar] [CrossRef]
- Marquardt, J.; Chen, X.; Bi, E. Architecture, Remodeling, and Functions of the Septin Cytoskeleton. Cytoskeleton 2019, 76, 7–14. [Google Scholar] [CrossRef]
- Bi, E.; Park, H.O. Cell Polarization and Cytokinesis in Budding Yeast. Genetics 2012, 191, 347–387. [Google Scholar] [CrossRef]
- Cvrckova, F.; De Virgilio, C.; Manser, E.; Pringle, J.R.; Nasmyth, K. Ste20-like Protein Kinases Are Required for Normal Localization of Cell Growth and for Cytokinesis in Budding Yeast. Genes. Dev. 1995, 9, 1817–1830. [Google Scholar] [CrossRef]
- Kang, P.J.; Mullner, R.; Lian, K.; Park, H.-O. Cdc42 Couples Septin Recruitment to the Axial Landmark Assembly via Axl2 in Budding Yeast. J. Cell Sci. 2023, 137, jcs261080. [Google Scholar] [CrossRef]
- Chant, J.; Mischke, M.; Mitchell, E.; Herskowitz, I.; Pringle, J.R. Role of Bud3p in Producing the Axial Budding Pattern of Yeast. J. Cell Biol. 1995, 129, 767–778. [Google Scholar] [CrossRef]
- Sanders, S.L.; Herskowitz, I. The BUD4 Protein of Yeast, Required for Axial Budding, Is Localized to the Mother/BUD Neck in a Cell Cycle-Dependent Manner. J. Cell Biol. 1996, 134, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.J.; Angerman, E.; Jung, C.H.; Park, H.O. Bud4 Mediates the Cell-Type-Specific Assembly of the Axial Landmark in Budding Yeast. J. Cell Sci. 2012, 125, 3840–3849. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Leda, M.; Hanna, J.; Savage, N.S.; Bi, E.; Goryachev, A.B. Daughter Cell Identity Emerges from the Interplay of Cdc42, Septins, and Exocytosis. Dev. Cell 2013, 26, 148–161. [Google Scholar] [CrossRef]
- Lippincott, J.; Li, R. Sequential Assembly of Myosin II, an IQGAP-like Protein, and Filamentous Actin to a Ring Structure Involved in Budding Yeast Cytokinesis. J. Cell Biol. 1998, 140, 355–366. [Google Scholar] [CrossRef]
- Luo, J.; Vallen, E.A.; Dravis, C.; Tcheperegine, S.E.; Drees, B.; Bi, E. Identification and Functional Analysis of the Essential and Regulatory Light Chains of the Only Type II Myosin Myo1p in Saccharomyces Cerevisiae. J. Cell Biol. 2004, 165, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Watts, F.Z.; Shiels, G.; Orr, E. The Yeast MYO1 Gene Encoding a Myosin-like Protein Required for Cell Division. EMBO J. 1987, 6, 3499–3505. [Google Scholar] [CrossRef]
- Boyne, J.R.; Yosuf, H.M.; Bieganowski, P.; Brenner, C.; Price, C. Yeast Myosin Light Chain, Mlc1p, Interacts with Both IQGAP and Class II Myosin to Effect Cytokinesis. J. Cell Sci. 2000, 113 Pt 24, 4533–4543. [Google Scholar] [CrossRef]
- Epp, J.A.; Chant, J. An IQGAP-Related Protein Controls Actin-Ring Formation and Cytokinesis in Yeast. Curr. Biol. 1997, 7, 921–929. [Google Scholar] [CrossRef]
- Fang, X.; Luo, J.; Nishihama, R.; Wloka, C.; Dravis, C.; Travaglia, M.; Iwase, M.; Vallen, E.A.; Bi, E. Biphasic Targeting and Cleavage Furrow Ingression Directed by the Tail of a Myosin II. J. Cell Biol. 2010, 191, 1333–1350. [Google Scholar] [CrossRef]
- Shannon, K.B.; Li, R. A Myosin Light Chain Mediates the Localization of the Budding Yeast IQGAP-like Protein during Contractile Ring Formation. Curr. Biol. 2000, 10, 727–730. [Google Scholar] [CrossRef]
- Tolliday, N.; VerPlank, L.; Li, R. Rho1 Directs Formin-Mediated Actin Ring Assembly during Budding Yeast Cytokinesis. Curr. Biol. 2002, 12, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Vallen, E.A.; Caviston, J.; Bi, E. Roles of Hof1p, Bni1p, Bnr1p, and Myo1p in Cytokinesis in Saccharomyces Cerevisiae. Mol. Biol. Cell 2000, 11, 593–611. [Google Scholar] [CrossRef]
- Feng, Z.; Okada, S.; Cai, G.; Zhou, B.; Bi, E. MyosinII Heavy Chain and Formin Mediate the Targeting of Myosin Essential Light Chain to the Division Site before and during Cytokinesis. Mol. Biol. Cell 2015, 26, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.S.; Schekman, R.W. Differential Trafficking and Timed Localization of Two Chitin Synthase Proteins, Chs2p and Chs3p. J. Cell Biol. 1996, 135, 597–610. [Google Scholar] [CrossRef]
- Meitinger, F.; Petrova, B.; Lombardi, I.M.; Bertazzi, D.T.; Hub, B.; Zentgraf, H.; Pereira, G. Targeted Localization of Inn1, Cyk3 and Chs2 by the Mitotic-Exit Network Regulates Cytokinesis in Budding Yeast. J. Cell Sci. 2010, 123, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Foltman, M.; Filali-Mouncef, Y.; Crespo, D.; Sanchez-Diaz, A. Cell Polarity Protein Spa2 Coordinates Chs2 Incorporation at the Division Site in Budding Yeast. PLoS Genet. 2018, 14, e1007299. [Google Scholar] [CrossRef]
- VerPlank, L.; Li, R. Cell Cycle-Regulated Trafficking of Chs2 Controls Actomyosin Ring Stability during Cytokinesis. Mol. Biol. Cell 2005, 16, 2529–2543. [Google Scholar] [CrossRef]
- Chin, C.F.; Bennett, A.M.; Ma, W.K.; Hall, M.C.; Yeong, F.M. Dependence of Chs2 ER Export on Dephosphorylation by Cytoplasmic Cdc14 Ensures That Septum Formation Follows Mitosis. Mol. Biol. Cell 2012, 23, 45–58. [Google Scholar] [CrossRef]
- Nishihama, R.; Schreiter, J.H.; Onishi, M.; Vallen, E.A.; Hanna, J.; Moravcevic, K.; Lippincott, M.F.; Han, H.; Lemmon, M.A.; Pringle, J.R.; et al. Role of Inn1 and Its Interactions with Hof1 and Cyk3 in Promoting Cleavage Furrow and Septum Formation in S. Cerevisiae. J. Cell Biol. 2009, 185, 995–1012. [Google Scholar] [CrossRef]
- Oh, Y.; Schreiter, J.H.; Okada, H.; Wloka, C.; Okada, S.; Yan, D.; Duan, X.; Bi, E. Hof1 and Chs4 Interact via F-BAR Domain and Sel1-like Repeats to Control Extracellular Matrix Deposition during Cytokinesis. Curr. Biol. 2017, 27, 2878–2886.e5. [Google Scholar] [CrossRef]
- Wang, M.; Nishihama, R.; Onishi, M.; Pringle, J.R. Role of the Hof1–Cyk3 Interaction in Cleavage-Furrow Ingression and Primary-Septum Formation during Yeast Cytokinesis. Mol. Biol. Cell 2018, 29, 597–609. [Google Scholar] [CrossRef]
- Devrekanli, A.; Foltman, M.; Roncero, C.; Sanchez-Diaz, A.; Labib, K. Inn1 and Cyk3 Regulate Chitin Synthase during Cytokinesis in Budding Yeasts. J. Cell Sci. 2012, 125, 5453–5466. [Google Scholar] [CrossRef] [PubMed]
- Jendretzki, A.; Ciklic, I.; Rodicio, R.; Schmitz, H.P.; Heinisch, J.J. Cyk3 Acts in Actomyosin Ring Independent Cytokinesis by Recruiting Inn1 to the Yeast Bud Neck. Mol. Genet. Genom. MGG 2009, 282, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Onishi, M.; Ko, N.; Nishihama, R.; Pringle, J.R. Distinct Roles of Rho1, Cdc42, and Cyk3 in Septum Formation and Abscission during Yeast Cytokinesis. J. Cell Biol. 2013, 202, 311–329. [Google Scholar] [CrossRef]
- Sanchez-Diaz, A.; Marchesi, V.; Murray, S.; Jones, R.; Pereira, G.; Edmondson, R.; Allen, T.; Labib, K. Inn1 Couples Contraction of the Actomyosin Ring to Membrane Ingression during Cytokinesis in Budding Yeast. Nat. Cell Biol. 2008, 10, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Foltman, M.; Molist, I.; Arcones, I.; Sacristan, C.; Filali-Mouncef, Y.; Roncero, C.; Sanchez-Diaz, A. Ingression Progression Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast. PLoS Genet. 2016, 12, e1005864. [Google Scholar] [CrossRef]
- Lippincott, J.; Li, R. Dual Function of Cyk2, a Cdc15/PSTPIP Family Protein, in Regulating Actomyosin Ring Dynamics and Septin Distribution. J. Cell Biol. 1998, 143, 1947–1960. [Google Scholar] [CrossRef]
- Gao, L.; Liu, W.; Bretscher, A. The Yeast Formin Bnr1p Has Two Localization Regions That Show Spatially and Temporally Distinct Association with Septin Structures. Mol. Biol. Cell 2010, 21, 1253–1262. [Google Scholar] [CrossRef]
- Pruyne, D.; Gao, L.; Bi, E.; Bretscher, A. Stable and Dynamic Axes of Polarity Use Distinct Formin Isoforms in Budding Yeast. Mol. Biol. Cell 2004, 15, 4971–4989. [Google Scholar] [CrossRef]
- Huxley, H.E. The Mechanism of Muscular Contraction. Science 1969, 164, 1356–1365. [Google Scholar] [CrossRef]
- Huxley, H.; Hanson, J. Changes in the Cross-Striations of Muscle during Contraction and Stretch and Their Structural Interpretation. Nature 1954, 173, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Mendes Pinto, I.; Rubinstein, B.; Kucharavy, A.; Unruh, J.R.; Li, R. Actin Depolymerization Drives Actomyosin Ring Contraction during Budding Yeast Cytokinesis. Dev. Cell 2012, 22, 1247–1260. [Google Scholar] [CrossRef] [PubMed]
- Ko, N.; Nishihama, R.; Tully, G.H.; Ostapenko, D.; Solomon, M.J.; Morgan, D.O.; Pringle, J.R. Identification of Yeast IQGAP (Iqg1p) as an Anaphase-Promoting-Complex Substrate and Its Role in Actomyosin-Ring-Independent Cytokinesis. MBoC 2007, 18, 5139–5153. [Google Scholar] [CrossRef] [PubMed]
- Tully, G.H.; Nishihama, R.; Pringle, J.R.; Morgan, D.O. The Anaphase-Promoting Complex Promotes Actomyosin-Ring Disassembly during Cytokinesis in Yeast. MBoC 2009, 20, 1201–1212. [Google Scholar] [CrossRef]
- Cabib, E. The Septation Apparatus, a Chitin-Requiring Machine in Budding Yeast. Arch. Biochem. Biophys. 2004, 426, 201–207. [Google Scholar] [CrossRef]
- Zhang, G.; Kashimshetty, R.; Ng, K.E.; Tan, H.B.; Yeong, F.M. Exit from Mitosis Triggers Chs2p Transport from the Endoplasmic Reticulum to Mother-Daughter Neck via the Secretory Pathway in Budding Yeast. J. Cell Biol. 2006, 174, 207–220. [Google Scholar] [CrossRef]
- Bi, E. Cytokinesis in Budding Yeast: The Relationship between Actomyosin Ring Function and Septum Formation. Cell Struct. Funct. 2001, 26, 529–537. [Google Scholar] [CrossRef]
- Schmidt, M.; Bowers, B.; Varma, A.; Roh, D.H.; Cabib, E. In Budding Yeast, Contraction of the Actomyosin Ring and Formation of the Primary Septum at Cytokinesis Depend on Each Other. J. Cell Sci. 2002, 115, 293–302. [Google Scholar] [CrossRef]
- Roh, D.-H.; Bowers, B.; Schmidt, M.; Cabib, E. The Septation Apparatus, an Autonomous System in Budding Yeast. Mol. Biol. Cell 2002, 13, 2747–2759. [Google Scholar] [CrossRef]
- Lippincott, J.; Shannon, K.B.; Shou, W.; Deshaies, R.J.; Li, R. The Tem1 Small GTPase Controls Actomyosin and Septin Dynamics during Cytokinesis. J. Cell Sci. 2001, 114, 1379–1386. [Google Scholar] [CrossRef]
- Tamborrini, D.; Piatti, S. Septin Clearance from the Division Site Triggers Cytokinesis in Budding Yeast. Microb. Cell 2019, 6, 296–298. [Google Scholar] [CrossRef]
- Dobbelaere, J.; Barral, Y. Spatial Coordination of Cytokinetic Events by Compartmentalization of the Cell Cortex. Science 2004, 305, 393–396. [Google Scholar] [CrossRef]
- Okada, H.; MacTaggart, B.; Ohya, Y.; Bi, E. The Kinetic Landscape and Interplay of Protein Networks in Cytokinesis. iScience 2021, 24, 101917. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.L. Mitotic Exit and Separation of Mother and Daughter Cells. Genetics 2012, 192, 1165–1202. [Google Scholar] [CrossRef] [PubMed]
- Martin-Cuadrado, A.B.; Morrell, J.L.; Konomi, M.; An, H.; Petit, C.; Osumi, M.; Balasubramanian, M.; Gould, K.L.; Del Rey, F.; de Aldana, C.R. Role of Septins and the Exocyst Complex in the Function of Hydrolytic Enzymes Responsible for Fission Yeast Cell Separation. Mol. Biol. Cell 2005, 16, 4867–4881. [Google Scholar] [CrossRef] [PubMed]
- Gladfelter, A.S.; Moskow, J.J.; Zyla, T.R.; Lew, D.J. Isolation and Characterization of Effector-Loop Mutants of CDC42 in Yeast. Mol. Biol. Cell 2001, 12, 1239–1255. [Google Scholar] [CrossRef]
- Iwase, M.; Luo, J.; Nagaraj, S.; Longtine, M.; Kim, H.B.; Haarer, B.K.; Caruso, C.; Tong, Z.; Pringle, J.R.; Bi, E. Role of a Cdc42p Effector Pathway in Recruitment of the Yeast Septins to the Presumptive Bud Site. Mol. Biol. Cell 2006, 17, 1110–1125. [Google Scholar] [CrossRef]
- Gladfelter, A.S.; Bose, I.; Zyla, T.R.; Bardes, E.S.; Lew, D.J. Septin Ring Assembly Involves Cycles of GTP Loading and Hydrolysis by Cdc42p. J. Cell Biol. 2002, 156, 315–326. [Google Scholar] [CrossRef]
- Benton, B.K.; Tinkelenberg, A.; Gonzalez, I.; Cross, F.R. Cla4p, a Saccharomyces Cerevisiae Cdc42p-Activated Kinase Involved in Cytokinesis, Is Activated at Mitosis. Mol. Cell Biol. 1997, 17, 5067–5076. [Google Scholar] [CrossRef]
- Kadota, J.; Yamamoto, T.; Yoshiuchi, S.; Bi, E.; Tanaka, K. Septin Ring Assembly Requires Concerted Action of Polarisome Components, a PAK Kinase Cla4p, and the Actin Cytoskeleton in Saccharomyces Cerevisiae. Mol. Biol. Cell 2004, 15, 5329–5345. [Google Scholar] [CrossRef]
- Versele, M.; Thorner, J. Septin Collar Formation in Budding Yeast Requires GTP Binding and Direct Phosphorylation by the PAK, Cla4. J. Cell Biol. 2004, 164, 701–715. [Google Scholar] [CrossRef]
- Bose, I.; Irazoqui, J.E.; Moskow, J.J.; Bardes, E.S.; Zyla, T.R.; Lew, D.J. Assembly of Scaffold-Mediated Complexes Containing Cdc42p, the Exchange Factor Cdc24p, and the Effector Cla4p Required for Cell Cycle-Regulated Phosphorylation of Cdc24p. J. Biol. Chem. 2001, 276, 7176–7186. [Google Scholar] [CrossRef] [PubMed]
- Gulli, M.-P.; Jaquenoud, M.; Shimada, Y.; Niederhäuser, G.; Wiget, P.; Peter, M. Phosphorylation of the Cdc42 Exchange Factor Cdc24 by the PAK-like Kinase Cla4 May Regulate Polarized Growth in Yeast. Mol. Cell 2000, 6, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Kozubowski, L.; Saito, K.; Johnson, J.M.; Howell, A.S.; Zyla, T.R.; Lew, D.J. Symmetry-Breaking Polarization Driven by a Cdc42p GEF-PAK Complex. Curr. Biol. 2008, 18, 1719–1726. [Google Scholar] [CrossRef]
- Chollet, J.; Dünkler, A.; Bäuerle, A.; Vivero-Pol, L.; Mulaw, M.A.; Gronemeyer, T.; Johnsson, N. Cdc24 Interacts with the Septins to Create a Positive Feedback during Bud Site Assembly in Yeast. J. Cell Sci. 2020, 133, jcs240283. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Jaquenoud, M.; Gulli, M.P.; Chant, J.; Peter, M. Novel Cdc42-Binding Proteins Gic1 and Gic2 Control Cell Polarity in Yeast. Genes. Dev. 1997, 11, 2972–2982. [Google Scholar] [CrossRef] [PubMed]
- Orlando, K.; Sun, X.; Zhang, J.; Lu, T.; Yokomizo, L.; Wang, P.; Guo, W. Exo-Endocytic Trafficking and the Septin-Based Diffusion Barrier Are Required for the Maintenance of Cdc42p Polarization during Budding Yeast Asymmetric Growth. Mol. Biol. Cell 2011, 22, 624–633. [Google Scholar] [CrossRef]
- Sadian, Y.; Gatsogiannis, C.; Patasi, C.; Hofnagel, O.; Goody, R.S.; Farkasovsky, M.; Raunser, S. The Role of Cdc42 and Gic1 in the Regulation of Septin Filament Formation and Dissociation. eLife 2013, 2, e01085. [Google Scholar] [CrossRef]
- Kang, P.J.; Miller, K.E.; Guegueniat, J.; Beven, L.; Park, H.-O. The Shared Role of the Rsr1 GTPase and Gic1/Gic2 in Cdc42 Polarization. MBoC 2018, 29, 2359–2369. [Google Scholar] [CrossRef]
- Daniels, C.N.; Zyla, T.R.; Lew, D.J. A Role for Gic1 and Gic2 in Cdc42 Polarization at Elevated Temperature. PLoS ONE 2018, 13, e0200863. [Google Scholar] [CrossRef]
- Lemmon, M.A.; Ferguson, K.M.; O’Brien, R.; Sigler, P.B.; Schlessinger, J. Specific and High-Affinity Binding of Inositol Phosphates to an Isolated Pleckstrin Homology Domain. Proc. Natl. Acad. Sci. USA 1995, 92, 10472–10476. [Google Scholar] [CrossRef]
- Gao, X.-D.; Sperber, L.M.; Kane, S.A.; Tong, Z.; Tong, A.H.Y.; Boone, C.; Bi, E. Sequential and Distinct Roles of the Cadherin Domain-Containing Protein Axl2p in Cell Polarization in Yeast Cell Cycle. MBoC 2007, 18, 2542–2560. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Chiou, J.-G.; Zhurikhina, A.; Zyla, T.R.; Tsygankov, D.; Lew, D.J. Temporal Regulation of Morphogenetic Events in Saccharomyces Cerevisiae. Mol. Biol. Cell 2018, 29, 2069–2083. [Google Scholar] [CrossRef] [PubMed]
- Merlini, L.; Bolognesi, A.; Juanes, M.A.; Vandermoere, F.; Courtellemont, T.; Pascolutti, R.; Seveno, M.; Barral, Y.; Piatti, S. Rho1- and Pkc1-Dependent Phosphorylation of the F-BAR Protein Syp1 Contributes to Septin Ring Assembly. Mol. Biol. Cell 2015, 26, 3245–3262. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Neo, S.P.; Yu, X.; Cai, M. A Novel Septin-Associated Protein, Syp1p, Is Required for Normal Cell Cycle-Dependent Septin Cytoskeleton Dynamics in Yeast. Genetics 2008, 180, 1445–1457. [Google Scholar] [CrossRef]
- Ibanes, S.; El-Alaoui, F.; Lai-Kee-Him, J.; Cazevieille, C.; Hoh, F.; Lyonnais, S.; Bron, P.; Cipelletti, L.; Picas, L.; Piatti, S. The Syp1/FCHo2 Protein Induces Septin Filament Bundling through Its Intrinsically Disordered Domain. Cell Rep. 2022, 41, 111765. [Google Scholar] [CrossRef]
- Mortensen, E.M.; McDonald, H.; Yates, J., 3rd; Kellogg, D.R. Cell Cycle-Dependent Assembly of a Gin4-Septin Complex. Mol. Biol. Cell 2002, 13, 2091–2105. [Google Scholar] [CrossRef]
- Asano, S.; Park, J.E.; Yu, L.R.; Zhou, M.; Sakchaisri, K.; Park, C.J.; Kang, Y.H.; Thorner, J.; Veenstra, T.D.; Lee, K.S. Direct Phosphorylation and Activation of a Nim1-Related Kinase Gin4 by Elm1 in Budding Yeast. J. Biol. Chem. 2006, 281, 27090–27098. [Google Scholar] [CrossRef]
- Egelhofer, T.A.; Villen, J.; McCusker, D.; Gygi, S.P.; Kellogg, D.R. The Septins Function in G1 Pathways That Influence the Pattern of Cell Growth in Budding Yeast. PLoS ONE 2008, 3, e2022. [Google Scholar] [CrossRef]
- Shulewitz, M.J.; Inouye, C.J.; Thorner, J. Hsl7 Localizes to a Septin Ring and Serves as an Adapter in a Regulatory Pathway That Relieves Tyrosine Phosphorylation of Cdc28 Protein Kinase in Saccharomyces Cerevisiae. Mol. Cell Biol. 1999, 19, 7123–7137. [Google Scholar] [CrossRef]
- Thomas, C.L.; Blacketer, M.J.; Edgington, N.P.; Myers, A.M. Assembly Interdependence among the S. Cerevisiae Bud Neck Ring Proteins Elm1p, Hsl1p and Cdc12p. Yeast 2003, 20, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, G.C.; Duvalyan, A.; Liao, E.N.; Sargsyan, A.; Thorner, J. Detection of Protein-Protein Interactions at the Septin Collar in Saccharomyces Cerevisiae Using a Tripartite Split-GFP System. Mol. Biol. Cell 2016, 27, 2708–2725. [Google Scholar] [CrossRef] [PubMed]
- Barral, Y.; Parra, M.; Bidlingmaier, S.; Snyder, M. Nim1-Related Kinases Coordinate Cell Cycle Progression with the Organization of the Peripheral Cytoskeleton in Yeast. Genes. Dev. 1999, 13, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Breitkreutz, A.; Choi, H.; Sharom, J.R.; Boucher, L.; Neduva, V.; Larsen, B.; Lin, Z.Y.; Breitkreutz, B.J.; Stark, C.; Liu, G.; et al. A Global Protein Kinase and Phosphatase Interaction Network in Yeast. Science 2010, 328, 1043–1046. [Google Scholar] [CrossRef]
- Finnigan, G.C.; Sterling, S.M.; Duvalyan, A.; Liao, E.N.; Sargsyan, A.; Garcia, G.; Nogales, E.; Thorner, J. Coordinate Action of Distinct Sequence Elements Localizes Checkpoint Kinase Hsl1 to the Septin Collar at the Bud Neck in Saccharomyces Cerevisiae. Mol. Biol. Cell 2016, 27, 2213–2233. [Google Scholar] [CrossRef]
- Okuzaki, D.; Nojima, H. Kcc4 Associates with Septin Proteins of Saccharomyces Cerevisiae. FEBS Lett. 2001, 489, 197–201. [Google Scholar] [CrossRef]
- Bouquin, N.; Barral, Y.; Courbeyrette, R.; Blondel, M.; Snyder, M.; Mann, C. Regulation of Cytokinesis by the Elm1 Protein Kinase in Saccharomyces Cerevisiae. J. Cell Sci. 2000, 113 Pt 8, 1435–1445. [Google Scholar] [CrossRef]
- Marquardt, J.; Yao, L.-L.; Okada, H.; Svitkina, T.; Bi, E. The LKB1-like Kinase Elm1 Controls Septin Hourglass Assembly and Stability by Regulating Filament Pairing. Curr. Biol. 2020, 30, 2386–2394.e4. [Google Scholar] [CrossRef]
- Sreenivasan, A.; Kellogg, D. The Elm1 Kinase Functions in a Mitotic Signaling Network in Budding Yeast. Mol. Cell Biol. 1999, 19, 7983–7994. [Google Scholar] [CrossRef]
- Marquardt, J.; Chen, X.; Bi, E. Reciprocal Regulation by Elm1 and Gin4 Controls Septin Hourglass Assembly and Remodeling. J. Cell Biol. 2024, 223, e202308143. [Google Scholar] [CrossRef]
- Szkotnicki, L.; Crutchley, J.M.; Zyla, T.R.; Bardes, E.S.; Lew, D.J. The Checkpoint Kinase Hsl1p Is Activated by Elm1p-Dependent Phosphorylation. Mol. Biol. Cell 2008, 19, 4675–4686. [Google Scholar] [CrossRef]
- Fraschini, R.; Bilotta, D.; Lucchini, G.; Piatti, S. Functional Characterization of Dma1 and Dma2, the Budding Yeast Homologues of Schizosaccharomyces Pombe Dma1 and Human Chfr. Mol. Biol. Cell 2004, 15, 3796–3810. [Google Scholar] [CrossRef] [PubMed]
- Merlini, L.; Fraschini, R.; Boettcher, B.; Barral, Y.; Lucchini, G.; Piatti, S. Budding Yeast Dma Proteins Control Septin Dynamics and the Spindle Position Checkpoint by Promoting the Recruitment of the Elm1 Kinase to the Bud Neck. PLoS Genet. 2012, 8, e1002670. [Google Scholar] [CrossRef]
- Patasi, C.; Godocikova, J.; Michlikova, S.; Nie, Y.; Kacerikova, R.; Kvalova, K.; Raunser, S.; Farkasovsky, M. The Role of Bni5 in the Regulation of Septin Higher-Order Structure Formation. Biol. Chem. 2015, 396, 1325–1337. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.R.; Song, S.; Ro, H.S.; Park, C.J.; Lippincott, J.; Li, R.; Pringle, J.R.; De Virgilio, C.; Longtine, M.S.; Lee, K.S. Bni5p, a Septin-Interacting Protein, Is Required for Normal Septin Function and Cytokinesis in Saccharomyces Cerevisiae. Mol. Cell Biol. 2002, 22, 6906–6920. [Google Scholar] [CrossRef]
- Booth, E.A.; Sterling, S.M.; Dovala, D.; Nogales, E.; Thorner, J. Effects of Bni5 Binding on Septin Filament Organization. J. Mol. Biol. 2016, 428, 4962–4980. [Google Scholar] [CrossRef]
- Finnigan, G.C.; Booth, E.A.; Duvalyan, A.; Liao, E.N.; Thorner, J. The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces Cerevisiae. Genetics 2015, 200, 843–862. [Google Scholar] [CrossRef]
- Touati, S.A.; Kataria, M.; Jones, A.W.; Snijders, A.P.; Uhlmann, F. Phosphoproteome Dynamics during Mitotic Exit in Budding Yeast. EMBO J. 2018, 37, e98745. [Google Scholar] [CrossRef] [PubMed]
- Renz, C.; Oeljeklaus, S.; Grinhagens, S.; Warscheid, B.; Johnsson, N.; Gronemeyer, T. Identification of Cell Cycle Dependent Interaction Partners of the Septins by Quantitative Mass Spectrometry. PLoS ONE 2016, 21, e0148340. [Google Scholar] [CrossRef]
- Swaney, D.L.; Beltrao, P.; Starita, L.; Guo, A.; Rush, J.; Fields, S.; Krogan, N.J.; Villen, J. Global Analysis of Phosphorylation and Ubiquitylation Cross-Talk in Protein Degradation. Nat. Methods 2013, 10, 676–682. [Google Scholar] [CrossRef]
- Albuquerque, C.P.; Smolka, M.B.; Payne, S.H.; Bafna, V.; Eng, J.; Zhou, H. A Multidimensional Chromatography Technology for In-Depth Phosphoproteome Analysis. Mol. Cell. Proteom. MCP 2008, 7, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Holt, L.J.; Tuch, B.B.; Villen, J.; Johnson, A.D.; Gygi, S.P.; Morgan, D.O. Global Analysis of Cdk1 Substrate Phosphorylation Sites Provides Insights into Evolution. Science 2009, 325, 1682–1686. [Google Scholar] [CrossRef] [PubMed]
- Smolka, M.B.; Albuquerque, C.P.; Chen, S.H.; Zhou, H. Proteome-Wide Identification of in Vivo Targets of DNA Damage Checkpoint Kinases. Proc. Natl. Acad. Sci. USA 2007, 104, 10364–10369. [Google Scholar] [CrossRef]
- Bodenmiller, B.; Wanka, S.; Kraft, C.; Urban, J.; Campbell, D.; Pedrioli, P.G.; Gerrits, B.; Picotti, P.; Lam, H.; Vitek, O.; et al. Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast. Sci. Signal. 2010, 3, rs4. [Google Scholar] [CrossRef]
- Soufi, B.; Kelstrup, C.D.; Stoehr, G.; Frohlich, F.; Walther, T.C.; Olsen, J.V. Global Analysis of the Yeast Osmotic Stress Response by Quantitative Proteomics. Mol. BioSyst. 2009, 5, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Paulo, J.A.; Nusinow, D.P.; Huttlin, E.L.; Gygi, S.P. Investigation of Proteomic and Phosphoproteomic Responses to Signaling Network Perturbations Reveals Functional Pathway Organizations in Yeast. Cell Rep. 2019, 29, 2092–2104.e4. [Google Scholar] [CrossRef]
- Lanz, M.C.; Yugandhar, K.; Gupta, S.; Sanford, E.J.; Faça, V.M.; Vega, S.; Joiner, A.M.N.; Fromme, J.C.; Yu, H.; Smolka, M.B. In-Depth and 3-Dimensional Exploration of the Budding Yeast Phosphoproteome. EMBO Rep. 2021, 22, e51121. [Google Scholar] [CrossRef]
- Johnson, E.S.; Blobel, G. Cell Cycle-Regulated Attachment of the Ubiquitin-Related Protein SUMO to the Yeast Septins. J. Cell Biol. 1999, 147, 981–994. [Google Scholar] [CrossRef]
- Mitchell, L.; Lau, A.; Lambert, J.P.; Zhou, H.; Fong, Y.; Couture, J.F.; Figeys, D.; Baetz, K. Regulation of Septin Dynamics by the Saccharomyces Cerevisiae Lysine Acetyltransferase NuA4. PLoS ONE 2011, 6, e25336. [Google Scholar] [CrossRef]
- Chen, X.; Wang, K.; Svitkina, T.; Bi, E. Critical Roles of a RhoGEF-Anillin Module in Septin Architectural Remodeling during Cytokinesis. Curr. Biol. 2020, 30, 1477–1490.e3. [Google Scholar] [CrossRef]
- Kang, P.J.; Hood-DeGrenier, J.K.; Park, H.O. Coupling of Septins to the Axial Landmark by Bud4 in Budding Yeast. J. Cell Sci. 2013, 126, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, J.; Zhou, Y.T.; Gao, X.D. The Anillin-Related Region of Bud4 Is the Major Functional Determinant for Bud4’s Function in Septin Organization during Bud Growth and Axial Bud Site Selection in Budding Yeast. Eukaryot. Cell 2015, 14, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Chant, J.; Herskowitz, I. Genetic Control of Bud Site Selection in Yeast by a Set of Gene Products That Constitute a Morphogenetic Pathway. Cell 1991, 65, 1203–1212. [Google Scholar] [CrossRef]
- Guo, J.; Gong, T.; Gao, X.-D. Identification of an Amphipathic Helix Important for the Formation of Ectopic Septin Spirals and Axial Budding in Yeast Axial Landmark Protein Bud3p. PLoS ONE 2011, 6, e16744. [Google Scholar] [CrossRef]
- Schrock, M.N.; Yan, Y.; Goeckel, M.E.; Basgall, E.M.; Lewis, I.C.; Leonard, K.G.; Halloran, M.; Finnigan, G.C. Characterization of Bud3 Domains Sufficient for Bud Neck Targeting in S. Cerevisiae. Access Microbiol. 2022, 4, 000341. [Google Scholar] [CrossRef]
- Stegmeier, F.; Amon, A. Closing Mitosis: The Functions of the Cdc14 Phosphatase and Its Regulation. Annu. Rev. Genet. 2004, 38, 203–232. [Google Scholar] [CrossRef]
- Jaspersen, S.L.; Morgan, D.O. Cdc14 Activates Cdc15 to Promote Mitotic Exit in Budding Yeast. Curr. Biol. 2000, 10, 615–618. [Google Scholar] [CrossRef]
- König, C.; Maekawa, H.; Schiebel, E. Mutual Regulation of Cyclin-Dependent Kinase and the Mitotic Exit Network. J. Cell Biol. 2010, 188, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Visintin, R.; Craig, K.; Hwang, E.S.; Prinz, S.; Tyers, M.; Amon, A. The Phosphatase Cdc14 Triggers Mitotic Exit by Reversal of Cdk- Dependent Phosphorylation. Mol. Cell 1998, 2, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.H.; Good, V.M.; Tonks, N.K.; Barford, D. The Structure of the Cell Cycle Protein Cdc14 Reveals a Proline-Directed Protein Phosphatase. Embo J. 2003, 22, 3524–3535. [Google Scholar] [CrossRef]
- Miller, D.P.; Hall, H.; Chaparian, R.; Mara, M.; Mueller, A.; Hall, M.C.; Shannon, K.B. Dephosphorylation of Iqg1 by Cdc14 Regulates Cytokinesis in Budding Yeast. Mol. Biol. Cell 2015, 26, 2913–2926. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.; Cristea, I.M.; Procko, A.L.; Lubkov, V.; Chait, B.T.; Snyder, M.; Cross, F.R. Global Analysis of Cdc14 Phosphatase Reveals Diverse Roles in Mitotic Processes*. J. Biol. Chem. 2011, 286, 5434–5445. [Google Scholar] [CrossRef] [PubMed]
- Palani, S.; Meitinger, F.; Boehm, M.E.; Lehmann, W.D.; Pereira, G. Cdc14-Dependent Dephosphorylation of Inn1 Contributes to Inn1–Cyk3 Complex Formation. J. Cell Sci. 2012, 125, 3091–3096. [Google Scholar] [CrossRef] [PubMed]
- Shou, W.; Seol, J.H.; Shevchenko, A.; Baskerville, C.; Moazed, D.; Chen, Z.W.; Jang, J.; Charbonneau, H.; Deshaies, R.J. Exit from Mitosis Is Triggered by Tem1-Dependent Release of the Protein Phosphatase Cdc14 from Nucleolar RENT Complex. Cell 1999, 97, 233–244. [Google Scholar] [CrossRef]
- Kuilman, T.; Maiolica, A.; Godfrey, M.; Scheidel, N.; Aebersold, R.; Uhlmann, F. Identification of Cdk Targets That Control Cytokinesis. EMBO J. 2015, 34, 81–96. [Google Scholar] [CrossRef]
- Varela Salgado, M.; Adriaans, I.E.; Touati, S.A.; Ibanes, S.; Lai-Kee-Him, J.; Ancelin, A.; Cipelletti, L.; Picas, L.; Piatti, S. Phosphorylation of the F-BAR Protein Hof1 Drives Septin Ring Splitting in Budding Yeast. Nat. Commun. 2024, 15, 3383. [Google Scholar] [CrossRef]
- Meitinger, F.; Boehm, M.E.; Hofmann, A.; Hub, B.; Zentgraf, H.; Lehmann, W.D.; Pereira, G. Phosphorylation-Dependent Regulation of the F-BAR Protein Hof1 during Cytokinesis. Genes. Dev. 2011, 25, 875–888. [Google Scholar] [CrossRef]
- Meitinger, F.; Palani, S.; Hub, B.; Pereira, G. Dual Function of the NDR-Kinase Dbf2 in the Regulation of the F-BAR Protein Hof1 during Cytokinesis. Mol. Biol. Cell 2013, 24, 1290–1304. [Google Scholar] [CrossRef]
- Fankhauser, C.; Reymond, A.; Cerutti, L.; Utzig, S.; Hofmann, K.; Simanis, V. The S. Pombe Cdc15 Gene Is a Key Element in the Reorganization of F-Actin at Mitosis. Cell 1995, 82, 435–444. [Google Scholar] [CrossRef]
- Willet, A.H.; McDonald, N.A.; Bohnert, K.A.; Baird, M.A.; Allen, J.R.; Davidson, M.W.; Gould, K.L. The F-BAR Cdc15 Promotes Contractile Ring Formation through the Direct Recruitment of the Formin Cdc12. J. Cell Biol. 2015, 208, 391–399. [Google Scholar] [CrossRef]
- Carnahan, R.H.; Gould, K.L. The PCH Family Protein, Cdc15p, Recruits Two F-Actin Nucleation Pathways to Coordinate Cytokinetic Actin Ring Formation in Schizosaccharomyces Pombe. J. Cell Biol. 2003, 162, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Graziano, B.R.; Yu, H.Y.; Alioto, S.L.; Eskin, J.A.; Ydenberg, C.A.; Waterman, D.P.; Garabedian, M.; Goode, B.L. The F-BAR Protein Hof1 Tunes Formin Activity to Sculpt Actin Cables during Polarized Growth. Mol. Biol. Cell 2014, 25, 1730–1743. [Google Scholar] [CrossRef]
- Garabedian, M.V.; Wirshing, A.; Vakhrusheva, A.; Turegun, B.; Sokolova, O.S.; Goode, B.L. A Septin-Hof1 Scaffold at the Yeast Bud Neck Binds and Organizes Actin Cables. Mol. Biol. Cell 2020, 31, 1988–2001. [Google Scholar] [CrossRef]
- Garabedian, M.V.; Stanishneva-Konovalova, T.; Lou, C.; Rands, T.J.; Pollard, L.W.; Sokolova, O.S.; Goode, B.L. Integrated Control of Formin-Mediated Actin Assembly by a Stationary Inhibitor and a Mobile Activator. J. Cell Biol. 2018, 217, 3512–3530. [Google Scholar] [CrossRef]
- Bohnert, K.A.; Gould, K.L. Cytokinesis-Based Constraints on Polarized Cell Growth in Fission Yeast. PLoS Genet. 2012, 8, e1003004. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Schreiter, J.; Nishihama, R.; Wloka, C.; Bi, E. Targeting and Functional Mechanisms of the Cytokinesis-related F-BAR Protein Hof1 during the Cell Cycle. Mol. Biol. Cell 2013, 24, 1305–1320. [Google Scholar] [CrossRef] [PubMed]
- Frost, A.; Unger, V.M.; De Camilli, P. The BAR Domain Superfamily: Membrane-Molding Macromolecules. Cell 2009, 137, 191–196. [Google Scholar] [CrossRef]
- Suetsugu, S.; Toyooka, K.; Senju, Y. Subcellular Membrane Curvature Mediated by the BAR Domain Superfamily Proteins. Semin. Cell Dev. Biol. 2010, 21, 340–349. [Google Scholar] [CrossRef]
- Zhao, H.; Michelot, A.; Koskela, E.V.; Tkach, V.; Stamou, D.; Drubin, D.G.; Lappalainen, P. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains. Cell Rep. 2013, 4, 1213–1223. [Google Scholar] [CrossRef]
- Picas, L.; Viaud, J.; Schauer, K.; Vanni, S.; Hnia, K.; Fraisier, V.; Roux, A.; Bassereau, P.; Gaits-Iacovoni, F.; Payrastre, B.; et al. BIN1/M-Amphiphysin2 Induces Clustering of Phosphoinositides to Recruit Its Downstream Partner Dynamin. Nat. Commun. 2014, 5, 5647. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela Salgado, M.; Piatti, S. Septin Organization and Dynamics for Budding Yeast Cytokinesis. J. Fungi 2024, 10, 642. https://doi.org/10.3390/jof10090642
Varela Salgado M, Piatti S. Septin Organization and Dynamics for Budding Yeast Cytokinesis. Journal of Fungi. 2024; 10(9):642. https://doi.org/10.3390/jof10090642
Chicago/Turabian StyleVarela Salgado, Maritzaida, and Simonetta Piatti. 2024. "Septin Organization and Dynamics for Budding Yeast Cytokinesis" Journal of Fungi 10, no. 9: 642. https://doi.org/10.3390/jof10090642
APA StyleVarela Salgado, M., & Piatti, S. (2024). Septin Organization and Dynamics for Budding Yeast Cytokinesis. Journal of Fungi, 10(9), 642. https://doi.org/10.3390/jof10090642