The Plasma Membrane H+-ATPase Promoter Driving the Expression of FADX Enables Highly Efficient Production of Punicic Acid in Rhodotorula toruloides Cultivated on Glucose and Crude Glycerol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media and Cultivation
2.2. Plasmid Construction, Transformation, and Verification
2.3. Lipid Extraction Procedure
2.4. Analytical Methods
2.5. Fluorescence Microscopy
2.6. Statistics and Reproducibility
3. Results and Discussion
3.1. Promoter Selection, Strain Construction, and Screening of the Transformants Expressing PgFADX
3.2. Accumulation and Distribution of PuA in Production Media Containing Glucose
3.3. Accumulation and Distribution of PuA in Production Media Containing Crude Glycerol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villena, G.K.; Ludeña, Y.; Samolski, I. Applications of Yeast for Environmental Clean-up and Sustainable Agriculture. In Advances in Yeast Biotechnology for Biofuels and Sustainability; Elsevier: Amsterdam, The Netherlands, 2023; pp. 193–218. ISBN 978-0-323-95449-5. [Google Scholar]
- Park, Y.-K.; Nicaud, J.-M.; Ledesma-Amaro, R. The Engineering Potential of Rhodosporidium Toruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol. 2018, 36, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Nabi, F.; Arain, M.A.; Rajput, N.; Alagawany, M.; Soomro, J.; Umer, M.; Soomro, F.; Wang, Z.; Ye, R.; Liu, J. Health Benefits of Carotenoids and Potential Application in Poultry Industry: A Review. Anim. Physiol. Nutr. 2020, 104, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Hu, R.; Chen, D.; Chen, J.; He, W.; Huang, L.; Lin, C.; Chen, H.; Chen, Y.; Zhu, J.; et al. Lipid and Carotenoid Production by the Rhodosporidium Toruloides Mutant in Cane Molasses. Bioresour. Technol. 2021, 326, 124816. [Google Scholar] [CrossRef] [PubMed]
- Bommareddy, R.R.; Sabra, W.; Maheshwari, G.; Zeng, A.-P. Metabolic Network Analysis and Experimental Study of Lipid Production in Rhodosporidium Toruloides Grown on Single and Mixed Substrates. Microb. Cell Fact. 2015, 14, 36. [Google Scholar] [CrossRef]
- Huang, X.-F.; Liu, J.-N.; Lu, L.-J.; Peng, K.-M.; Yang, G.-X.; Liu, J. Culture Strategies for Lipid Production Using Acetic Acid as Sole Carbon Source by Rhodosporidium Toruloides. Bioresour. Technol. 2016, 206, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, X.; Wang, W.; Du, W.; Liu, D. Microbial Conversion of Biodiesel Byproduct Glycerol to Triacylglycerols by Oleaginous Yeast Rhodosporidium Toruloides and the Individual Effect of Some Impurities on Lipid Production. Biochem. Eng. J. 2012, 65, 30–36. [Google Scholar] [CrossRef]
- Zhang, S.; Skerker, J.M.; Rutter, C.D.; Maurer, M.J.; Arkin, A.P.; Rao, C.V. Engineering Rhodosporidium toruloides for Increased Lipid Production. Biotech. Bioeng. 2016, 113, 1056–1066. [Google Scholar] [CrossRef]
- Tchakouteu, S.S.; Kopsahelis, N.; Chatzifragkou, A.; Kalantzi, O.; Stoforos, N.G.; Koutinas, A.A.; Aggelis, G.; Papanikolaou, S. Rhodosporidium toruloides Cultivated in NaCl-enriched Glucose-based Media: Adaptation Dynamics and Lipid Production. Eng. Life Sci. 2017, 17, 237–248. [Google Scholar] [CrossRef]
- Ratledge, C.; Wynn, J.P. The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2002; Volume 51, pp. 1–52. ISBN 978-0-12-002653-1. [Google Scholar]
- Wen, Z.; Zhang, S.; Odoh, C.K.; Jin, M.; Zhao, Z.K. Rhodosporidium toruloides—A Potential Red Yeast Chassis for Lipids and Beyond. FEMS Yeast Res. 2020, 20, foaa038. [Google Scholar] [CrossRef]
- Takagi, T.; Itabashi, Y. Occurrence of Mixtures of Geometrical Isomers of Conjugated Octadecatrienoic Acids in Some Seed Oils: Analysis by Open-Tubular Gas Liquid Chromatography and High Performance Liquid Chromatography. Lipids 1981, 16, 546–551. [Google Scholar] [CrossRef]
- Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R.P. Health Benefits of Punicic Acid: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, M.A.; Khan, M.R.; Saeed, M.; Pasha, I.; Khalil, A.A.; Siraj, N. Punicic Acid: A Striking Health Substance to Combat Metabolic Syndromes in Humans. Lipids Health Dis. 2017, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Vazquez, C.M.; Martinez-Avila, M.; Guajardo-Flores, D.; Antunes-Ricardo, M. Punicic Acid and Its Role in the Prevention of Neurological Disorders: A Review. Foods 2022, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Hornung, E.; Pernstich, C.; Feussner, I. Formation of Conjugated Delta11Delta13-Double Bonds by Delta12-Linoleic Acid (1,4)-Acyl-Lipid-Desaturase in Pomegranate Seeds. Eur. J. Biochem. 2002, 269, 4852–4859. [Google Scholar] [CrossRef]
- Iwabuchi, M.; Kohno-Murase, J.; Imamura, J. Delta 12-Oleate Desaturase-Related Enzymes Associated with Formation of Conjugated Trans-Delta 11, Cis-Delta 13 Double Bonds. J. Biol. Chem. 2003, 278, 4603–4610. [Google Scholar] [CrossRef]
- Holic, R.; Xu, Y.; Caldo, K.M.P.; Singer, S.D.; Field, C.J.; Weselake, R.J.; Chen, G. Bioactivity and Biotechnological Production of Punicic Acid. Appl. Microbiol. Biotechnol. 2018, 102, 3537–3549. [Google Scholar] [CrossRef]
- Fadavi, A.; Barzegar, M.; Hossein Azizi, M. Determination of Fatty Acids and Total Lipid Content in Oilseed of 25 Pomegranates Varieties Grown in Iran. J. Food Compos. Anal. 2006, 19, 676–680. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Holic, R.; Yu, X.; Singer, S.D.; Chen, G. Improving the Production of Punicic Acid in Baker’s Yeast by Engineering Genes in Acyl Channeling Processes and Adjusting Precursor Supply. J. Agric. Food Chem. 2021, 69, 9616–9624. [Google Scholar] [CrossRef]
- Mietkiewska, E.; Miles, R.; Wickramarathna, A.; Sahibollah, A.F.; Greer, M.S.; Chen, G.; Weselake, R.J. Combined Transgenic Expression of Punica Granatum Conjugase (FADX) and FAD2 Desaturase in High Linoleic Acid Arabidopsis Thaliana Mutant Leads to Increased Accumulation of Punicic Acid. Planta 2014, 240, 575–583. [Google Scholar] [CrossRef]
- Xu, Y.; Mietkiewska, E.; Shah, S.; Weselake, R.J.; Chen, G. Punicic Acid Production in Brassica Napus. Metab. Eng. 2020, 62, 20–29. [Google Scholar] [CrossRef]
- Garaiova, M.; Mietkiewska, E.; Weselake, R.J.; Holic, R. Metabolic Engineering of Schizosaccharomyces Pombe to Produce Punicic Acid, a Conjugated Fatty Acid with Nutraceutic Properties. Appl. Microbiol. Biotechnol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Urbanikova, V.; Park, Y.-K.; Krajciova, D.; Tachekort, M.; Certik, M.; Grigoras, I.; Holic, R.; Nicaud, J.-M.; Gajdos, P. Yarrowia Lipolytica as a Platform for Punicic Acid Production. Int. J. Mol. Sci. 2023, 24, 8823. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, Y.; Cao, L.; Lin, L.; Ledesma-Amaro, R.; Ji, X.-J. Engineering Yarrowia lipolytica for Sustainable Production of the Pomegranate Seed Oil-Derived Punicic Acid. J. Agric. Food Chem. 2024, 72, 3088–3098. [Google Scholar] [CrossRef] [PubMed]
- Hood, E.E.; Gelvin, S.B.; Melchers, L.S.; Hoekema, A. NewAgrobacterium Helper Plasmids for Gene Transfer to Plants. Transgenic Res. 1993, 2, 208–218. [Google Scholar] [CrossRef]
- Holdsworth, J.E.; Veenhuis, M.; Ratledge, C. Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids. Microbiology 1988, 134, 2907–2915. [Google Scholar] [CrossRef]
- Roop, J.I.; Chang, K.C.; Brem, R.B. Polygenic Evolution of a Sugar Specialization Trade-off in Yeast. Nature 2016, 530, 336–339. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Y.; Zhang, S.; Zhu, Z.; Zhou, Y.J.; Yang, F.; Sun, W.; Wang, X.; Zhao, Z.K. Functional Integration of Multiple Genes into the Genome of the Oleaginous Yeast Rhodosporidium toruloides. FEMS Yeast Res. 2014, 14, 547–555. [Google Scholar] [CrossRef]
- Coradetti, S.T.; Pinel, D.; Geiselman, G.M.; Ito, M.; Mondo, S.J.; Reilly, M.C.; Cheng, Y.-F.; Bauer, S.; Grigoriev, I.V.; Gladden, J.M.; et al. Functional Genomics of Lipid Metabolism in the Oleaginous Yeast Rhodosporidium Toruloides. eLife 2018, 7, e32110. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Spanova, M.; Czabany, T.; Zellnig, G.; Leitner, E.; Hapala, I.; Daum, G. Effect of Lipid Particle Biogenesis on the Subcellular Distribution of Squalene in the Yeast Saccharomyces Cerevisiae. J. Biol. Chem. 2010, 285, 6127–6133. [Google Scholar] [CrossRef]
- Garaiova, M.; Zambojova, V.; Simova, Z.; Griac, P.; Hapala, I. Squalene Epoxidase as a Target for Manipulation of Squalene Levels in the Yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2014, 14, 310–323. [Google Scholar] [CrossRef] [PubMed]
- Garner, K.; Hunt, A.N.; Koster, G.; Somerharju, P.; Groves, E.; Li, M.; Raghu, P.; Holic, R.; Cockcroft, S. Phosphatidylinositol Transfer Protein, Cytoplasmic 1 (PITPNC1) Binds and Transfers Phosphatidic Acid. J. Biol. Chem. 2012, 287, 32263–32276. [Google Scholar] [CrossRef] [PubMed]
- Mietkiewska, E.; Siloto, R.M.; Dewald, J.; Shah, S.; Brindley, D.N.; Weselake, R.J. Lipins from Plants Are Phosphatidate Phosphatases That Restore Lipid Synthesis in a pah1Delta Mutant Strain of Saccharomyces Cerevisiae. FEBS J. 2011, 278, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, X.; Zhang, S.; Sun, W.; Ma, S.; Zhao, Z.K. Cloning and Evaluation of Different Constitutive Promoters in the Oleaginous Yeast Rhodosporidium toruloides. Yeast 2016, 33, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Garaiova, M.; Hua, Q.; Holic, R. Heterologous Production of Calendic Acid Naturally Found in Calendula officinalis by Recombinant Fission Yeast. J. Agric. Food Chem. 2023, 71, 3842–3851. [Google Scholar] [CrossRef]
- Johns, A.M.B.; Love, J.; Aves, S.J. Four Inducible Promoters for Controlled Gene Expression in the Oleaginous Yeast Rhodotorula Toruloides. Front. Microbiol. 2016, 7, 1666. [Google Scholar] [CrossRef]
- Figler, R.A.; Omote, H.; Nakamoto, R.K.; Al-Shawi, M.K. Use of Chemical Chaperones in the Yeast Saccharomyces Cerevisiae to Enhance Heterologous Membrane Protein Expression: High-Yield Expression and Purification of Human P-Glycoprotein. Arch. Biochem. Biophys. 2000, 376, 34–46. [Google Scholar] [CrossRef]
- Guo, X.; Bai, Z.; Zhang, Y.; Zhao, H.; Shi, S. Mining and Application of Constitutive Promoters from Rhodosporidium Toruloides. AMB Expr. 2023, 13, 17. [Google Scholar] [CrossRef]
- Hambalko, J.; Gajdoš, P.; Nicaud, J.-M.; Ledesma-Amaro, R.; Tupec, M.; Pichová, I.; Čertík, M. Production of Long Chain Fatty Alcohols Found in Bumblebee Pheromones by Yarrowia Lipolytica. Front. Bioeng. Biotechnol. 2021, 8, 593419. [Google Scholar] [CrossRef]
- Spandl, J.; White, D.J.; Peychl, J.; Thiele, C. Live Cell Multicolor Imaging of Lipid Droplets with a New Dye, LD540. Traffic 2009, 10, 1579–1584. [Google Scholar] [CrossRef]
- Lin, X.; Gao, N.; Liu, S.; Zhang, S.; Song, S.; Ji, C.; Dong, X.; Su, Y.; Zhao, Z.K.; Zhu, B. Characterization the Carotenoid Productions and Profiles of Three Rhodosporidium Toruloides Mutants from Agrobacterium Tumefaciens-Mediated Transformation. Yeast 2017, 34, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, O.; Shockey, J.M.; Gidda, S.K.; Silver, M.I.; Chapman, K.D.; Mullen, R.T.; Dyer, J.M. Engineering the Production of Conjugated Fatty Acids in Arabidopsis thaliana Leaves. Plant Biotechnol. J. 2017, 15, 1010–1023. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, M.J.; Hopkins, C.Y. Conjugated Fatty Acids of Tragopogon and Calendula Seed Oils. Can. J. Chem. 1960, 38, 2500–2507. [Google Scholar] [CrossRef]
- Ho, P.-W.; Klein, M.; Futschik, M.; Nevoigt, E. Glycerol Positive Promoters for Tailored Metabolic Engineering of the Yeast Saccharomyces Cerevisiae. FEMS Yeast Res. 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Vogl, T.; Kickenweiz, T.; Pitzer, J.; Sturmberger, L.; Weninger, A.; Biggs, B.W.; Köhler, E.-M.; Baumschlager, A.; Fischer, J.E.; Hyden, P.; et al. Engineered Bidirectional Promoters Enable Rapid Multi-Gene Co-Expression Optimization. Nat. Commun. 2018, 9, 3589. [Google Scholar] [CrossRef]
- Bautista, L.F.; Vicente, G.; Garre, V. Biodiesel from Microbial Oil. In Advances in Biodiesel Production; Elsevier: Amsterdam, The Netherlands, 2012; pp. 179–203. ISBN 978-0-85709-117-8. [Google Scholar]
- Sun, H.; Yang, M.; Gao, Z.; Wang, X.; Wu, C.; Wang, Q.; Gao, M. Economic and Environmental Evaluation for a Closed Loop of Crude Glycerol Bioconversion to Biodiesel. J. Biotechnol. 2023, 366, 65–71. [Google Scholar] [CrossRef]
- Gao, Z.; Ma, Y.; Wang, Q.; Zhang, M.; Wang, J.; Liu, Y. Effect of Crude Glycerol Impurities on Lipid Preparation by Rhodosporidium Toruloides Yeast 32489. Bioresour. Technol. 2016, 218, 373–379. [Google Scholar] [CrossRef]
- Terao, J. Revisiting Carotenoids as Dietary Antioxidants for Human Health and Disease Prevention. Food Funct. 2023, 14, 7799–7824. [Google Scholar] [CrossRef]
- Demets, R.; Gheysen, L.; Van Loey, A.; Foubert, I. Antioxidative Capacity of Microalgal Carotenoids for Stabilizing N-3 LC-PUFA Rich Oil: Initial Quantity Is Key. Food Chem. 2023, 406, 135044. [Google Scholar] [CrossRef]
- Baccouch, R.; Shi, Y.; Vernay, E.; Mathelié-Guinlet, M.; Taib-Maamar, N.; Villette, S.; Feuillie, C.; Rascol, E.; Nuss, P.; Lecomte, S.; et al. The Impact of Lipid Polyunsaturation on the Physical and Mechanical Properties of Lipid Membranes. Biochim. Et Biophys. Acta BBA-Biomembr. 2023, 1865, 184084. [Google Scholar] [CrossRef]
- Xu, Y.; Holic, R.; Li, D.; Pan, X.; Mietkiewska, E.; Chen, G.; Ozga, J.; Weselake, R.J. Substrate Preferences of Long-Chain Acyl-CoA Synthetase and Diacylglycerol Acyltransferase Contribute to Enrichment of Flax Seed Oil with α-Linolenic Acid. Biochem. J. 2018, 475, 1473–1489. [Google Scholar] [CrossRef]
Strain | Characteristics | Source |
---|---|---|
Escherichia coli | ||
NEB 5-alpha | fhuA2Δ(argF-lacZ)U169 phoA glnV44 Φ80Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 | NEB #C2987 |
Agrobacterium tumefaciens | ||
EHA105 | derivative of A281 (A136/pTiBo542) | Skerker J.M., UC Berkeley |
EHA105-PGI1-PgFADX | EHA105/pZPK-PPGI1-PgFADX-TPMA1-PGPD1-HYG-TNOS | This study |
EHA105-NAR1-PgFADX | EHA105/pZPK-PNAR1-PgFADX-TPMA1-PGPD1-HYG-TNOS | This study |
EHA105-PMA1-PgFADX | EHA105/pZPK-PPMA1-PgFADX-TPMA1-PGPD1-HYG-TNOS | This study |
Rhodotorula toruloides | ||
IFO0880 | MAT A2 | Skerker J.M., UC Berkeley |
PGI4–PGI36 | IFO0880/PPGI1-PgFADX-TPMA1-PGPD1-HYG-TNOS cassette | This study |
NAR10–NAR38 | IFO0880/PNAR1-PgFADX-TPMA1-PGPD1-HYG-TNOS cassette | This study |
PMA1–PMA12 | IFO0880/PPMA1-PgFADX-TPMA1-PGPD1-HYG-TNOS cassette | This study |
Strain | Promoter for PgFADX | Time (h) | TFA (g/L) | TFA/DCW (%) | PuA (% of TFA) | PuA (mg/g DCW) | PuA (mg/L) |
---|---|---|---|---|---|---|---|
72 | 4.55 ± 0.17 | 38.81 ± 0.97 | - | - | - | ||
IFO0880 | 120 | 6.20 ± 0.02 | 41.80 ± 1.86 | - | - | - | |
168 | 6.61 ± 0.38 | 42.22 ± 2.20 | - | - | - | ||
72 | 7.54 ± 0.08 | 46.09 ± 3.85 | 0.13 ± 0.00 | 0.59 ± 0.03 | 9.74 ± 0.49 | ||
PGI26 | PPGI1 | 120 | 8.44 ± 0.62 | 45.23 ± 1.67 | 0.12 ± 0.00 | 0.55 ± 0.02 | 10.35 ± 0.71 |
168 | 7.26 ± 1.36 | 40.46 ± 9.80 | 0.12 ± 0.00 | 0.49 ± 0.12 | 8.70 ± 1.74 | ||
72 | 6.76 ± 0.67 | 37.97 ± 1.89 | 0.10 ± 0.00 | 0.37 ± 0.00 | 6.65 ± 0.40 | ||
PGI28 | PPGI1 | 120 | 8.57 ± 0.71 | 45.05 ± 2.36 | 0.10 ± 0.00 | 0.43 ± 0.02 | 8.21 ± 0.66 |
168 | 7.43 ± 1.02 | 39.71 ± 5.44 | 0.09 ± 0.00 | 0.37 ± 0.05 | 6.90 ± 0.90 | ||
72 | 9.10 ± 0.55 | 48.50 ± 2.58 | 0.13 ± 0.00 | 0.62 ± 0.01 | 11.62 ± 0.09 | ||
NAR13 | PNAR1 | 120 | 8.69 ± 0.27 | 46.81 ± 1.95 | 0.13 ± 0.01 | 0.61 ± 0.03 | 11.42 ± 0.61 |
168 | 8.75 ± 0.55 | 44.84 ± 2.54 | 0.13 ± 0.00 | 0.59 ± 0.05 | 11.42 ± 1.03 | ||
72 | 9.27 ± 0.22 | 46.53 ± 0.24 | 0.07 ± 0.00 | 0.33 ± 0.00 | 6.59 ± 0.09 | ||
NAR16 | PNAR1 | 120 | 9.53 ± 0.10 | 49.86 ± 2.45 | 0.07 ± 0.00 | 0.36 ± 0.03 | 6.97 ± 0.29 |
168 | 8.29 ± 0.65 | 43.16 ± 2.44 | 0.07 ± 0.00 | 0.31 ± 0.03 | 6.04 ± 0.61 | ||
72 | 7.35 ± 0.51 | 46.16 ± 3.71 | 0.97 ± 0.11 | 4.45 ± 0.13 | 70.91 ± 2.86 | ||
PMA5 | PPMA1 | 120 | 7.39 ± 0.53 | 42.09 ± 5.66 | 0.98 ± 0.01 | 4.14 ± 0.62 | 72.70 ± 6.34 |
168 | 6.46 ± 2.10 | 35.26 ± 6.29 | 0.96 ± 0.01 | 3.37 ± 0.58 | 61.63 ± 19.63 | ||
72 | 8.02 ± 0.58 | 45.98 ± 2.65 | 1.32 ± 0.06 | 6.06 ± 0.07 | 105.77 ± 2.81 | ||
PMA6 | PPMA1 | 120 | 8.17 ± 0.17 | 44.05 ± 1.41 | 1.27 ± 0.03 | 5.60 ± 0.30 | 103.90 ± 4.48 |
168 | 7.63 ± 0.74 | 42.39 ± 5.67 | 1.25 ± 0.02 | 5.28 ± 0.80 | 95.00 ± 10.78 |
Strain | Promoter for PgFADX | Time (h) | TFA (g/L) | TFA/DCW (%) | PuA (% of TFA) | PuA (mg/g DCW) | PuA (mg/L) |
---|---|---|---|---|---|---|---|
72 | 5.26 ± 0.15 | 39.40 ± 0.12 | - | - | - | ||
IFO0880 | 120 | 9.19 ± 0.21 | 48.73 ± 0.79 | - | - | - | |
168 | 11.71 ± 1.12 | 52.57 ± 4.33 | - | - | - | ||
72 | 4.92 ± 0.08 | 39.11 ± 0.35 | 0.04 ± 0.00 | 0.17 ± 0.00 | 2.10 ± 0.01 | ||
PGI26 | PPGI1 | 120 | 8.43 ± 0.97 | 46.38 ± 0.50 | 0.03 ± 0.00 | 0.15 ± 0.00 | 2.76 ± 0.29 |
168 | 8.84 ± 1.32 | 49.67 ± 2.83 | 0.03 ± 0.00 | 0.16 ± 0.01 | 2.93 ± 0.38 | ||
72 | 4.85 ± 0.35 | 38.53 ± 0.06 | 0.04 ± 0.01 | 0.14 ± 0.01 | 1.73 ± 0.01 | ||
PGI28 | PPGI1 | 120 | 8.31 ± 0.74 | 43.18 ± 1.89 | 0.03 ± 0.01 | 0.11 ± 0.01 | 2.14 ± 0.09 |
168 | 9.82 ± 2.71 | 49.70 ± 4.23 | 0.03 ± 0.01 | 0.12 ± 0.01 | 2.44 ± 0.57 | ||
72 | 3.00 ± 0.03 | 31.65 ± 1.50 | 0.14 ± 0.01 | 0.43 ± 0.02 | 4.05 ± 0.03 | ||
NAR13 | PNAR1 | 120 | 6.98 ± 1.12 | 41.43 ± 2.18 | 0.14 ± 0.01 | 0.58 ± 0.08 | 9.70 ± 0.67 |
168 | 8.20 ± 1.99 | 50.20 ± 4.98 | 0.26 ± 0.04 | 1.26 ± 0.03 | 20.44 ± 2.48 | ||
72 | 3.16 ± 0.03 | 33.71 ± 0.90 | 0.09 ± 0.01 | 0.29 ± 0.04 | 2.68 ± 0.25 | ||
NAR16 | PNAR1 | 120 | 7.88 ± 1.68 | 42.08 ± 0.67 | 0.13 ± 0.01 | 0.53 ± 0.01 | 9.91 ± 1.87 |
168 | 8.79 ± 1.60 | 48.90 ± 1.10 | 0.29 ± 0.02 | 1.40 ± 0.07 | 24.98 ± 2.69 | ||
72 | 5.22 ± 0.25 | 37.33 ± 1.14 | 0.89 ± 0.08 | 3.33 ± 0.21 | 46.54 ± 2.13 | ||
PMA5 | PPMA1 | 120 | 9.06 ± 0.97 | 48.95 ± 1.56 | 0.69 ± 0.06 | 3.35 ± 0.19 | 61.74 ± 1.18 |
168 | 10.86 ± 1.96 | 52.83 ± 1.64 | 0.68 ± 0.06 | 3.56 ± 0.19 | 72.81 ± 7.12 | ||
72 | 5.17 ± 0.11 | 34.88 ± 0.12 | 0.75 ± 0.00 | 2.63 ± 0.01 | 38.94 ± 0.86 | ||
PMA6 | PPMA1 | 120 | 8.46 ± 0.13 | 41.64 ± 2.68 | 0.60 ± 0.00 | 2.48 ± 0.16 | 50.43 ± 0.75 |
168 | 10.27 ± 0.89 | 47.96 ± 2.99 | 0.61 ± 0.01 | 2.92 ± 0.10 | 62.44 ± 3.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajciova, D.; Holic, R. The Plasma Membrane H+-ATPase Promoter Driving the Expression of FADX Enables Highly Efficient Production of Punicic Acid in Rhodotorula toruloides Cultivated on Glucose and Crude Glycerol. J. Fungi 2024, 10, 649. https://doi.org/10.3390/jof10090649
Krajciova D, Holic R. The Plasma Membrane H+-ATPase Promoter Driving the Expression of FADX Enables Highly Efficient Production of Punicic Acid in Rhodotorula toruloides Cultivated on Glucose and Crude Glycerol. Journal of Fungi. 2024; 10(9):649. https://doi.org/10.3390/jof10090649
Chicago/Turabian StyleKrajciova, Daniela, and Roman Holic. 2024. "The Plasma Membrane H+-ATPase Promoter Driving the Expression of FADX Enables Highly Efficient Production of Punicic Acid in Rhodotorula toruloides Cultivated on Glucose and Crude Glycerol" Journal of Fungi 10, no. 9: 649. https://doi.org/10.3390/jof10090649
APA StyleKrajciova, D., & Holic, R. (2024). The Plasma Membrane H+-ATPase Promoter Driving the Expression of FADX Enables Highly Efficient Production of Punicic Acid in Rhodotorula toruloides Cultivated on Glucose and Crude Glycerol. Journal of Fungi, 10(9), 649. https://doi.org/10.3390/jof10090649