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Abstract: Fusarium graminearum is recognized as the pathogen responsible for wheat head
blight. It produces deoxynivalenol (DON) during infection, which endangers human
health. DON biosynthesis occurs within toxisomes in the endoplasmic reticulum (ER).
In eukaryotes, the ER membrane protein complex (EMC) is critical for the ER’s normal
operation. However, the specific role of the EMC in F. graminearum remains poorly un-
derstood. In this study, six EMC subunits (FgEmc1-6) were identified in F. graminearum,
and all of them were localized to the toxisomes. Our results demonstrate that the EMC is
indispensable for vegetative growth and asexual and sexual reproduction, which are the
fundamental life processes of F. graminearum. Importantly, EMC deletion led to reduced
virulence in wheat spikes and petioles. Further investigation revealed that in ∆Fgemc1-6,
the expression of trichothecene (TRI) genes is decreased, the biosynthesis of lipid droplets
(LDs) is diminished, toxisome formation is impaired, and DON production is reduced.
Additionally, defects in the formation of the infection cushion were observed in ∆Fgemc1-6.
In conclusion, the EMC is involved in regulating growth and virulence in F. graminearum.
This study enhances our understanding of the EMC functions in F. graminearum and offers
valuable insights into potential targets for managing wheat head blight.

Keywords: Fusarium graminearum; mycotoxin; EMC; virulence; doxynivalenol (DON)

1. Introduction
Fusarium graminearum is widely recognized as the principal pathogen accountable for

wheat head blight. Besides diminishing wheat yield, this pathogen also produces a variety
of mycotoxins during the process of infecting the host [1–3]. Deoxynivalenol (DON) has
been extensively investigated among these toxins and is regarded as the most detrimental
contaminant [4,5]. DON inhibits protein biosynthesis, and even small levels of DON can
trigger acute symptoms such as nausea, vomiting, and diarrhea, while excessive intake
can lead to acute toxicity and may endanger the lives of humans and mammals [6,7]. Fur-
thermore, DON is a crucial pathogenic factor of F. graminearum, contributing significantly
to the spread of this pathogen within the wheat spike during infection at the flowering
stage [8]. Therefore, the identification of regulatory mechanisms of DON biosynthesis in
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F. graminearum may provide novel and effective strategies in the management of wheat
head blight and mycotoxin contamination.

The endoplasmic reticulum (ER), as the largest organelle in eukaryotic organisms,
serves as the primary site for the biosynthesis of numerous secondary metabolites. In
F. raminearum, the biosynthesis of DON is intricately associated with the ER [9]. When
F. graminearum initiates the plant infection, the ER undergoes a remodeling process, giving
rise to specialized structures known as toxisomes, which are reportedly the sites where
DON is biosynthesized [9–11]. Proteins that regulate ER function and structure are cru-
cial for toxisome formation and impact DON biosynthesis, such as the ER fusion protein
FgSey1 [12], the ER lipid droplet formation-associated proteins FgPah1 and FgNem1 [13],
and the ER-located FgHmr1, which encodes a hydroxymethylglutaryl (HMG) CoA reduc-
tase involved in the mevalonate pathway [14]. Furthermore, essential regulatory proteins
like Tri1 and Tri4 in the DON biosynthesis pathway are also located in toxisomes, facilitating
DON production. Despite the significant role of the ER in DON biosynthesis, the specific
regulatory mechanisms by which ER-associated proteins influence toxisome formation
remain largely unexplored.

The ER membrane protein complex (EMC) consists of a set of highly conserved sub-
units located in the ER [15]. As an insertion enzyme or chaperone for membrane proteins,
the EMC is crucial for sustaining lipid equilibrium, promoting signal transduction, affecting
disease progression, and bolstering protein biosynthesis [16–18]. While the roles of the EMC
have been extensively documented, it is still unknown whether the EMC contributes to the
regulation of toxisome formation and DON production in F. graminearum. Furthermore, the
impact of EMC on the pathogenicity of F. graminearum is not well understood.

In our study, we identified the existence of six EMC subunits located on the toxisomes
in F. graminearum. Our findings demonstrate that the EMC is essential for various biological
processes in F. graminearum, such as vegetative growth, asexual and sexual reproduction,
and virulence. The deletion of FgEMC1-6 led to a reduction in DON content, a decrease
in toxisome formation, and a diminished generation of lipid droplets (LDs) integral to
toxisome formation. Furthermore, the infection structures of the pathogen in the ∆Fgemc1-6
mutants exhibit abnormalities. Therefore, our data suggest that the EMC plays a significant
role in the growth and virulence of F. graminearum.

2. Materials and Methods
2.1. Strain and Culture Conditions

The PH-1 was used in this experiment as a wild-type strain [19]. The EMC mutant
strains and PH-1 of F. graminearum were incubated on potato dextrose agar (PDA) media at
a temperature of 25 ◦C in a light-free environment. The colony diameter of V8 medium,
complete medium (CM), 5 × yeast extract–glucose (YEG), and minimal medium (MM)
colonies was determined after 3 days at 25 ◦C, and the height of the aerial hyphae within
a test tube containing PDA was measured after 3 days at the same temperature. Stress
evaluations were conducted by observing the growth under diverse stress conditions
on CM supplemented with KCl, Congo Red (CR), hydrogen peroxide (H2O2), sorbitol,
and dithiothreitol (DTT). In the pigment observation experiment, the fungus cake was
incubated in a PDB culture medium for three days to monitor color alterations [20]. All the
experiments were replicated thrice.

2.2. Generation of EMC Mutants

The split-marker approach was employed to generate EMC deletion mutants. Specifi-
cally, 1000 bp upstream and 1000 bp downstream flanking sequences of FgEMC1-6 were
amplified by PCR. The hygromycin phosphotransferase (HPH) gene was also amplified
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from pCB1003. The primers used for PCR amplification are listed in Table S1. Subsequently,
overlapping PCR was utilized to construct the FgEMC1-6 gene replacement constructs.
Then, the PCR products were transformed into protoplasts of the wild-type (WT) PH-1
through polyethylene glycol (PEG)-mediated transformation [21]. The resulting trans-
formants were screened on a TB3 medium supplemented with hygromycin. Eventually,
∆Fgemc1-6 was validated using the specific primers presented in Table S1.

2.3. Phylogenetic Evolutionary Tree Analysis

We retrieved protein sequences from ten species including F. graminearum, F. oxyspo-
rum, Saccharomyces cerevisiae, Homo sapiens, Arabidopsis thaliana, Neurospora crassa,
Aspergillus nidulans, Magnapothe oryzae, Schizosaccharomyces pombe and Ustilago may-
dis on the NCBI website (https://www.ncbi.nlm.nih.gov/ accessed on 20 November 2024).
Using the ClustalW program, we assessed the homology of EMC subunits among different
species and constructed a phylogenetic tree with the MEGA11 software.

2.4. Assays for Asexual and Sexual Reproduction

For the purpose of obtaining spore counting statistics and conducting morphologi-
cal observations, five fungus cakes were carefully transferred from fresh plates into car-
boxymethyl cellulose (CMC) liquid media and then incubated at 25 ◦C for a duration
of 5 days. The spores were counted with a specialized counter after being stained with
calcofluor white (CFW) for one minute, and the examination was performed using a fluores-
cence microscope [12]. This entire procedure was repeated three times to ensure reliability.
In the experiments concerning the induction of sexual reproduction, the strain was inoc-
ulated onto carrot media (CA). Once the mycelium completely covered the plate, 500 µL
of Tween 20 was added to the plate. Then, the mycelium was pressed onto the culture
medium, ensuring it adhered as closely as possible. After this step, the plate was placed
under a black light lamp to induce the formation of perithecia [22]. Subsequently, the
morphology of the perithecia and ascospores was analyzed using a microscope [23]. This
process was replicated three times to enhance the accuracy of the results.

2.5. Plant Infection Assays

Both the PH-1 and ∆Fgemc1-6 strains were inoculated into CMC and cultured for 7 days.
The conidia harvested from the culture were filtered, and deionized distilled water (ddH2O)
was added to prepare a conidial suspension with a concentration of 2 × 105 conidia ml−1.
A volume of ten microliters of fresh spore suspension was inoculated onto the stigma of
the wheat variety Jimai 22 during its flowering stage in the field. Images were taken two
weeks post-inoculation, and the disease index was calculated by counting the number
of diseased spikelets exhibiting symptoms of withering and white discoloration. Three
days after inoculation, the cells were fixed using a 4% (v/v) glutaraldehyde and 2% (v/v)
paraformaldehyde solution, followed by dehydration with varying concentrations of anhy-
drous ethanol. The samples were then sealed with isoamyl acetate, dried, and subjected to
ion spraying. Subsequently, the sections were examined using a Japanese electron scanning
electron microscope (JEOL, Tokyo, Japan) [24]. The wheat coleoptile experiment was con-
ducted following previously established protocols [25]. In the wheat infection experiment,
30 wheat spikes or coleoptiles were inoculated.

2.6. DON Production Assays

In order to ascertain DON production, five mycelial plugs of fresh mycelia from
∆Fgemc1-6 and PH-1 were independently inoculated into 5 g of sterile wheat grains and
incubated at 25 ◦C over a period of 20 days. Subsequently, DON was extracted by the high-
performance liquid chromatography (HPLC) method detailed in previous studies [12,26].

https://www.ncbi.nlm.nih.gov/
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We determined the levels of DON and fungal ergosterol in each sample, with ergosterol
content used as an internal control for the relative quantification of DON [27,28]. This
experiment was conducted three times.

2.7. Gene Expression Analysis

PH-1 and ∆Fgemc1-6 were cultivated in TBI for a duration of three days. The mycelium
was then harvested for RNA extraction using an RNA-easy isolation reagent (R701, Vazyme,
Nanjing, China), and 1µg of each RNA sample was used for reverse transcription with
a HiScript II 1st strand cDNA synthesis kit (R212, Vazyme, Nanjing, China) [20]. The
expression levels of pigment biosynthetic genes (AURJ, AURF, GIP1, GIP2, and PKS12),
as well as DON biosynthesis-related genes (TRI1, TRI4, TRI5, TRI6, and TRI10), were
examined using RT-qPCR. GAPDH was employed as an internal control for expression
levels. The specific primers used are as described previously [28] (Table S1). By applying the
2−∆∆Ct method, the relative expression level of the target gene was calculated in accordance
with the guidelines of the ChamQ Universal SYBR qPCR Master Mix (Q711, Vazyme,
Nanjing, China).

2.8. Microscopic Observation

To investigate the effect of FgEmc1-6 on toxisome formation, the plasmid pYF11-FgTri1-
GFP was introduced into PH-1 and ∆Fgemc1-6 via PEG-mediated protoplast transformation,
resulting in the generation of strains PH-1/FgTri1-GFP and ∆Fgemc1-6/FgTri1-GFP, both ex-
pressing the FgTri1-GFP fluorescent protein. To assess the co-localization of FgEmc1-6 with
FgTri1-GFP, the pHD64-FgEmc1-6-mCherry plasmid was constructed and co-introduced
with pYF11-FgTri1-GFP into PH-1 using the same transformation method. The primers
used for vector construction are listed in Table S1. The strains were cultured in CM or
TBI medium for 24 h, after which fluorescence signals were observed using fluorescence
microscopy (Nikon, Japan) with GFP/RFP filters and an X40 object lens. For lipid droplet
observation, PH-1 and ∆Fgemc1-6 were incubated in CM and TBI medium for 48 h. Mycelia
were subsequently harvested, transferred to Nile red dye, and incubated at 37 ◦C for 10 min,
and lipid droplet production was assessed using the same microscopy with an X40 object
lens and GFP filters.

2.9. Statistical Analyses

To ensure the reproducibility of the trends and relationships identified among the
cultures, all experimental data were obtained from three independent samples. Each error
bar represents the standard deviation (SD) calculated from the mean of triplicate samples.
Statistical significance was assessed using Duncan’s multiple range test, with a significance
level set at p < 0.05. The analysis was conducted using SPSS Statistics 26.

3. Results
3.1. Identification of F. graminearum EMC Subunits

In F. graminearum, six EMC subunits (FGSG_00261, FGSG_07429, FGSG_05601,
FGSG_09736, FGSG_11940, and FGSG_01360) were identified using the full-length amino
acid sequences of EMC in S. cerevisiae and Homo sapiens as queries by NCBI BLAST and
were designated as FgEmc1-6, respectively (Figure S1). We further performed a protein
domain analysis on the amino acid sequences of FgEmc1-6 using the SMART database
(https://smart.embl.de/ accessed on 21 March 2020). The analysis demonstrated that
FgEmc1 harbors one transmembrane domain (TMD), while FgEmc3, FgEmc4, FgEmc5,
and FgEmc6 each possess two TMDs, aligning with the role of the EMC as either inser-
tion enzymes or chaperones [29,30]. Furthermore, FgEmc1 features a pyrroloquinoline

https://smart.embl.de/
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quinone (PQQ)-like repeat, potentially serving as a crucial scaffold for protein–protein
interactions [31]. FgEmc2 has a tandem tetratricopeptide repeat (TPR) motif, potentially
implicating its role in interacting with other proteins. Additionally, FgEmc5 contains a
membrane magnesium transporter (MMgT) domain, which might modulate the physio-
logical and adaptive responses of F. graminearum to magnesium [32]. Moreover, FgEmc1,
FgEmc3, and FgEmc4 are anticipated to have uncharacterized function domains (DUF1620,
DUF106, and DUF1077).

The protein sequences of the EMC protein family in F. graminearum were compared
with those from nine other species, and an evolutionary tree was constructed using MEGA11
software (Figure 1). The results showed that the EMC of F. graminearum had a relatively
close phylogenetic relationship with other filamentous fungi besides F. oxysporum but a
more distant one with that of Saccharomyces cerevisiae, Homo sapiens, and Arabidopsis thaliana,
indicating the adaptive divergence and functional evolution of EMC protein families among
different biological groups in evolution.
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Figure 1. Phylogenetic analysis of the EMC subunits. A phylogenetic analysis of EMC subunits from
diverse species was performed. The ClustalW program was used to compare the subunit sequences,
and a phylogenetic tree was constructed with MEGA11 software. Sequences were obtained from
F. graminearum, F. oxysporum, Saccharomyces cerevisiae, Homo sapiens, Arabidopsis thaliana, Neurospora
crassa, Aspergillus nidulans, Magnapothe oryzae, Schizosaccharomyces pombe, and Ustilago maydis, facilitat-
ing a comprehensive exploration of the evolutionary relationships among EMC subunits. The scale
bar = 0.10 indicates 10 differences per 100 amino acids.

3.2. The EMC Is Involved in the Vegetative Growth of F. graminearum

In order to explore whether the EMC subunits affect the vegetative growth of
F. graminearum, we created deletion mutants corresponding to each subunit within the
EMC, which were then verified by PCR (Figure S2A,B).

A subsequent evaluation of the vegetative growth characteristics of these mutants
demonstrated that ∆Fgemc1-6 all displayed a diminished colony diameter on all four types
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of media in comparison to PH-1 (Figure 2A,B). In assessing the height of the aerial mycelium,
a significant decrease was observed. The height of the aerial hyphae in PH-1 was measured
at 2.306 cm, whereas the heights of the aerial hyphae in ∆Fgemc1-6 were recorded as
0.486 cm, 0.490 cm, 0.473 cm, 0.453 cm, 0.366 cm, and 0.440 cm, respectively (Figure 2C).
These findings imply that the EMC subunits play a crucial part in the vegetative growth
process of F. graminearum.
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Figure 2. The EMC is involved in the vegetative growth of F. graminearum. (A) Colonies of PH-1 and
∆Fgemc1-6 were cultured on V8, 5×YEG, CM, and MM plates at 25 ◦C for 3 days. (B) The colony
diameters of each strain from (A) were quantified. (C) Aerial hyphae of the strains were grown in
test tubes on PDA medium at 25 ◦C for 3 days, and the aerial hyphae of the indicator strains were
quantified. For (B,C), SPSS Statistics 26 was used. Error bars represent the mean ± SD of three
replicates. Lowercase letter differences denote statistically significant differences (p < 0.05).

3.3. The EMC Is Essential in the Response of F. graminearum to Diverse Environmental Stressors

F. graminearum exhibits significant vulnerability to environmental stressors during its
growth. To investigate the stress response of the EMC under various external conditions, the
PH-1 strain and ∆Fgemc1-6 mutants were inoculated into media containing several stress-
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inducing agents, including osmotic stressors (KCl and sorbitol), cell wall stressors (Congo
Red, CR), oxidative stress (hydrogen peroxide, H2O2), and endoplasmic reticulum (ER)
stress (dithiothreitol, DTT) (Figure 3A,B). Among the six mutants, ∆Fgemc2-4 and ∆Fgemc6
demonstrated increased sensitivity to KCl. Conversely, all six mutants exhibited reduced
sensitivity to sorbitol. These findings indicate that the EMC plays a role in modulating
the osmotic stress response of F. graminearum. Following treatment with the cell wall
inhibitor CR, all six mutants displayed heightened sensitivity, suggesting that the EMC
is also responsive to cell wall stress. Under H2O2 treatment, the growth inhibition of
∆Fgemc1-4 and ∆Fgemc6 strains was greater compared to PH-1, while the mycelial growth
inhibition rate of ∆Fgemc5 was diminished. Given that the EMC is classified as a group of
ER membrane-like proteins, the sensitivity of the EMC mutants to ER stress was further
examined by evaluating their responses to DTT. The results indicated that ∆Fgemc1-5 was
more sensitive to DTT, whereas ∆Fgemc6 exhibited reduced sensitivity. Collectively, these
results suggest that the EMC is involved in the response to osmotic stress, cell wall stress,
oxidative stress, and ER stress.
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Figure 3. Vegetative growth of PH-1 and ∆Fgemc1-6 in response to different stress conditions. (A) The
indicated strains were inoculated on CM supplemented with KCl, sorbitol, CR, H2O2, or DTT. For each
treatment, three plates were prepared, and the experiment was repeated three times. (B) Statistical
analysis of mycelial growth inhibition rate of each treatment using SPSS Statistics 26 based on colony
diameters in (A). The mycelial growth inhibition rate = [(colony diameter of PH-1 − colony diameter
of ∆Fgemc1-6)/colony diameter of PH-1 × 100%]. The columns represent means, while the error
bars indicate standard deviations (SDs). Lowercase letter differences denote significant differences
(p < 0.05).
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3.4. The EMC Is Critical for the Generation of Conidia, Perithecia, and Ascospores in
F. graminearum

To further explore the role of the EMC in asexual reproduction, a comprehensive
analysis was carried out on the production and morphology of conidia in both the PH-1
strain and the ∆Fgemc1-6 mutant strains. The outcomes of this analysis indicated that
there were significant reductions in conidia production in the ∆Fgemc1-6 strains, with
decreases of 44.1%, 36.1%, 45.8%, 35.4%, 25.8%, and 30%, respectively, when compared to
the PH-1 strain (Figure 4A). The morphology of conidia was further investigated through
CFW staining. Microscopic examination revealed that the PH-1 strain produced 81.2%
normal conidia, characterized by the presence of 4-7 septa, while 18.8% of the conidia were
abnormal, containing three or fewer septa. In contrast, the proportion of abnormal conidia
was significantly higher in the ∆Fgemc1-6 strains, with 40.1%, 46.5%, 44.9%, 44.4%, 39.5%,
and 58.2%, respectively (Figure 4B). These results strongly suggest that the EMC is actively
involved in the asexual reproduction process of F. graminearum.
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The experiment was repeated three times. (B) Conidial morphology of the strains cultured in CMC
liquid media at 25 ◦C for 5 days was observed. Fresh conidia were stained with CFW to visualize
septa and examined using live-cell fluorescence microscopy. For each treatment, the number of septa
in 200 conidia was counted. Statistical results are presented as the percentage of spores with different
septa numbers: ≤2, 3, and 4–7. Columns show means, and error bars represent SDs. Scale bars are
20 µm. (C) Perithecia and ascospores of the strains were grown on carrot agar plates for 2 weeks,
and ascospore discharge of the perithecia was examined. Scale bars are 20 µm. Lowercase letter
differencesindicate significant differences (p < 0.05).

Sexual reproduction in F. graminearum is an important component in the disease cycle
of wheat head blight [33]. The PH-1 and ∆Fgemc1-6 strains were cultured on a CA medium.
Following full growth on the plates, the mycelium was flattened and induced with black
light for 7 days, resulting in the production of perithecia in all strains, although the ∆Fgemc1-
6 strains exhibited significantly fewer perithecia compared to PH-1. After 7 days, with
the exception of ∆Fgemc3, which produced abnormal spores, the other five mutants did
not generate any ascospores. After 14 days, ∆Fgemc1-3 failed to produce normal mature
ascospores, while ∆Fgemc4-6 showed no ascospore production. Additionally, a test was
conducted to assess the release of ascospores, which revealed that the abnormal spores
produced by the ∆Fgemc1-3 strains were unable to be released (Figure 4C). These findings
suggest that the EMC plays a crucial role in the sexual reproduction of F. graminearum.

3.5. The EMC Plays a Crucial Role in Regulating F. graminearum Virulence

F. graminearum is identified as the primary causal agent of wheat head blight [34]. In
order to determine whether the EMC is involved in the virulence of F. graminearum, we
inoculated each strain into flowering spikes of the wheat variety Jimai 22, which was at
the anthesis stage and growing in the field. Wheat spikes were inoculated with sterile
water (Mock), a conidial suspension of the PH-1 strain, or a mutant strain. After 14 days
of incubation, wheat spikes inoculated with PH-1 exhibited obvious lesions, while those
inoculated with ∆Fgemc1-6 strains only showed limited lesions at the inoculation site
without spreading to other wheat grains through the rachis (Figure 5A,B). Additionally, a
noticeable decrease in lesion length was observed in wheat germinal sheaths infected with
the mutant strains (Figure 5C,D). These findings indicate that EMC plays an important role
in the virulence of F. graminearum.

Furthermore, scanning electron microscopy examination of infection structures on
the palea surface revealed that PH-1 formed an infection cushion (IC), while ∆Fgemc1,
∆Fgemc3, and ∆Fgemc5 also formed ICs, albeit smaller in size compared to PH-1. On the
other hand, ∆Fgemc2 exhibited a lobate appressorium (LA), and ∆Fgemc4 and ∆Fgemc6
only had a foot structure (FS) without forming an IC (Figure S3). These results suggest
that EMC influences the formation of infection structures, thereby impacting the infection
process of F. graminearum.
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Figure 5. The EMC is required for full virulence of F. graminearum. (A) The virulence of PH-1 and
∆Fgemc1-6 was determined by inoculating onto flowering wheat heads. The number of diseased
spikelets (withered and white spikelets symptoms) per spike was measured 14 days after conidia
inoculation. At least 30 spikelets were inoculated per strain. (B) Wheat coleoptiles were inoculated
with conidial suspensions of the strains, and lesion lengths of the black areas at the base of the wheat
were examined at 14 dpi. At least 30 wheat coleoptiles were inoculated per strain. Arrows were
added to indicate the diseased parts in (A,B). (C,D) Statistical analyses of disease index on wheat
spikes and lesion lengths on wheat germ sheaths of the corresponding strains in (A,B). Columns show
means, and error bars represent SDs. Lowercase letter differences indicate significant differences
(p < 0.05).

3.6. The EMC Is Required for DON Production and Pigmentation in F. graminearum

The significance of DON as a pathogenic factor in F. graminearum infection has been
well documented in previous studies [35–37]. To investigate the potential relationship
between the decreased virulence of the EMC mutants and DON biosynthesis, we examined
the levels of DON in the EMC mutants compared to the PH-1 strain. Our results showed
a significant decrease in DON generation in ∆Fgemc1-6, with reductions of 76.9%, 81.4%,
62.2%, 71.5%, 32.8%, and 76.9%, respectively (Figure 6A). It is known that the expression
of TRI genes plays a crucial role in regulating DON biosynthesis [38]. Consequently, we
proceeded with a detailed examination of the expression patterns of TRI1, TRI5, and TRI6
genes. Our analysis revealed a marked reduction in the expression levels of these genes in
∆Fgemc1-6 compared to the PH-1 strain (Figure 6B). These findings indicate that the EMC
is implicated in regulating DON biosynthesis.

DON and pigments are fungal secondary metabolites [12]. After incubating the PH-1
and ∆Fgemc1-6 strains in PDB for three days, a noticeable yellow coloration was observed
in the incubation solution of the mutants, along with the downregulation of pigment
biosynthetic genes (FgGIP1, FgGIP2, FgPKS12, FgAURJ, and FgAURF) as demonstrated
in the mutants through RT-qPCR (Figure 6C,D). This indicates that the EMC plays a role
in regulating the biosynthesis of secondary metabolites, such as DON and pigments, in
F. graminearum, which is consistent with the observation that the absence of the EMC
subunit reduces the virulence of F. graminearum.
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Figure 6. The EMC is important for DON biosynthesis and pigmentation of F. graminearum. (A) DON
biosynthesis in wheat kernels was determined 20 days after infection with PH-1 and ∆Fgemc1-6.
Ergosterol content served as an internal control. (B) The relative expression levels of TRI1, TRI5,
and TRI6 in PH-1 and mutants were determined by real-time qPCR. (C) Pigmentation of PH-1 and
∆Fgemc1-6 was determined after 3 days of incubation in PDB media. (D) The relative expression
levels of FgGIP1, FgGIP2, FgPKS12, FgAURJ, and FgAURF in the strains were analyzed. For A, B,
and D, three different biological replicate samples were used. Columns show means, and error bars
represent SDs. Lowercase letter differencesindicate significant differences (p < 0.05).

3.7. The EMC Is Involved in the Toxisome Formation of F. graminearum

In the mycotoxin biosynthesis of F. graminearum, Tri1 localizes to toxisomes, where it
regulates DON production and serves as a marker [9,39]. We detected the localization of
Tri1-GFP in each strain. In control conditions (CM), Tri1-GFP was not detected in either
PH-1 or ∆Fgemc1-6. Upon TBI induction, we observed a significant increase in spherical
and crescent-shaped Tri1-GFP structures in PH-1, while the number of these structures in
∆Fgemc1-6 decreased notably compared to PH-1 (Figure 7A), suggesting a role for EMC
in toxisome formation. Subsequently, we observed co-localization of FgEmc1-6 and Tri1-
GFP. FgEmc1-6 displayed a typical ER structure in CM and co-localization with Tri1-GFP
following TBI (Figure 7B).

Given that LDs are generated during toxisome formation [13], we examined whether
mutations in EMC affect toxisome formation through LD biosynthesis. After TBI, PH-1
showed numerous LD signals, while the mutant exhibited significantly fewer signals
(Figure S4), indicating that EMC regulates LD generation. Overall, these findings suggest
that EMC plays a crucial role in both toxisome formation and LD generation, which is
consistent with its involvement in DON biosynthesis.
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Figure 7. The EMC plays an essential role in the toxisome formation of F. graminearum. (A) Toxisome
formation in PH-1 and ∆Fgemc1-6 was determined. Vegetative hyphae of strains expressing Tri1-GFP
were cultured in TBI or CM, and Tri1 localization was visualized by fluorescence. Scale bars are
10 µm. (B) Co-expression of Tri1-GFP with different FgEmc-mCherry strains in vegetative hyphae
was studied. The strains were grown in CM or TBI media, and the colocalization of Tri1 and EMC
subunits was determined by live-cell fluorescence microscopy. Scale bars are 10 µm.

4. Discussion
F. graminearum produces a range of mycotoxins, with deoxynivalenol (DON) identified

as the most detrimental. This mycotoxin serves not only as a significant pathogenic factor
but also poses a considerable risk to human and animal health [33]. The ER is the largest
membrane system in eukaryotic cells, and the expression of ER localization proteins is
essential for ER remodeling to form toxisomes [9,40]. The EMC plays a critical role in
maintaining lipid homeostasis, signaling, and the biogenesis of many essential proteins in
eukaryotic cells [18,32,40–42]. However, the role of EMC in F. graminearum remains poorly
understood. In our study, we identified six EMC subunits (FgEmc1-6) in F. graminearum
and discovered that EMC is not only crucial for growth and reproduction but also plays
significant roles in DON biosynthesis and virulence of F. graminearum.

The EMC was first identified in S. cerevisiae as an intact membrane protein complex
through phenotypic interaction analysis. Its six protein components, EMC1-6, can be
co-precipitated to form a hetero-oligomer [43]. Additionally, the membrane proteins
SOP4 and YDR056C were co-purified with this complex and subsequently re-identified
as EMC7 and EMC10, respectively [15]. In mammals, alongside the aforementioned
eight proteins, EMC8 and EMC9 were identified through the mass spectrometry-based
endoplasmic reticulum-associated degradation (ERAD) interaction network map [44]. In
our study, sequence alignment reveals that the EMC of F. graminearum comprises six
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subunits (FgEmc1-6) (Figure S1). Functional domain analysis revealed that most EMCs
contain TMD structural domains, which is consistent with the established role of EMC
family proteins [29,30]. Phylogenetic analysis indicates that FgEmc1-6 is highly conserved
across eukaryotes (Figure 1). Furthermore, the EMC of F. graminearum and F. oxysporum,
along with those found in other filamentous fungi, exhibit a relatively close phylogenetic
relationship, likely due to their similar lifestyles and physiological requirements. In contrast,
the EMC of F. graminearum shows a more distant phylogenetic relationship with the EMC
found in S. cerevisiae, H. sapiens, and A. thaliana, suggesting significant genetic divergence
and variation throughout evolutionary history.

The EMC is localized on the ER membrane and plays a crucial role in the folding and
assembly processes of membrane proteins. In filamentous fungi, membrane proteins are
essential for the uptake and transport of nutrients [45]. The processing of these membrane
proteins may be influenced by the EMC, potentially leading to decreased efficiency in
nutrient absorption and, consequently, restricting the growth of filamentous fungi [41].
Furthermore, the EMC may also impact hyphal growth through mechanisms such as the
regulation of signal transduction, interactions and cooperation with other organelles, and
cell cycle regulation [31]. In this study, we investigated the effect of the EMC on the hyphal
growth of F. graminearum. Our results indicated that, compared to the PH-1 strain, the
growth rate of ∆Fgemc1-6 was lower under various nutritional conditions (Figure 2A,B),
and the height of aerial hyphae was also reduced (Figure 2C). This finding is consistent
with studies on regulating hyphal vegetative growth and aerial hyphal height by the EMC
in S. cerevisiae [41,43]. However, it contrasts with observations in M. oryzae, where the
vegetative growth of ∆Moemc2 and ∆Moemc5 was unaffected [32]. This demonstrates that
the EMC plays a critical role in the vegetative growth of F. graminearum.

The EMC plays a significant role in the development of reproductive structures. Previ-
ous studies have demonstrated that EMC is of crucial importance for male reproduction in
Drosophila [46]. Moreover, the deletion of EMC10 in mammals results in complete steril-
ity [47–50]. The results of our study indicate that the deletion of FgEMC1-6 in F. graminearum
affects the development of conidia, reduces the number of perithecia, and hinders the mat-
uration and ejection of ascospores (Figure 4), suggesting that FgEmc1-6 have an impact on
both the asexual and sexual reproduction of F. graminearum.

The EMC was initially identified due to its involvement in the exacerbation of the ER
stress response. In S. cerevisiae, the deletion of EMC can trigger this stress response [43].
Our study reveals that the ∆Fgemc1-5 strain exhibits increased sensitivity to dithiothreitol
(DTT), while the ∆Fgemc6 strain shows decreased sensitivity (Figure 3). This difference
may be attributed to the deletion or functional alteration of the FgEmc1-5 subunits, which
impairs the cells’ ability to effectively process and repair proteins damaged by DTT, leading
to the accumulation of misfolded proteins within the ER. Conversely, FgEmc6 may function
as a negative regulator in the recognition or repair of misfolded proteins induced by DTT.

The EMC is of essential significance in the adaptive responses of filamentous fungi
towards a multiplicity of environmental stressors. For example, in M. oryzae, the ∆Moemc2
and ∆Moemc5 mutants manifested enhanced susceptibility to CR [32]. Our research findings
disclosed that the deletion of FgEMC1-6 resulted in heightened sensitivity to CR while
simultaneously decreasing sensitivity to sorbitol. Remarkably, in response to KCl, only
∆Fgemc2-4 and ∆Fgemc6 exhibited elevated sensitivity, whereas ∆Fgemc1 and ∆Fgemc5
remained unaltered in their responsiveness to KCl. In the case of H2O2, only the ∆Fgemc5
mutant displayed a decreased sensitivity (Figure 3). Collectively, these findings underscore
the significance of the EMC in mediating F. graminearum’s response to environmental
stress. The varied responses among different subunits suggest that the EMC functions
as an integrated entity, operating in a coordinated manner, with potential interactions
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and functional complementarity among its subunits. Disruption of key subunits may
compromise the integrity of the EMC, leading to complex responses to diverse stress factors.

In M. oryzae, the ∆Moemc2 and ∆Moemc5 mutants disrupt appressorium formation,
thereby diminishing the virulence during host infection. In F. graminearum, DON is pivotal
to its pathogenic mechanism and serves as a key determinant of its pathogenicity [8]. The
toxisome, a specialized structure, is intricately linked to the biosynthesis of DON and
functions as an essential site for its production [11]. Among the various factors involved,
the TRI gene plays a crucial role in regulating the biosynthesis of DON and significantly
influences its production quantity [9]. Moreover, lipid droplets have specialized roles within
F. graminearum, potentially participating indirectly in DON biosynthesis by supplying the
necessary materials or energy [51]. These components are interconnected and interact
during the pathogenic process of F. graminearum, collectively forming a complex pathogenic
network system. Our research indicates that the knockout of EMC affects the formation of
toxisomes (Figure 7), the expression of TRI genes (Figure 6B), and the generation of LDs
(Figure S4), as well as the biosynthesis of secondary metabolite pigments (Figure 6C,D),
ultimately leading to a reduction in DON levels (Figure 6A) and a subsequent decrease in
the pathogen’s virulence (Figure 5). This study provides significant research targets and
directions for further exploration of the pathogenic mechanisms of F. graminearum.

5. Conclusions
This study identified six EMC subunits in F. graminearum. The knockout of each

subunit resulted in various phenotypic changes in the fungus, including retarded growth,
disrupted reproduction (both asexual and sexual), altered infection structures, and variable
responses to environmental stress. Notably, the deletion of EMC significantly reduced
deoxynivalenol (DON) biosynthesis and virulence. This reduction is likely attributed
to decreased expression of the TRI gene, which is crucial for DON synthesis, thereby
disrupting toxisome formation and lipid droplet generation and consequently disturbing
the molecular processes related to the virulence and fitness of F. graminearum.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/jof11020108/s1. Figure S1: Schematic overview of the EMC in
F. graminearum; Figure S2: The construction and characterization of ∆Fgemc1-6. Figure S3: The EMC
plays a crucial role in the infection structure formation of F. graminearum. Figure S4: The EMC plays
an important role in the lipid drop biogenesis of F. graminearum. Table S1: Primers used in this study.
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