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Abstract: Phallus echinovolvatus is a well-known edible and medicinal fungus with signif-
icant economic value. However, the available whole-genome information is lacking for
this species. The chromosome-scale reference genome (Monop) and two haploid genomes
(Hap1 and Hap2) of P. echinovolvatus, each assembled into 11 pseudochromosomes, were
constructed using Illumina, PacBio-HiFi long-read sequencing, and Hi-C technology. The
Monop had a size of 36.54 Mb, with 10,251 predicted protein-coding genes and including
433 carbohydrate-active enzyme genes, 385 cytochrome P450 enzyme genes, and 42 gene
clusters related to secondary metabolite synthesis. Phylogenetic and collinearity analysis
revealed a close evolutionary relationship between P. echinovolvatus and Clathrus colum-
natus in the core Phallales clade. Hap1 and Hap2 had sizes of 35.46 Mb and 36.11 Mb,
respectively. Collinear relationships were not observed for 15.38% of the genes in the two
haplotypes. Hap1 had 256 unique genes, and Hap2 had 370 unique genes. Our analysis
of the P. echinovolvatus genome provides insights into the genetic basis of the mechanisms
underlying the metabolic effects of bioactive substances and will aid ongoing breeding
efforts and studies of genetic mechanisms.

Keywords: Phallus echinovolvatus; whole genome; dikaryon; comparative genomics;
CAZymes; secondary metabolism; terpene

1. Introduction
Phallus echinovolvatus (M. Zang, D.R. Zheng & Z.X. Hu) Kreisel, originally discovered

in Hunan Province, China, in 1988, was initially named Dictyophora echinovolvata M. Zang,
D.R. Zheng & Z.X. Hu [1]. This fungus is widely distributed in regions south of the Yangtze
River in China and in Southeast Asia [2,3]. The genus Dictyophora was initially established
to classify a group of fungi within the family Phallaceae, characterized by a distinctive
net-like “skirt” hanging from the cap. In the early 19th century, these fungi were grouped
under the genus Dictyophora Desvaux. However, in 1996, Kreisel reduced Dictyophora as
a section within the genus Phallus (P. sect. Dictyophora (Desvaux) Kreisel) [4], and the
species name was revised to Phallus echinovolvatus (M. Zang, D.R. Zheng & Z.X. Hu) Kreisel.
Recent molecular phylogenetic studies have shown that the presence or absence of the
“skirt” is insufficient to justify the independent taxonomic status of Dictyophora [5,6]. These
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findings provide strong evidence for the taxonomic adjustment, which has since been
widely accepted by mycologists [7,8]. Nevertheless, some studies continue to use the genus
name Dictyophora.

P. echinovolvatus is rich in various nutrients and is widely consumed as a functional
food in daily life in countries such as China, Japan, Germany, and North America [9,10]. It
also has significant biomedical effects. Previous studies have shown that it plays an impor-
tant role in the immune system, including in tumor cell inhibition and antibiosis [11–14].
The genome is essential for molecular and genetic research in macrofungi. Few genomic
and genetic studies of P. echinovolvatus have been conducted compared with other edible
mushrooms, such as Lentinula edodes [15], Flammulina velutipes [16], Auricularia heimuer [17],
Morchella importuna [18], and Agaricus bisporus [19]. This research gap has greatly impeded
downstream investigations and the utilization of this mushroom. Although the genomes of
Phallus indusiatus [20] and Phallus rubrovolvatus [21,22] have been published, the genome
of P. echinovolvatus has not yet been sequenced. The molecular basis and evolution of
the component biosynthesis in P. echinovolvatus are rarely reported due to the lack of a
high-quality reference genome.

Microscopic observations have revealed distinctive clamp connections, indicating
that the strain (RITF7875) is a dikaryon (Figure 1a). In macrofungi, the presence of two
haploid nuclei within a single cell is a widespread phenomenon. This specialized dikaryotic
structure poses major challenges to the assembly of macrofungal genomes. Following the
emergence of high-fidelity (HiFi) and chromosome conformation capture (Hi-C) sequencing
technologies, assembly tools designed for HiFi data, such as Hifiasm and HiCanu, have
been used for the assembly of the two haploid genomes of heterozygous organisms [23].
The use of HiFi and Hi-C sequencing strategies has facilitated the phasing and assembly of
chromosome-level genomes for several eukaryotic organisms, such as humans [24], Takifugu
ocellatus [25], diploid Suaeda glauca [26], walnut [27], apple [28], Puccinia triticina [29], and
Puccinia polysora [30].
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Figure 1. Dikaryotic mycelia and fruiting body of P. echinovolvatus. (a) Microscopic observation
of dikaryotic mycelia of the RITF7875 strain where the clamp connections are indicated by arrows.
(b) Cultivated P. echinovolvatus under trees in Guangdong Province, China.

We generated a chromosome-level reference genome and two haploid genomes of
P. echinovolvatus by integrating PacBio, Illumina, and Hi-C sequencing data. The total
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length of the reference genome was 43.85 Mb, with a contig N50 of 1.20 Mb. The assem-
bled sequences were anchored to 11 pseudochromosomes with an integration efficiency
of 83.58%. The total lengths of Hap1 and Hap2 were 37.68 Mb and 38.46 Mb, with contig
N50 lengths of 0.65 Mb and 0.73 Mb, respectively. Approximately 35.46 Mb (94.16%) of
Hap1 and 36.11 Mb (93.98%) of Hap2 were assigned to 11 pseudochromosomes. A total of
10,251, 9316, and 9328 protein-coding gene models were predicted for the Monop, Hap1,
and Hap2, respectively. In summary, we present novel genomic information about P. echino-
volvatus through gene annotation and comparative genomic analysis. The genome serves
as a direct and comprehensive representation of a species’ genetic information, offering
insights unclouded by the effects of convergent evolution or morphological plasticity. This
clarity makes genomic analysis an invaluable tool for exploring evolutionary relationships,
genetic diversity, and functional traits, bypassing the confounding influences of superficial
similarities or adaptive morphological changes. The genetic data generated in this study
will significantly contribute to the study of the taxonomy and evolutionary relationships
within the Phallaceae family, providing a crucial theoretical foundation for future genetic
breeding and the development of active compounds in P. echinovolvatus.

2. Materials and Methods
2.1. Fungal Strain and Genome Sequencing

The dikaryotic P. echinovolvatus strain (RITF7875) used in this study was derived from
the Forest Resources and Protection Laboratory of the Research Institute of Tropical Forestry,
Chinese Academy of Forestry (RITF) (Figure 1). The isolated and purified vegetative
mycelia were cultured in a liquid PD medium (30% potato, 2% glucose) for 14 days.
Mycelium collected through centrifugation was flash-frozen in liquid nitrogen and stored
in a refrigerator at −80 ◦C.

The high-quality genomic DNA from P. echinovolvatus (RITF7875) was extracted using
an Omega Bio-Tek Fungal DNA extraction kit (E.Z.N.A.® Fungal DNA Kit, Omega Bio-
Tek, Norcross, GA, USA) according to the manufacturer’s instructions. The library was
constructed using the Illumina TruSeqTM Nano DNA Sample Prep Kit (Illumina, San
Diego, CA, USA) method (with an insert size of 450 bp). After library construction, paired-
end sequencing was performed using the Illumina NovaSeq 6000 platform (Shanghai
BIOZERON Co., Ltd., Shanghai, China). To enhance the accuracy of the subsequent
assembly, adapter sequences were removed from the raw data using Trimmomatic v0.39
software [31] after quality control by FastQC v0.11.9 [32].

The high-molecular-weight genomic DNA was then sheared to a target size of
15–20 kb, and a SMRTbell library was constructed. The genomic library was sequenced in
circular consensus sequencing (CCS) mode on the PacBio Sequel II platform. To obtain a
more accurate assembly, the original sequencing data were processed as follows: (1) poly-
merase reads with a length of less than 200 bp were removed; (2) polymerase reads with a
quality score of less than 0.80 were removed; (3) CCS reads were extracted from polymerase
reads, and adapter sequences were removed; and (4) CCS reads with a length of less than
200 bp were removed.

For Hi-C sequencing, cells were treated with formaldehyde to crosslink the DNA
with the proteins, which preserves the conformation of the DNA. Following cell lysis, the
crosslinked DNA was treated with a restriction enzyme to generate sticky ends. After
end-polishing and repair, biotin was introduced to label the oligonucleotide ends. Adjacent
DNA fragments were ligated using DNA ligase. Protein digestion was performed to release
the DNA from the crosslinked state, followed by DNA purification and fragmentation into
500–700 bp fragments. The biotin-labeled DNA was captured using streptavidin magnetic
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beads for library construction. After library preparation, Hi-C sequencing was performed
using the Illumina NovaSeq 6000 platform.

2.2. Genome Assembly and Assessment

Before assembly, k-mer analysis was used to estimate various genome characteristics.
The Illumina sequencing data were analyzed using 21-mers to estimate the genome size,
heterozygosity, and repeatability.

The software Hifiasm (https://github.com/chhylp123/hifiasm, accessed on 5 Novem-
ber 2023) was used to assemble the HiFi reads [33]. The ALLHIC tool (https://github.com/
tanghaibao/allhic, accessed on 10 November 2023) was used to link the genome contigs
or scaffolds [34]. Hi-C-assisted assembly is based on the principle that cis-interactions are
stronger than trans-interactions, and the strength of cis-interactions increases at closer dis-
tances. Therefore, the contigs or scaffolds were clustered, sorted, and oriented to construct
the Hi-C-based chromosome-level assembly, followed by heatmap visualization to display
the chromosome contacts [35,36]. BUSCO v4.1.2 [37] was used to assess the completeness
and accuracy of the P. echinovolvatus genome.

2.3. Component Prediction

We used AUGUSTUS v3.2.3 [38] for the de novo gene prediction, and the alignments
were performed using GeneWise v2.4 [39] to identify gene-coding regions and intron
regions. Subsequently, EVidenceModeler v1.1.1 [40] software was used to integrate the
aforementioned results and predict all the protein-coding genes. RepeatMask (http://
www.repeatmasker.org, accessed on 5 January 2024) [41] was used to identify interspersed
repeats (IRs) by aligning the sequences against a known repetitive sequence database.
TRNAscan-SE v2.0.7 [42] was used to predict the transfer RNA (tRNA) regions and the
secondary structures of tRNAs. Ribosomal RNA (rRNA) predictions were conducted using
rRNAmmer v1.2 [43]. The Rfam v13.0 [44] was used to make comparisons against the
RNA families (Rfam)database and acquire annotations, and its integrated search tool (with
the default parameters) was used to identify small RNAs (sRNAs), small nuclear RNAs
(snRNAs), and microRNAs (miRNAs).

2.4. Gene Annotation

The predicted genes were subjected to BLAST alignment against the Non-Redundant
(NR), the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Evolutionary Genealogy
of Genes: Non-supervised Orthologous Groups (eggNOG), the Gene Ontology (GO), and
the Swiss-Prot databases to predict gene functions. PfamScan v1.6, provided by the Pfam
database, was used to identify structural domains. TMHMM v2.0 was used to predict
transmembrane domain structures. To classify members of the cytochrome P450 gene
family in P. echinovolvatus, BLAST v 2.10.1 was used to align all the protein sequences of P.
echinovolvatus against the Fungal Cytochrome P450 Database [45]. The predicted results
were named according to the Cytochrome P450 Database (https://cyped.biocatnet.de/,
accessed on 5 June 2024). The e-value cutoff was set to be less than or equal to 1 × 10−5.

2.5. Comparative Genomics Analysis

The genome and protein sequences of other macrofungi were downloaded from the
National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/, accessed
on 4 June 2024) (Table S1). Carbohydrate-active enzymes (CAZymes) were predicted using
dbCAN3 [46]. The online tool antiSMASH7.0 [47] was used to predict genes potentially
related to secondary metabolites. OrthoFinder (v2.5.4) [48] software was used to construct
the orthologous groups of 19 macrofungi. Single-copy orthologous genes were obtained
through screening and used to construct the phylogenetic tree to reveal the phylogenetic

https://github.com/chhylp123/hifiasm
https://github.com/tanghaibao/allhic
https://github.com/tanghaibao/allhic
http://www.repeatmasker.org
http://www.repeatmasker.org
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relationships among P. echinovolvatus and other related taxa. The single-copy orthologs were
further aligned using MUSCLE (v3.8.31) [49], and then the conserved region was extracted
with the aid of Gblocks 0.91b [50] to obtain the codon-type nucleic acid comparison,
which was concatenated for phylogenetic tree construction. Maximum likelihood (ML)
estimation of the model parameters was performed using jModeltest v2.1.10 software [51]
and GTR+I+G was the optimal model. PhyMLv3.0 [52] was used to construct the ML
phylogenetic tree. Collinearity analysis was performed using TBtools-II [53]. The results
were visualized using the ChiPlot Cloud Platform (https://www.chiplot.online/, accessed
on 5 June 2024). The gene sequences of Hap1 and Hap2 were extracted from the Hap1 and
Hap2 genome sequences and compared with each other using blastn (e-value < 1 × 10−5).
Genes without aligned partners between Hap1 and Hap2 were considered unique to either
Hap1 or Hap2.

3. Results and Discussions
3.1. Genome Sequencing and Assembly

We used the Illumina and PacBio sequencing platforms to sequence the genome of
P. echinovolvatus. Illumina sequencing generated 7.04 Gb of clean data. Hi-C sequencing
yielded 6.91 Gb of clean reads. Additionally, PacBio sequencing provided 24.37 Gb of HiFi
reads (Table S2).

The 7.04 Gb of clean data obtained through Illumina sequencing were used for the
k-mer analysis to generate a histogram of the depth distribution of the sequencing data
(k = 21) (Figure S1). The estimated genome size of P. echinovolvatus was 37.8 Mb, and
the estimated heterozygosity was approximately 1.69%. Notably, two major peaks were
observed in the graph, which were positioned between 50 and 150, and the first peak was
higher than the second. This demonstrates that RITF7875 is a dikaryotic strain.

Based on the HiFi reads, we initially assembled two haploid genomes, Hap1 and Hap2,
along with the reference genome, Monop. The Hap1, Hap2, and Monop genomes comprised
183, 122, and 76 contigs, and their sizes were 37.68 Mb, 38.46 Mb, and 43.85 Mb, respectively.
The N50 was 0.65 Mb, 0.73 Mb, and 1.20 Mb for the Hap1, Hap2, and Monop genomes,
and the guanine-cytosine (GC) content percentages were 43.96%, 43.97%, and 43.98%,
respectively (Table 1). The contigs or scaffolds were clustered, sorted, and oriented using
ALLHIC software to construct the chromosome-level genome, and interaction mapping
was used to correct inconsistencies. Finally, three genomes with 11 chromosomes each
were generated, with sizes of 35.46 Mb (Hap1), 36.11 Mb (Hap2), and 36.54 Mb (Monop),
and scaffold N50 lengths of 3.31 Mb, 3.33 Mb, and 3.43 Mb, respectively (Table 1). Based
on the interaction maps of the Hap1, Hap2, and Monop genomes, 11 distinct blocks were
observed, which corresponded to 11 chromosomes. The strong correlation between the
chromosome-level genome assembly and the Hi-C interaction maps indicates that this
assembly was highly reliable (Figure S2).

Compared to the other two species in the Phallus genus, the genomes of the three
species show significant differences. P. indusiatus has the largest genome size (67.32 Mb),
while P. rubrovolvatus has the smallest (32.89 Mb). The proportion of the coding gene
length to the total genome length is highest in P. rubrovolvatus (63.1%) and lowest in P.
echinovolvatus (37.09%). The average coding gene length in P. rubrovolvatus is much greater
than that in P. echinovolvatus and P. indusiatus, whereas P. indusiatus has a much higher
gene count than P. rubrovolvatus and P. echinovolvatus (Table 1). These differences may be
due to species-specific characteristics or variations in sequencing technologies; further
investigation is needed to clarify the underlying causes.

https://www.chiplot.online/
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Table 1. Genome assembly features of P. echinovolvatus, P. rubrovolvatus and P. indusiatus.

Contents Monop Hap1 Hap2 P. rubrovolvatus P. indusiatus

Sequencing Technology Illumina + Hi-C + PacBio HiFi Illumine + ONT
Number of Scaffolds 76 183 122 132 216

Total Length (Mb) 43.85 37.68 38.46 32.89 67.32
Scaffold N50 (Mp) 1.20 0.65 0.73 2.7 0.79

Guanine-Cytosine Content (%) 43.98 43.96 43.97 45.16 44.05
Gene Number 10,251 9316 9328 9725 19,909

Gene Total Length (Mb) 16.21 14.83 14.78 20.76 31.87
Gene Average Length (bp) 1582 1592 1585 2135.07 1601
Gene Length/Genome (%) 37.09 39.38 38.47 63.1 47.25

Pseudo-Chromosome 11 11 11 11 _
Pseudo-Chromosome Total Length (Mb) 36.54 36.11 35.46 28.24 _
Pseudo-Chromosome N50 Length (Mb) 3.42 3.38 3.36 2.75 _

Chromosome Anchoring Rate for Contigs (%) 83.58 94.16 93.98 85.57 _

Furthermore, the Benchmarking Universal Single-Copy Orthologs (BUSCOs, basid-
iomycota_odb11) were used to assess the assembly quality. A total of 1764 BUSCOs were
identified in the genome assembly, and the completeness rates of the Hap1, Hap2 and
Monop genomes were 95.6%, 95.8% and 96.7%, respectively (Table 2). These results indicate
that the P. echinovolvatus genome sequence had high completeness and contiguity.

Table 2. Statistics from the BUSCO analysis of the P. echinovolvatus genome.

Term

Hap1 Hap2 Monop

BUSCO
Number Percentage BUSCO

Number Percentage BUSCO
Number Percentage

Complete BUSCOs 1687 95.6 1691 95.8 1706 96.7
Complete and single-copy BUSCOs 1553 88 1579 89.5 1460 82.8
Complete and duplicated BUSCOs 134 7.6 112 6.3 246 13.9

Fragmented BUSCOs 13 0.7 12 0.7 13 0.7
Missing BUSCOs 64 3.7 61 3.5 45 2.6

Total BUSCO groups searched 1764 1.0 1764 1.0 1764 1.0

3.2. Genome Component of P. echinovolvatus
3.2.1. Gene Prediction

In the reference genome (Monop), a total of 10,251 coding genes with an average
length of 1582 bp were predicted. The cumulative length of these genes amounted to
16.21 Mb, accounting for 37.09% of the genome. The average numbers of exons and introns
per gene were 7.51 and 6.51, respectively. The two haploid genomes predicted 9316 and
9328 coding genes, which represented 39.38% and 38.47% of the genome, respectively. The
average counts of exons and introns per gene were 7.54 and 6.54, respectively (Table S3).

3.2.2. Repeat Sequences Prediction

Repetitive sequences are widespread in eukaryotic genomes and are considered an-
cient components of the genome. They can be divided into two categories: interspersed
repeats (IRs) and tandem repeats (TRs) [54]. TRs include minisatellite DNA, microsatel-
lite DNA, and satellite DNA. Discrete repeats include retrotransposons and DNA trans-
posons [55]. Repeat sequences of P. echinovolvatus were identified using both homology-
based and de novo strategies. Repeat sequences accounted for 17.73%, 14.45%, and 15.84%
of the Monop, Hap1, and Hap2 genomes, respectively. Most IRs were long terminal re-
peats, long interspersed nuclear elements, and DNA transposable elements. Most TRs
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comprised minisatellite DNA and microsatellite DNA (Table S4). Repetitive sequences play
an important role in maintaining the spatial structure of chromosomes, gene expression,
genetic regulation, and biological evolution. Accurately understanding the structure of the
repetitive sequences in the genome contributes to genome research [56].

3.2.3. Non-Coding RNA Prediction

The predictions of non-coding RNAs in the P. echinovolvatus genome are shown in
Table S5. A total of 107 tRNAs, five rRNAs, and 14 snRNAs were predicted in the reference
genome (Monop). Among the tRNAs, 41 were unidentified anticodons, and the remaining
anticodon tRNAs comprised 17 common amino acid codons. In the Hap1 and Hap2
genomes, 103 and 94 tRNAs, four and five rRNAs, and 12 and 14 snRNAs were predicted,
respectively.

3.3. Annotation of Gene Function

Functional analysis of the predicted gene sequences was conducted using multiple
public databases (NR, GO, KOG, KEGG, P450, Swiss-Prot, HMHMM, Pfam). This analysis
resulted in the identification of 8851, 8106, and 8080 annotated genes for the Monop, Hap1,
and Hap2 genomes, respectively (Table S6). Based on the gene annotation results, we
conducted further analysis of the reference genome (Monop).

3.3.1. GO Annotation

A total of 3402 genes were annotated in the GO database. The GO terms in the Biologi-
cal Process category were the most common and included “cellular process” (3195 genes),
“metabolic process” (2516 genes), and “biological regulation” (1427 genes); within the
Cellular Component category, the GO terms “cellular anatomical entity” (3191 genes),
“intracellular” (3135 genes), and “protein-containing complex” (1613 genes) were detected;
and within the Molecular Function category, the GO terms “catalytic activity” (1659 genes)
and “binding” (1576 genes) were detected (Figure 2).
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3.3.2. KEGG Annotation

Annotations from the KEGG database were obtained for 3566 genes, which accounted
for 34.79% of all the genes. These genes were classified into six major categories: Metabolism
(11 branches, 1719 genes), Genetic Information Processing (4 branches, 925 genes), Envi-
ronmental Information Processing (3 branches, 503 genes), Cellular Processes (5 branches,
814 genes), Organismal Systems (10 branches, 799 genes), and Human Diseases (12 branches,
1276 genes). Within the Metabolism category, the 1719 genes were further classified
into 11 subcategories, primarily “Carbohydrate metabolism” (369 genes), “Amino acid
metabolism” (346 genes), “Lipid metabolism” (236 genes), “Energy metabolism” (141 genes),
“Xenobiotics biodegradation and metabolism” (143 genes), “Metabolism of cofactors and
vitamins” (125 genes), and “Glycan biosynthesis and metabolism” (117 genes) (Figure 3).
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3.3.3. KOG Annotation

The annotations derived from the KOG database are shown in Figure 3. A total of
5657 genes were annotated in the KOG database, which accounted for 55.18% of all the
genes. The results revealed that the genes were enriched in various metabolic processes,
including “Posttranslational modification, protein turnover, chaperones” (547 genes), “Sig-
nal transduction mechanisms” (471 genes), “Secondary metabolite biosynthesis, transport
and catabolism” (419 genes), “Intracellular trafficking, secretion, and vesicular transport”
(353 genes), “Carbohydrate transport and metabolism” (308 genes), “Translation, ribosomal
structure and biogenesis” (308 genes), “Amino acid transport and metabolism” (303 genes),
and “Energy production and conversion” (301 genes) (Figure 4).
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3.3.4. The Cytochromes P450 (CYPs) Family

Cytochrome P450 enzymes (CYPs) are terminal oxidases and the major catalysts in-
volved in the metabolism of drugs involved in detoxification, the degradation of xenobiotics,
and the biosynthesis of secondary metabolites [57,58]. P. echinovolvatus had a total of 385
CYP genes in 30 families according to Nelson’s nomenclature [59]. The CYP51 family con-
tained the greatest number of genes (116 genes), followed by the CYP53 family (42 genes),
CYP620 family (28 genes), CYP504 family (28 genes), CYP512 family (23 genes), CYP125
family (22 genes), CYP505 family (20 genes), and CYP78 family (18 genes) (Table S7). P.
echinovolvatus had a few P450 genes involved in KEGG pathways. The results of the
gene function annotation revealed that 10 and 11 genes were involved in “Metabolism of
xenobiotics by cytochrome P450” and “Drug metabolism cytochrome P450”, respectively.

3.4. Comparative Genomics Analysis
3.4.1. CAZymes

Complex carbohydrates are widely distributed in nature, and they play numerous
biological roles within organisms, including serving as structural molecules, sources of
energy, and mediators of cell recognition within the same organism or between different
organisms. Carbohydrate-active enzymes are involved in the assembly and breakdown
of these complex carbohydrates [60]. A total of 433 CAZyme genes were identified from
the genome of P. echinovolvatus, and these were distributed across 103 CAZyme families,
including 199 glycoside hydrolases (GHs, 49 families, 45.96%), 90 glycosyl transferases
(GTs, 27 families, 20.79%), 13 polysaccharide lyases (PLs, 5 families, 3.00%), 25 carbohydrate
esterases (CEs, 7 families, 5.77%), 100 auxiliary activity enzymes (AAs, 11 families, 23.09%),
and six carbohydrate-binding modules (CBMs, 4 families, 1.39%) (Figure 5a and Table S8).
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Figure 5. CAZymes in P. echinovolvatus and other fungi. (a) The distribution of CAZymes in P.
echinovolvatus. (b) The distribution of CAZymes in another 23 fungi. (c) Heatmap representing the
CAZyme families distributed in P. echinovolvatus and other fungi. GH, glycoside hydrolase; GT,
glycosyltransferase; PL, polysaccharide lyase; CE, carbohydrate esterase; CBM, carbohydrate-binding
module; AA, auxiliary activity. * Referenced [20,21]. The red font is the target species sequenced in
this paper.

Fungi play a key role in the degradation of plant biomass. Symbiotic fungi can
obtain the nutrients needed for growth and development by establishing a symbiotic
relationship with the host, and saprophytic fungi mainly obtain nutrients by decomposing
humus. Under natural conditions, P. echinovolvatus usually grows in the decayed litter
layer of bamboo forest. The number of genes encoding carbohydrate enzymes predicted
in the genome of P. echinovolvatus was more than that in symbiotic fungi but less than
that in most saprophytic fungi. The genome of P. echinovolvatus contained genes that
encode enzymes required for cellulose degradation, such as GH1, GH3, GH5, GH6, GH7,
GH12, GH74, GH92, and AA9, as well as hemicellulases, including GH10, GH11, GH16,
GH30, GH115, CE1, and CE2; ligninases, such as AA1, AA2, AA3, AA7, and AA5; and
pectinases, such as GH2, GH28, GH35, GH43, GH51, GH53, GH78, GH88, GH93, GH105,
and CE8. Additionally, in the P. echinovolvatus genome, there were six genes related to
CBMs, including four families; most were related to the CBM91 and CBM20 families. Many
biomass-degrading fungi commonly employ CBMs for plant cell wall degradation [61]. In
the case of P. echinovolvatus, CBMs form chimeric enzymes with CAZymes from several
families to enhance the hydrolysis of carbohydrates, as well as insoluble substrates such as
cellulose, chitin, and starch. We compared the numbers of enzymes in different families
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in P. echinovolvatus with those in other mushrooms and found that the numbers of AA9,
GH5, GH43, CBM13, and CE4 were significantly lower in P. echinovolvatus than in most
saprophytic fungi. Both P. echinovolvatus and P. rubrovolvatus lacked genes encoding PL1,
PL3, and PL4 for pectin degradation. These results suggest that P. echinovolvatus might have
relatively weak plant cell-wall-degrading abilities, which might contribute to its longer
growth cycle (Figure 5 and Table S8).

Fungi rely on CAZymes to degrade complex polysaccharides such as cellulose, hemi-
cellulose, and lignin, which allows them to access and utilize diverse carbon sources present
in their environment. The CAZyme repertoire of a fungus reflects its ability to colonize
specific substrates. Interestingly, P. indusiatus has a significantly higher number of CAZyme
genes compared to P. echinovolvatus and P. rubrovolvatus—2.10 and 2.53 times higher, re-
spectively, highlighting the significant expansion of the CAZyme repertoire in P. indusiatus
compared to the other two species. This variation in the CAZyme gene numbers appears to
be associated with differences in the genome size, suggesting that genome expansion may
play a role in the diversification of CAZyme repertoires among these species. The extensive
CAZyme repertoire of P. indusiatus suggests an ecological adaptation to niches that de-
mand a broader range of enzymatic activities, potentially targeting complex substrates like
bamboo or other lignocellulosic materials. In contrast, P. echinovolvatus and P. rubrovolvatus
may specialize in simpler substrates, necessitating fewer CAZymes. The larger number
of CAZyme genes likely provides P. indusiatus with greater metabolic flexibility, allowing
it to adapt to diverse or challenging environments. While P. indusiatus stands out for
its extensive CAZyme gene set, the specific evolutionary and ecological drivers of this
disparity remain unclear and warrant further investigation, particularly in the context of
substrate availability and habitat specialization.

3.4.2. Secondary Metabolites

During the growth of edible fungi, a wide variety of secondary metabolites are pro-
duced, and these serve as important sources of bioactive substances in edible fungi. These
bioactive substances include amino acids, polysaccharides, terpenes, vitamins, and other
active compounds. The secondary metabolites often exhibit unique biological activities.
For example, they have various functions, such as reducing blood lipid levels, inhibiting
tumor growth, enhancing immune responses, and regulating metabolism. Consequently,
these secondary metabolites have significant implications for modern pharmaceutical de-
velopment [62,63]. The gene clusters involved in the biosynthesis of secondary metabolites
in the P. echinovolvatus genome were predicted using antiSMASH. As shown in Figure 6a
and Table S9, a total of 42 predicted secondary metabolite gene clusters were identified,
including 32 terpene gene clusters, two T1PKS gene clusters, two siderophore gene clus-
ters, one indole gene cluster, and five NRPS gene clusters. T1PKSs are involved in the
biosynthesis of complex polyketides, which include many clinically important compounds,
such as antibiotics, antifungals, and anticancer agents [64]. The relatively low number of
T1PKS clusters in P. echinovolvatus compared to other fungi suggests limited production
of complex polyketides, but the presence of these clusters indicates potential for unique
bioactive compounds. Similarly, indole clusters are sparse, with most species having zero
to four clusters. P. echinovolvatus has one cluster, indicating limited indole metabolite
biosynthesis compared to other fungi. Siderophores are iron-chelating compounds that
facilitate iron uptake in iron-limited environments. Siderophore clusters are fairly evenly
distributed, ranging from zero to five clusters [65]. P. echinovolvatus has two clusters, in-
dicating its potential for iron-chelating activities, which are vital for fungal growth and
survival. Additionally, non-ribosomal peptide synthetases (NRPSs) are involved in the
biosynthesis of peptides with various biological activities, including antibiotics, immuno-
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suppressants, and siderophores [66,67]. The number of NRPS gene clusters is often closely
related to the ecological adaptability and diversity of secondary metabolites. A total of
five NRPS gene clusters were predicted in the genome of P. echinovolvatus, indicating a
lower count compared to certain other fungi. This suggests that P. echinovolvatus may
rely more on other secondary metabolic pathways, such as terpenoid biosynthesis, for
environmental adaptation.
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It is worth noting that terpene-related gene clusters account for the largest proportion
of these clusters, which is lower than that of P. indusiatus (46 clusters) but significantly
higher than in other macrofungi, indicating a much greater potential for synthesizing
terpene compounds compared to other macrofungi. Mapping the terpene gene clusters to
the chromosomes revealed their distribution across all the chromosomes (Figure 6b and
Table S9).

Terpenoid compounds are a class of natural organic compounds formed by the poly-
merization of isoprene units (C5H8). They are important components of secondary metabo-
lites, widely found in microorganisms. They have important physiological activities and
biological functions, and they are particularly important in drug development and growth
regulation. For example, guanacastane-type diterpenoids with antitumor activity have been
isolated from Coprinus radians [68]. The triterpene acid extract from Ganoderma lucidum can
inhibit the activity of human hepatoma SMMC-7721 and human colon carcinoma SW620



J. Fungi 2025, 11, 62 13 of 21

cells [69]. Terpenoid compounds perform various crucial functions within organisms. They
act as volatile substances to deter pests and pathogens, attract pollinators or seed dispersers,
and help microorganisms adapt to environmental stresses [70–72]. Previous studies have
indicated that one of the primary constituents of the volatile aroma of bamboo fungi is
volatile terpenoids, such as geranylacetone, β-patchoulene, limonene, alpha-chamigrene,
cedrene, γ-selinene, and cedrol [73,74]. Plants utilize scent to attract animals to aid in seed
dispersal and reproduction. Possibly similar to the reproductive strategy of plants, when
P. echinovolvatus matures, the surface of the cap secretes mucilage containing numerous
sexual spores and emits a strong odor, which might attract more insects to facilitate spore
dissemination. The genomes of both P. indusiatus and P. echinovolvatus are significantly
enriched with gene clusters associated with terpene biosynthesis; this likely stems from
long-term adaptation to the environment. Isopentenyl pyrophosphate (IPP) and dimethy-
lallyl pyrophosphate (DMAPP) are common precursors for the biosynthesis of terpenes.
IPP and DMAPP are primarily derived from the mevalonate (MVA) and methylerythritol
phosphate (MEP) pathways [75,76]. Based on the KEGG annotation results, there were
15 enzymes involved in “terpenoid backbone biosynthesis (map00900)” in P. echinovolva-
tus, where acetyl-CoA C-acetyltransferase, isopentenyl-diphosphate delta-isomerase, and
phosphomevalonate kinase were encoded by two genes each, and the remaining 12 en-
zymes were encoded by a single gene. Similar to other basidiomycetes, the MVA pathway
was detected in P. echinovolvatus; however, the MEP/DOXP pathway was not detected
(Figure S3 and Table S10). There were two enzymes involved in “Sesquiterpenoid and triter-
penoid biosynthesis (map00909)”, where farnesyl-diphosphate farnesyltransferase was
encoded by three genes and squalene monooxygenase was encoded by one gene. Further-
more, we identified two genes encoding lanosterol synthase (LSS) (AMY2.Monop07530.1,
AMY2.Monop07562.1 [EC:5.4.99.7]); one enzyme was involved in “Diterpenoid biosynthe-
sis(map00904)”, six enzymes were involved in “Ubiquinone and other terpenoid-quinone
biosynthesis (map00130)”, NAD(P)H dehydrogenase (quinone) was encoded by four genes,
and the remaining five enzymes were encoded by a single gene. However, no enzymes
associated with the “monoterpenoid biosynthesis (map00902)” pathway were identified.

The diversity of the secondary metabolite gene clusters underscores the variability
in the biosynthesis of secondary metabolites across different species. A comparison with
other macrofungi revealed that P. echinovolvatus exhibits significant potential for terpene
biosynthesis, making it a promising source of diverse terpenoids that are not only eco-
logically significant but also possess substantial biological and pharmaceutical value. Its
rich terpenoid diversity positions it as a valuable candidate for natural product discovery,
particularly in drug development and other biotechnological applications. To fully realize
this potential, future studies should focus on elucidating the terpene biosynthetic pathways
of P. echinovolvatus through transcriptomic, proteomic, and metabolomic, combined with
bioinformatics analysis and experimental validation. This approach will enable a deeper
understanding of the specific functions of these gene clusters and exploration of their
application potential.

3.4.3. Phylogenetic Analysis

The evolutionary relationships between P. echinovolvatus and 18 other fungi (T.
melanosporum from Ascomycota as the outgroup) were investigated. A total of 629 single-
copy orthologous gene families were found and used to construct the phylogenetic tree,
and 844 genes were unique to P. echinovolvatus (Table S11). As shown in Figure 7, P. echi-
novolvatus was nested within a large clade formed by five species under Phallales and
clustered with C. columnatus, indicating that P. echinovolvatus is closely related to C. colum-
natus. P. echinovolvatus and C. columnatus both belong to the family Phallaceae, and the



J. Fungi 2025, 11, 62 14 of 21

results of the phylogenetic analysis were consistent with the classification results based on
the morphological and molecular traits.
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3.4.4. Collinearity Analysis

Based on the phylogenetic analysis, we conducted a genome collinearity analysis
using C. columnatus, which is closely related to P. echinovolvatus (its genome comprises
11 long contigs and eight short contigs), and P. ostreatus, which is more distantly related
(its genome comprises 11 chromosomes). We observed pronounced collinearity between
P. echinovolvatus and C. columnatus, and the collinearity between P. echinovolvatus and P.
ostreatus was not significant. The results indicated the high reliability of the P. echinovolvatus
genome assembly. Previous studies have found that structural genomic variants play an
important role in the evolution of species [77]. According to the results of the collinearity
analysis, genomic structural variations were observed both within and between chromo-
somes. Chromosomal segment heterotopy was observed in chromosomes 5, 7, 9, and 10 in
P. echinovolvatus and C. columnatus. Major chromosomal rupture and fusion events occurred
between chromosomes 2, 3, and 11. Obvious rearrangements, ruptures, and fusion events
were detected in chromosome 1 (Figure 8).
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3.4.5. Comparative Analysis of Hap1 and Hap2

The length and gene count of each chromosome in Hap1 and Hap2 are shown in
Table 3. A total of 156 pairs of one-to-one matching gene blocks were detected, which
accounted for 84.62% of all the genes. Strong collinearity was detected between Hap1 and
Hap2; chromosomes 2, 3, 5, 6, 7, 9, and 10 in Hap1 corresponded to chromosomes 3, 7, 6, 2,
5, 10, and 9 in Hap2, respectively. Chromosomes 5, 6, and 9 in Hap1 and chromosomes 2
and 5 in Hap2 experienced minor fragmentation and fusion events. These results suggested
that the two haploid nuclei might have been derived from different parents (Figure 9).

Table 3. The length and gene count of each chromosome.

ID
Hap1 Hap2

Length (bp) Gene Number Length (bp) Gene Number

Chr1 4,557,232 1177 4,928,922 1169
Chr2 3,821,430 812 3,777,475 980
Chr3 3,400,287 844 3,601,952 766
Chr4 3,382,853 923 3,473,486 949
Chr5 3,377,001 1052 3,363,986 614
Chr6 3,305,313 867 3,326,919 1032
Chr7 3,217,999 586 3,117,068 719
Chr8 2,906,280 763 3,049,163 783
Chr9 2,867,821 579 2,808,455 679

Chr10 2,792,080 687 2,697,050 574
Chr11 1,831,909 454 1,961,784 465
Total 35,460,205 8744 36,106,260 8730
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Subsequently, non-collinear gene sequences were extracted from the genome and
subjected to blastn alignment for the two haplotypes (e-value < 1 × 10−5). There were
256 unique genes in Hap1 and 370 unique genes in Hap2. These unique genes were widely
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Functional enrichment analysis was conducted for unique genes, and the KEGG
annotation results indicated that the unique genes in Hap1 were primarily enriched in
pathways related to “Biosynthesis of secondary metabolites”, “Metabolic pathways”, and
“Ubiquitin-mediated proteolysis”. The unique genes in Hap2 were significantly enriched
in “Metabolic pathways” and “Oxidative phosphorylation” (Table S12). The results of the
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GO analysis indicated that the unique genes in Hap1 were mainly enriched in processes re-
lated to “cellular protein modification process”, “macromolecule modification”, “organelle
membrane”, and “protein modification process”. The unique genes in Hap2 were primarily
enriched in processes related to “envelope”, “organelle envelope”, and “oxidoreductase
activity” (Table S13).

The genome of the dikaryotic strain of P. echinovolvatus is highly heterozygous, and the
results from the phased assembly and annotation indicate genetic differences between the
two nuclei. Given the limitations of current sequencing technologies and analytical tools,
future work involving the mononucleation of dikaryotic mycelium, followed by separate
sequencing of the resulting mononuclear strains, could yield more accurate genomic
information. This approach would also allow for a deeper investigation into the roles of
each nucleus in the growth and reproduction of P. echinovolvatus.

4. Conclusions
In this study, we present the genomic information about P. echinovolvatus obtained by

integrating different sequencing technologies. Functional annotations of the genomes were
obtained using multiple public databases. This whole-genome assembly, along with the
associated annotation data, represents the first chromosome-level genome assembly for
P. echinovolvatus. These new data will aid future studies on the evolution of species and
phylogenetic analyses based on genomic data. Furthermore, these data will be useful for
breeding programs, as well as for studies of developmental mechanisms and the pathways
underlying the biosynthesis of bioactive compounds in P. echinovolvatus. Our findings
provide genetic and molecular insights into the evolutionary history of P. echinovolvatus
and offer genomic resources to further facilitate gene editing to enhance desirable traits.
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//www.mdpi.com/article/10.3390/jof11010062/s1, Figure S1: Histogram of the 21-mer depth dis-
tribution of the Illumina sequencing reads of P. echinovolvatus; Figure S2: Whole-genome Hi-C
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Carbohydrate-active enzyme annotation results (Monop); Table S9: Statistics of the antiSMASH
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annotation of unique genes; Table S13: The GO function annotation of unique genes.
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