Advances in Understanding the Acyl-CoA-Binding Protein in Plants, Mammals, Yeast, and Filamentous Fungi
Abstract
:1. Introduction
2. General Characteristics of ACBP Structure and Function
3. The Function of ACBP Family Proteins in Plants
3.1. ACBP Family Proteins Can Promote Latex Formation
3.2. OsACBP1 and OsACBP2 Are Functionally Distinct in Oryza sativa
3.3. The Function of ACBP Family Proteins in A. tatiana
4. The Function of ACBP Family Proteins in Mammals
4.1. The Influence of Ceramide Synthesis of ACBP
4.2. The Influence of ACBP on Obesity
5. The Function of ACBP Family Proteins in Filamentous Fungi
5.1. ACBP from M. ruber Can Promote the Synthesis of Monascus Pigments
5.2. ACBP from A. oryzae Preferentially Binds to Long-Chain Acyl-CoA
5.3. Aoacb2 Is Secreted via the Unconventional Protein Secretion (UPS) Pathway in A. oryzae
5.4. The Function of ACBP from Aspergillus flavus (A. flavus) May Affect Aflatoxin Production
6. The Function of ACBP Family Proteins in Yeast
6.1. ACBP Can Regulate the Synthesis and Degradation of NADPH in Yeast Yarrowia lipolytica
6.2. The function of ACBP from C. neoformans
6.3. Depletion or Overexpression of ACBP May Affect Intracellular Lipid Synthesis and Vacuole Function
7. The Binding Characteristics of ACBP Family Proteins from Yeast and Filamentous Fungi
8. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adhikari, P.; Allison, G.; Whittle, B.; Verma, N.K. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc. Natl. Acad. Sci. USA 1983, 80, 3531–3535. [Google Scholar]
- Burton, M.; Rose, T.M.; Faergeman, N.J.; Knudsen, J. Evolution of the acyl-CoA binding protein (ACBP). Biochem. J. 2005, 392, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Chye, M.L. New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog. Lipid Res. 2011, 50, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Liu, J.; Culty, M.; Papadopoulos, V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): An emerging sig-naling molecule. Prog. Lipid Res. 2010, 49, 218–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, S.F.; Sprenger, R.R.; Neess, D.; Pauling, J.K.; Ejsing, C.S. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in acbp deficient mice. BBA Mol. Cell Biol. Lipids 2016, 1862, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, J.; Jensen, M.V.; Hansen, J.K.; Faergeman, N.J.; Neergaard, T.B.; Gaigg, B. Role of acyl-CoA binding protein in acyl-CoA transport, metabolism and cell signaling. Mol. Cell. Biochem. 1999, 192, 95–103. [Google Scholar] [CrossRef]
- Hansen, J.S.; Faergeman, N.J.; Kragelund, B.B.; Knudsen, J. Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells. Biochem. J. 2008, 410, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Neess, D.; Bloksgaard, M.; Bek, S.; Marcher, A.B.; Elle, I.C.; Helledie, T.; Due, M.; Pagmantidis, V.; Finsen, B.; Wilbertz, J.; et al. Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning. J. Biol. Chem. 2011, 286, 3460–3472. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, N.S.; Engelsby, H.; Neess, D.; Kelly, S.L.; Volpert, G.; Merrill, A.H.; Futerman, A.H.; Færgeman, N.J. Regulation of very-long acyl chain ceramide synthesis by acyl-CoA binding protein. J. Biol. Chem. 2017, 292, 7588–7597. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Wang, Y.; Wu, C.; Li, Y.; Kang, G.; Qin, H.; Zeng, R. Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). BMC Genom. 2018, 19, 5. [Google Scholar] [CrossRef] [Green Version]
- Gaigg, B.; Neergaard, T.B.; Schneiter, R.; Hansen, J.K.; Faergeman, N.J.; Jensen, N.A.; Andersen, J.R.; Friis, J.; Sandhoff, R.; Schrøder, H.D.; et al. Depletion of acyl-coenzyme A-binding protein affects sphingolipid synthesis and causes vesicle accumulation and membrane defects in Saccharomyces cerevisiae. Mol. Biol. Cell 2001, 12, 1147–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faergeman, N.J.; Feddersen, S.; Christiansen, J.K.; Larsen, M.K.; Schneiter, R.; Ungermann, C.; Mutenda, K.; Roepstorff, P.; Knudsen, J. Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae. Biochem. J. 2004, 380, 907–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.; Liu, M.; Chen, X.; Wang, X.; Ai, M.; Cui, J.; Zeng, B. The acyl-CoA binding protein affects monascus pigment production in Monascus ruber CICC41233. 3 Biotech 2018, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, K.; Kikuma, T.; Higuchi, Y.; Takegawa, K.; Kitamoto, K. Subcellular localization of acyl-coa binding protein in aspergillus oryzae is regulated by autophagy machinery. Biochem. Biophys. Res. Commun. 2016, 480, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Neess, D.; Bek, S.; Engelsby, H.; Gallego, S.F.; Fargeman, N.J. Long-chain acyl-CoA esters in metabolism and signaling: Role of acyl-CoA binding proteins. Prog. Lipid Res. 2015, 59, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, J.; Faergeman, N.J.; Skøtt, H.; Hummel, R.; Børsting, C.; Rose, T.M.; Andersen, J.S.; Højrup, P.; Roepstorff, P.; Kristiansen, K. Yeast acyl-CoA-binding protein: Acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem. J. 1994, 302, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Elle, I.C.; Simonsen, K.T.; Olsen, L.C.; Birck, P.K.; Ehmsen, S.; Tuck, S.; Le, T.T.; Færgeman, N.J. Tissue-and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in Caenorhabditis elegans. Biochem. J. 2011, 437, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Meng, W.; Su, Y.; Saunders, R.; Chye, M. The rice acyl-CoA-binding protein gene family: Phylogeny, expression and functional analysis. New Phytol. 2011, 189, 1170–1184. [Google Scholar] [CrossRef]
- Du, Z.Y.; Arias, T.; Meng, W.; Chye, M.L. Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Prog. Lipid Res. 2016, 63, 165–181. [Google Scholar] [CrossRef]
- Nadia, R.; Baoshan, W.; Longjiang, Y.; Maoteng, L. Functional and structural diversity of acyl-CoA binding proteins in oil crops. Front. Genet. 2018, 9, 182. [Google Scholar]
- Chye, M.L. Arabidopsis cDNA encoding a membrane-associated protein with an acyl-CoA binding domain. Plant Mol. Biol. 1998, 38, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, A.S.; Haslam, R.P.; Michaelson, L.V.; Liao, P.; Chen, Q.F.; Sooriyaarachchi, S.; Mowbray, S.L.; Napier, J.A.; Tanner, J.A.; Chye, M.L. Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Biosci. Rep. 2014, 35, e00165. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Z.; Li, Y.; Zhang, L.L. The Role of ACBD3 in Pathogens Replication. Prog. Biochem. Biophys. 2017, 44, 198–203. [Google Scholar]
- Hong, Z.; Yang, X.; Yang, G.; Zhang, L. Hepatitis C virus NS5A competes with PI4KB for binding to ACBD3 in a genotype-dependent manner. Antivir. Res. 2014, 10, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Anjard, C.; Loomis, W.F. Peptide signaling during terminal differentiation of Dictyostelium. Proc. Natl. Acad. Sci. USA 2005, 102, 7607–7611. [Google Scholar] [CrossRef] [Green Version]
- Van Beilen, J.B.; Poirier, Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol. 2007, 25, 522–529. [Google Scholar] [CrossRef]
- Abraham, P.D.; Wycherley, P.R.; Pakianathan, S.W. Stimulation of latex flow in Hevea brasiliensis of 4-amino-3, 5, 6-trichloropicolinic acid and 2- chloroethane-phosphonic acid. Rubber Chem. Technol. 1972, 45, 883–899. [Google Scholar] [CrossRef]
- Annamalainathan, K.; Krishnakumar, R.; Jacob, J.L. Tapping induced changes in respiratory metabolism, ATP production and reactive oxygen species scavenging in Hevea. J. Rubber Res. 2001, 4, 245–254. [Google Scholar]
- Hao, B.Z.; Wu, J.L. Laticifer differentiation in Hevea brasiliensis: Induced by exogenous jasmonic acid and linolenic acid. Ann. Bot. 2000, 85, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.H.; Chan, W.H.Y.; Kong, G.K.W.; Hao, Q.; Chye, M.L. The first plant acyl-CoA-binding protein structures: The close homologues OsACBP1 and OsACBP2 from rice. Acta Crystallogr. D 2017, 73, 438–448. [Google Scholar] [CrossRef]
- Du, Z.Y.; Xiao, S.; Chen, Q.F.; Chye, M.L. Depletion of the membrane-associated acyl-CoA-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol. 2010, 152, 1585–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.F.; Xiao, S.; Chye, M.L. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol. 2008, 148, 304–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Gao, W.; Chen, Q.F.; Ramalingam, S.; Chye, M.L. Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J. 2008, 54, 141–151. [Google Scholar] [CrossRef]
- Gao, W.; Xiao, S.; Li, H.Y.; Tsao, S.W.; Chye, M.L. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP. New Phytol. 2009, 181, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Li, H.Y.; Xiao, S.; Chye, M.L. Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. Plant J. 2010, 62, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Xiao, S.; Kim, J.; Lung, S.C.; Chen, L.; Tanner, J.A.; Suh, M.C.; Chye, M.L. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. J. Exp. Bot. 2014, 65, 5473–5483. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.J.; Yu, L.J.; Chen, Q.F.; Wang, F.Z.; Huang, L.; Xia, F.N.; Zhu, Y.R.; Wu, J.X.; Yin, J.; Yao, N.; et al. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism. Plant J. 2015, 81, 53–67. [Google Scholar] [CrossRef]
- Hsiao, A.S.; Yeung, E.C.; Ye, Z.W.; Chye, M.L. The Arabidopsis cytosolic acyl-CoA-binding proteins play combinatory roles in pollen development. Plant Cell Physiol. 2015, 56, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Cregeen, S.; Radisek, S.; Mandelc, S.; Turk, B.; Stajner, N.; Jakse, J.; Javornik, B. Different Gene Expressions of Resistant and Susceptible Hop Cultivars in Response to Infection with a Highly Aggressive Strain of Verticillium albo-atrum. Plant Mol. Biol. Report. 2015, 33, 689–704. [Google Scholar] [CrossRef] [Green Version]
- Grieß, K.; Polanski, C.; Markgraf, D.; Lammert, E.; Roden, M.; Stark, H.; Brüning, J.; Belgardt, B. The role of ceramide synthases in pancreatic beta cell demise. Diabetol. Stoffwechs. 2018, 13, 18. [Google Scholar]
- Tidhar, R.; Futerman, A.H. The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochimi. Biophys. Acta 2013, 1833, 2511–2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senkal, C.E.; Salama, M.F.; Snider, A.J.; Allopenna, J.J.; Rana, N.A.; Koller, A.; Hannun, Y.A.; Obeid, L.M. Ceramide Is Metabolized to Acylceramide and Stored in Lipid Droplets. Cell Metab. 2017, 25, 686–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grevengoed, T.J.; Klett, E.L.; Coleman, R.A. Acyl-CoA metabolism and partitioning. Annu. Rev. Nutr. 2014, 34, 1–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo-San Pedro, J.M.; Sica, V.; Martins, I.; Pol, J.; Loos, F.; Maiuri, M.C.; Niso-Santano, M.; Aprahamian, F.; Denom, J.; Kroemer, G.; et al. Acyl-CoA-Binding Protein Is a Lipogenic Factor that Triggers Food Intake and Obesity. Cell Metab. 2019, 30, 754–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manuel, B.; Valentina, S.; Frank, M.; Guido, K. Acyl-CoA-binding protein (ACBP): The elusive ‘hunger factor’ linking autophagy to food intake. Cell Stress 2019, 3, 312–318. [Google Scholar]
- Manuel, B.; Valentina, S.; Isabelle, M.; Gerasimos, A.; Chiara, M.; Guido, K. Cell-autonomous, paracrine and neuroendocrine feedback regulation of autophagy by DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein): The obesity factor. Autophagy 2019, 15, 2036–2038. [Google Scholar]
- Patakova, P. Monascus secondary metabolites: Production and biological activity. J. Ind. Microbiol. Biotechnol. 2013, 40, 169–181. [Google Scholar] [CrossRef]
- Chen, W.P.; He, Y.; Zhou, Y.X.; Shao, Y.C.; Feng, Y.L.; Li, M.; Chen, F.S. Edible flamentous fungi from the species Monascus: Early traditional fermentations, modern molecular biology, and future genomics. Compr. Rev. Food Sci. Food Saf. 2015, 14, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Shao, Y.; Chen, F. Monascus pigments. Appl. Microbiol. Biotechnol. 2012, 96, 1421–1440. [Google Scholar] [CrossRef]
- Hajjaj, H.; Klaébé, A.; Goma, G.; Blanc, P.J.; Barbier, E.; François, J. Medium-chain fatty acids afect citrinin production in the flamentous fungus Monascus ruber. Appl. Environ. Microbiol. 2000, 66, 1120–1125. [Google Scholar] [CrossRef] [Green Version]
- Bechman, A.; Phillips, R.D.; Chen, J. Changes in selected physical property and enzyme activity of rice and barley koji during fermentation and storage. J. Food Sci. 2012, 77, M318–M322. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.I. Selection of micro-organisms for use in the fermentation of soy sauce. Food Microbiol. 1984, 1, 339–347. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, X.; Zhao, G.; Jiang, L.; Zeng, B. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae. Biotechnol. Lett. 2015, 38, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.S.; Kawaguchi, K.; Kikuma, T.; Takegawa, K.; Higuchi, Y. Analysis of an acyl-CoA binding protein in Aspergillus oryzae that undergoes unconventional secretion. Biochem. Biophys. Res. Commun. 2017, 493, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Yue, Y.; Fu, Y.; Fang, Z.; Xu, Z.; Ma, G.; Wang, S. Exploration of the regulatory mechanism of secondary metabolism by comparative transcriptomics in Aspergillus flavus. Front. Microbiol. 2018, 9, 1568. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, B.; Hedayati, M.T.; Hedayati, N.; Ilkit, M.; Syedmousavi, S. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr. Med. Mycol. 2016, 2, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Chang, P.K.; Kong, Q.; Shan, S.H.; Wei, Q.J. Comparison of aflatoxin production of Aspergillus flavus at different temperatures and media: Proteome analysis based on TMT. Int. J. Food Microbiol. 2019, 310, 108–313. [Google Scholar] [CrossRef]
- Chang, P.K.; Sui, H.; Siov, S.; Robert, L. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids. Toxins 2015, 7, 3887–3902. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.P.; Li, H.F.; Liu, H.Y.; Hong, Y.B.; Yang, Q.L.; Chi, X.Y.; Yang, Z.; Yu, S.L.; Li, L.; Liang, X.Q. Transcriptome identification of the resistance-associated genes (rags) to aspergillus flavus infection in pre-harvested peanut (arachis hypogaea). Funct. Plant Biol. 2013, 40, 292–303. [Google Scholar]
- Ratledge, C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: A reappraisal and unsolved problems. Biotechnol. Lett. 2014, 36, 1557–1568. [Google Scholar] [CrossRef]
- Yuzbasheva, E.Y.; Mostova, E.B.; Andreeva, N.I.; Yuzbashev, T.V.; Laptev, I.A.; Sobolevskaya, T.I.; Sineoky, S.P. Co-expression of glucose-6-phosphate dehydrogenase and acyl-CoA binding protein enhances lipid accumulation in the yeast Yarrowia lipolytica. New Biotechnol. 2017, 39, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 1976, 68, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Hull, C.M.; Heitman, J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 2005, 434, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, Y.; Kirkman, E.; Lin, X. Secreted acb1 contributes to the yeast-to-hypha transition in cryptococcus neoformans. Appl. Environ. Microbiol. 2015, 82, 1069–1079. [Google Scholar] [CrossRef] [Green Version]
- Micheletto, M.C.; Mendes Luís, F.S.; Basso, L.G.M.; Fonseca-Maldonado, R.G.; Costa-Filho, A.J. Lipid membranes and acyl-CoA esters promote opposing effects on acyl-CoA binding protein structure and stability. Int. J. Biol. Macromol. 2017, 102, 284–296. [Google Scholar] [CrossRef]
- Mandrup, S.; Jepsen, R.; Skøtt, H.; Rosendal, J.; Højrup, P.; Kristiansen, K.; Knudsen, J. Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast. Biochem. J. 1993, 290, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Chao, H.; Martin, G.G.; Russell, W.K.; Waghela, S.D.; Russell, D.H.; Schroeder, F.; Kier, A.B. Membrane Charge and Curvature Determine Interaction with Acyl-CoA Binding Protein (ACBP) and Fatty Acyl-CoA Targeting. Biochemistry 2002, 41, 10540–10553. [Google Scholar] [CrossRef]
- Han, J.Z.; Sun, Y.L.; Chen, Y.; Li, H.R.; Liu, M.M.; Zeng, B. Influence of Tags on the Binding Affinity of Acyl-CoA Binding Protein. Am. J. Biochem. Biotechnol. 2019, 15, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Kinseth, M.A.; Anjard, C.; Fuller, D.; Guizzunti, G.; Loomis, W.F.; Malhotra, V. The Golgi-associated protein GRASP is required for unconventional protein secretion during development. Cell 2007, 130, 524–534. [Google Scholar] [CrossRef] [Green Version]
Fungus | ACBP Family Proteins | Proposed Function | Reference |
---|---|---|---|
Aspergillus oryzae | AoACBP | It localizes to punctate structures and preferentially binds to long-chain acyl-CoA | [14,54] |
Aoacb2 | It is dispersed in the cytoplasm, important for the growth and undergoes unconventional secretion | [54] | |
Aspergillus flavus | ACBP | It may affect aflatoxin production | [57] |
Monascus ruber | MrACBP | It improves the expansion of the intracellular acyl-CoA pool and increases MPs synthesis | [13] |
Saccharomyces cerevisiae | Acb1p | It is required for normal vacuole function and could improve the formation of the acyl-CoA ester pool and ceramide | [12] |
Yeast Yarrowia lipolytica | ACBP | It can improve acyl-CoA synthesis and regulates the production and degradation of intracellular NADPH | [61] |
Cryptococcus neoformans | Acb1 | It is important for mating and filamentation, and preferentially binds to anion lipid membranes | [64,65] |
Saccharomyces carlsbergensis | ACBP type1/2 | It can bind to acyl-CoA and improve the expansion of the intracellular acyl-CoA pool | [16] |
Fungus | Proteins | Acyl-CoA Ester Binding | References |
---|---|---|---|
Aspergillus oryzae | AoACBP | C4:0 Butyryl-CoA | [57] |
C6:0 Hexanoyl-CoA | [57] | ||
C8:0 Octanoyl-CoA | [57] | ||
C10:0 Decanoyl-CoA | [57] | ||
C12:0 Dodecanoyl-CoA | [57] | ||
C14:0 myristoyl-CoA | [53,57] | ||
C16:0 palmitoyl-CoA | [53,57] | ||
C18:0 Stearoyl-CoA | [57] | ||
C20:0 Eicosanoyl-CoA | [57] | ||
Saccharomyces cerevisiae | ScACBP | C4:0 Butyryl-CoA | [57] |
C6:0 Hexanoyl-CoA | [57] | ||
C8:0 Octanoyl-CoA | [57] | ||
C10:0 Decanoyl-CoA | [57] | ||
C12:0 Dodecanoyl-CoA | [57] | ||
C14:0 myristoyl-CoA | [57] | ||
C16:0 palmitoyl-CoA | [57] | ||
C18:0 Stearoyl-CoA | [57] | ||
C20:0 Eicosanoyl-CoA | [57] | ||
Monascus ruber | MrACBP | C4:0 Butyryl-CoA | [14] |
C6:0 Hexanoyl-CoA | [14] | ||
C8:0 Octanoyl-CoA | [14] | ||
C10:0 Decanoyl-CoA | [14] | ||
C12:0 Dodecanoyl-CoA | [14] | ||
C14:0 myristoyl-CoA | [14] | ||
C16:0 palmitoyl-CoA | [14] | ||
C18:0 Stearoyl-CoA | [14] | ||
C20:0 Eicosanoyl-CoA | [14] | ||
C22:0 Acyl-CoA | [14] | ||
Saccharomyces carlsbergensis | ACBP type 1 | C16:0 palmitoyl-CoA | [16] |
Cryptococcus neoformans | CnACBP | C18:1 oleoyl-CoA | [58] |
C16:0 palmitoyl-CoA | [58] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, S.; Zeng, B. Advances in Understanding the Acyl-CoA-Binding Protein in Plants, Mammals, Yeast, and Filamentous Fungi. J. Fungi 2020, 6, 34. https://doi.org/10.3390/jof6010034
Qiu S, Zeng B. Advances in Understanding the Acyl-CoA-Binding Protein in Plants, Mammals, Yeast, and Filamentous Fungi. Journal of Fungi. 2020; 6(1):34. https://doi.org/10.3390/jof6010034
Chicago/Turabian StyleQiu, Shangkun, and Bin Zeng. 2020. "Advances in Understanding the Acyl-CoA-Binding Protein in Plants, Mammals, Yeast, and Filamentous Fungi" Journal of Fungi 6, no. 1: 34. https://doi.org/10.3390/jof6010034
APA StyleQiu, S., & Zeng, B. (2020). Advances in Understanding the Acyl-CoA-Binding Protein in Plants, Mammals, Yeast, and Filamentous Fungi. Journal of Fungi, 6(1), 34. https://doi.org/10.3390/jof6010034