Posaconazole Alone and in Combination with Caspofungin for Treatment of Experimental Exserohilum rostratum Meningoencephalitis: Developing New Strategies for Treatment of Phaeohyphomycosis of the Central Nervous System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organisms and Inoculation
2.1.1. Organisms
2.1.2. Inoculum Preparation and Inoculation
2.2. Animals
2.3. Induction and Maintenance of Neutropenia and Immunosuppression
2.3.1. Neutropenia
2.3.2. Immunosuppression
2.3.3. Antibiotics
2.3.4. White Blood Cell Counts
2.4. Inoculum Response Relationship
2.5. Antifungal Compounds and Experimental Groups
2.6. Outcome Variables
2.6.1. Quantitative Cultures
2.6.2. (1→3)-β-d-Glucan Assay
2.7. Statistical Analysis
3. Results
3.1. Inoculum–Response Studies
3.2. Antifungal Therapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dixon, D.M.; Walsh, T.J.; Merz, W.G.; McGinnis, M.R. Infections due to Xylohypha bantiana (Cladosporium trichoides). Rev. Infect. Dis. 1989, 11, 515–525. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.; Rosengart, A.; Schuetz, A.N.; Kontoyiannis, D.P.; Walsh, T.J. Mold infections of the central nervous system. N. Engl. J. Med. 2014, 371, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revankar, S.G.; Sutton, D.A.; Rinaldi, M.G. Primary central nervous system phaeohyphomycosis: A review of 101 cases. Clin. Infect. Dis. 2004, 38, 206–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoham, S.; Pic-Aluas, L.; Taylor, J.; Cortez, K.; Rinaldi, M.G.; Shea, Y.; Walsh, T.J. Transplant-associated Ochroconis gallopava infections. Transpl. Infect. Dis. 2008, 10, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.; Revankar, S. CNS Infections Caused by Brown-Black Fungi. J. Fungi 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.J.; Dixon, D.M.; Polak, A.; Salkin, I.F. Comparative histopathology of Dactylaria constricta, Fonsecaea pedrosoi, Wangiella dermatitidis, and Xylohypha bantiana in experimental phaeohyphomycosis of the central nervous system. Mykosen 1987, 30, 215–225. [Google Scholar] [CrossRef]
- Chiller, T.M.; Roy, M.; Nguyen, D.; Guh, A.; Malani, A.N.; Latham, R.; Peglow, S.; Kerkering, T.; Kaufman, D.; McFadden, J.; et al. Clinical findings for fungal infections caused by methylprednisolone injections. N. Engl. J. Med. 2013, 369, 1610–1619. [Google Scholar] [CrossRef]
- Kerkering, T.M.; Grifasi, M.L.; Baffoe-Bonnie, A.W.; Bansal, E.; Garner, D.C.; Smith, J.A.; Demicco, D.D.; Schleupner, C.J.; Aldoghaither, R.A.; Savaliya, V.A. Early clinical observations in prospectively followed patients with fungal meningitis related to contaminated epidural steroid injections. Ann. Intern. Med. 2013, 158, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Meis, J.F.; Guarro, J.; de Hoog, G.S.; Kathuria, S.; Arendrup, M.C.; Arikan-Akdagli, S.; Akova, M.; Boekhout, T.; Caira, M.; et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: Diseases caused by black fungi. Clin. Microbiol. Infect. 2014, 20, 47–75. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Hagen, F.; Curfs-Breuker, I.; Madrid, H.; de Hoog, G.S.; Meis, J.F. In Vitro Activities of Eight Antifungal Drugs against a Global Collection of Genotyped Exserohilum Isolates. Antimicrob. Agents Chemother. 2015, 59, 6642–6645. [Google Scholar] [CrossRef] [Green Version]
- Halliday, C.L.; Chen, S.C.; Kidd, S.E.; van Hal, S.; Chapman, B.; Heath, C.H.; Lee, A.; Kennedy, K.J.; Daveson, K.; Sorrell, T.C.; et al. Antifungal susceptibilities of non-Aspergillus filamentous fungi causing invasive infection in Australia: Support for current antifungal guideline recommendations. Int. J. Antimicrob. Agents 2016, 48, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Seyedmousavi, S.; Samerpitak, K.; Rijs, A.J.; Melchers, W.J.; Mouton, J.W.; Verweij, P.E.; de Hoog, G.S. Antifungal susceptibility patterns of opportunistic fungi in the genera Verruconis and Ochroconis. Antimicrob. Agents Chemother. 2014, 58, 3285–3292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; He, Y.; Kan, S.; Li, D.; Lv, G.; Shen, Y.; Mei, H.; Li, X.; Liu, W. In vitro susceptibility of dematiaceous fungi to nine antifungal agents determined by two different methods. Mycoses 2019, 62, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Dannaoui, E.; Lortholary, O.; Dromer, F. In vitro evaluation of double and triple combinations of antifungal drugs against Aspergillus fumigatus and Aspergillus terreus. Antimicrob. Agents Chemother. 2004, 48, 970–978. [Google Scholar] [CrossRef] [Green Version]
- Mavridou, E.; Meletiadis, J.; Rijs, A.; Mouton, J.W.; Verweij, P.E. The strength of synergistic interaction between posaconazole and caspofungin depends on the underlying azole resistance mechanism of Aspergillus fumigatus. Antimicrob. Agents Chemother. 2015, 59, 1738–1744. [Google Scholar] [CrossRef] [Green Version]
- Meletiadis, J.; Stergiopoulou, T.; O’Shaughnessy, E.M.; Peter, J.; Walsh, T.J. Concentration-dependent synergy and antagonism within a triple antifungal drug combination against Aspergillus species: Analysis by a new response surface model. Antimicrob. Agents Chemother. 2007, 51, 2053–2064. [Google Scholar] [CrossRef] [Green Version]
- Shalit, I.; Shadkchan, Y.; Samra, Z.; Osherov, N. In vitro synergy of caspofungin and itraconazole against Aspergillus spp.: MIC versus minimal effective concentration end points. Antimicrob. Agents Chemother. 2003, 47, 1416–1418. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.J.; McEntee, C.; Dixon, D.M. Tissue homogenization with sterile reinforced polyethylene bags for quantitative culture of Candida albicans. J. Clin. Microbiol. 1987, 25, 931–932. [Google Scholar] [CrossRef] [Green Version]
- Larone, D.L.; Walsh, T.J. Exserohilum rostratum: Anatomy of a national outbreak of fungal meningitis. Clin. Microbiol. Newsl. 2013, 35, 185–193. [Google Scholar] [CrossRef]
- Litvintseva, A.P.; Lindsley, M.D.; Gade, L.; Smith, R.; Chiller, T.; Lyons, J.L.; Thakur, K.T.; Zhang, S.X.; Grgurich, D.E.; Kerkering, T.M.; et al. Utility of (1-3)-beta-D-glucan testing for diagnostics and monitoring response to treatment during the multistate outbreak of fungal meningitis and other infections. Clin. Infect. Dis. 2014, 58, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.M.; Schaefer, M.K.; Kainer, M.A.; Wise, M.; Finks, J.; Duwve, J.; Fontaine, E.; Chu, A.; Carothers, B.; Reilly, A.; et al. Fungal infections associated with contaminated methylprednisolone injections. N. Engl. J. Med. 2013, 369, 1598–1609. [Google Scholar] [CrossRef] [Green Version]
- Petraitiene, R.; Petraitis, V.; Hope, W.W.; Mickiene, D.; Kelaher, A.M.; Murray, H.A.; Mya-San, C.; Hughes, J.E.; Cotton, M.P.; Bacher, J.; et al. Cerebrospinal fluid and plasma (1-->3)-beta-D-glucan as surrogate markers for detection and monitoring of therapeutic response in experimental hematogenous Candida meningoencephalitis. Antimicrob. Agents Chemother. 2008, 52, 4121–4129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvatore, C.M.; Chen, T.K.; Toussi, S.S.; DeLaMora, P.; Petraitiene, R.; Finkelman, M.A.; Walsh, T.J. (1-->3)-beta-d-Glucan in Cerebrospinal Fluid as a Biomarker for Candida and Aspergillus Infections of the Central Nervous System in Pediatric Patients. J. Pediatr. Infect. Dis. Soc. 2016, 5, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.K.; Groncy, P.K.; Javahery, R.; Chai, R.Y.; Nagpala, P.; Finkelman, M.; Petraitiene, R.; Walsh, T.J. Successful treatment of Aspergillus ventriculitis through voriconazole adaptive pharmacotherapy, immunomodulation, and therapeutic monitoring of cerebrospinal fluid (1-->3)-beta-D-glucan. Med. Mycol. 2017, 55, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petraitiene, R.; Petraitis, V.; Maung, B.W.; Naing, E.; Kavaliauskas, P.; Walsh, T.J. Posaconazole Alone and in Combination with Caspofungin for Treatment of Experimental Exserohilum rostratum Meningoencephalitis: Developing New Strategies for Treatment of Phaeohyphomycosis of the Central Nervous System. J. Fungi 2020, 6, 33. https://doi.org/10.3390/jof6010033
Petraitiene R, Petraitis V, Maung BW, Naing E, Kavaliauskas P, Walsh TJ. Posaconazole Alone and in Combination with Caspofungin for Treatment of Experimental Exserohilum rostratum Meningoencephalitis: Developing New Strategies for Treatment of Phaeohyphomycosis of the Central Nervous System. Journal of Fungi. 2020; 6(1):33. https://doi.org/10.3390/jof6010033
Chicago/Turabian StylePetraitiene, Ruta, Vidmantas Petraitis, BoBo Win Maung, Ethan Naing, Povilas Kavaliauskas, and Thomas J. Walsh. 2020. "Posaconazole Alone and in Combination with Caspofungin for Treatment of Experimental Exserohilum rostratum Meningoencephalitis: Developing New Strategies for Treatment of Phaeohyphomycosis of the Central Nervous System" Journal of Fungi 6, no. 1: 33. https://doi.org/10.3390/jof6010033
APA StylePetraitiene, R., Petraitis, V., Maung, B. W., Naing, E., Kavaliauskas, P., & Walsh, T. J. (2020). Posaconazole Alone and in Combination with Caspofungin for Treatment of Experimental Exserohilum rostratum Meningoencephalitis: Developing New Strategies for Treatment of Phaeohyphomycosis of the Central Nervous System. Journal of Fungi, 6(1), 33. https://doi.org/10.3390/jof6010033