Sporulation in Ashbya gossypii
Abstract
:1. Introduction
2. Life Cycle of Ashbya gossypii
3. Developmental Programs Leading to Sporangium Formation
4. The Gear-Box of Sporulation
5. Environmental Control of Sporulation
6. Spore Wall
7. Do Not Miss the Wake-up Call: Signals for Germination
8. Outlook: Open Research Questions and Unknown Territory
- (i)
- How is homothallism and haploid fruiting regulated in Ashbya? There is a lack of evidence for mating, cell fusion and karyogamy in Ashbya. Most of the research is performed with the type strain ATCC10895. Other isolates should be studied in comparison. Interestingly, there is an older report that indicates formation of a secondary mycelium that is generated by germinating spores that then undergo fusion and produce secondary spores of different shape [1]. Essentially, this describes a similar phenomenon of what became known as CATs (conidial anastomosis tubes) in Neurospora crassa [89,90,91]. This needs to be reinvestigated and studied on the molecular level.
- (ii)
- KAR4 and STE12 mutants have quite opposite phenotypes in Ashbya. It is not understood how these transcriptional activators differentially regulate the same gene set. In S. cerevisiae, Ste12 and Kar4 may co-regulate specific genes [92]. One possibility is that deletion of STE12 enables Kar4 to better access sporulation gene promoters explaining the hypersporulation phenotype, while deletion of KAR4 abolishes sporulation as Ste12 alone cannot activate gear box genes. This could be analyzed by KAR4/STE12 overexpression studies.Ste12 is at the bottom of the pheromone-response signal transduction cascade [93]. The role of this cascade for Ashbya biology remains to be elucidated. One hypothesis is that there may be autocrine signaling in Ashbya by which its own pheromone production regulates filamentous growth and the developmental switch to sporulation, particularly as we lack evidence of mating interactions in Ashbya. Autocrine pheromone signaling has been observed in the distantly related fungi C. neoformans and Ustilago maydis [94,95]. Attempts to overactivate the pheromone signal transduction cascade using an AgSte7-DD allele, in which residues potentially regulated by phosphorylation were mutated into glutamate to mimic activation (according to [96]) did not result in an altered sporulation behavior (our unpublished results).
- (iii)
- The developmental cascade leading to cellular growth resulting in sporangium formation and the genes involved are presently unknown. A role of pH-regulation in sporulation remains to be studied. Several of the gear box mutants tested are still able to form sporangia. Interestingly, return-to-growth studies indicated that sporulation mutants can generate new hyphal growth and return to mitotic divisions even after several days in sporulation medium.
- (iv)
- By RNAseq transcriptomics several unique Ashbya genes highly induced during sporulation have been identified. Their role is unknown and remains to be elucidated.
- (v)
- Breaking the dormancy of spores is a topic of general interest in fungal biology. Nutrients and the cAMP/PKA pathway certainly play a role. Our data clearly link spore germination to the catalytic PKA subunit encoded by TPK2. However, the downstream targets are unknown. They could be identified using phospho-proteomics to identify proteins specifically phosphorylated during germination. Sok2 may be a prime candidate. However, since sok2 mutants cannot sporulate, a potential role of Sok2 in germination has not been studied yet. Conditional expression of SOK2 in spores, e.g., using regulatable promoters could help to elucidate its role in germination.In other systems there is a quorum sensing mechanism in spores. This mechanism informs a spore if there are other siblings around that have already started to germinate or grow. This ensures that a spore does not miss an opportunity to grow and is enticed to wake up as well. In Bacillus subtilis, muropeptide cell wall fragments released from germinating spores activate a prkC encoded Ser/Thr kinase receptor that, for example activates EF-G by phosphorylation [97]. Similar mechanisms have not been identified in fungi so far. Spore germination experiments with Ashbya suggest that the number of germinating spores (i.e., the quorum) has an influence on cell morphology of young germlings. Glycopeptide release from germinating spores of fungal plant pathogens may act as elicitors of plant defense responses, e.g., as shown for Mycosphaerella [98]. These molecules could therefore also function as microbe-associated molecular patterns triggering plant immunity [99,100].
Funding
Acknowledgments
Conflicts of Interest
References
- Ashby, S.F.; Nowell, W. The fungi of stigmatomycosis. Ann. Bot. 1926, 40, 69–84. [Google Scholar] [CrossRef]
- Wickerham, L.S.; Flickinger, M.H.; Johnson, R.M. Production of riboflavin by Ashbya gossypii. Arch. Biochem. 1946, 9, 95–98. [Google Scholar]
- Aguiar, T.Q.; Silva, R.; Domingues, L. Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications. Biotechnol. Adv. 2015, 33, 1774–1786. [Google Scholar] [CrossRef] [Green Version]
- Schwechheimer, S.K.; Park, E.Y.; Revuelta, J.L.; Becker, J.; Wittmann, C. Biotechnology of riboflavin. Appl. Microbiol. Biotechnol. 2016, 100, 2107–2119. [Google Scholar] [CrossRef]
- Ravasio, D.; Wendland, J.; Walther, A. Major contribution of the Ehrlich pathway for 2-phenylethanol/rose flavor production in Ashbya gossypii. FEMS Yeast Res. 2014, 14, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Ledesma-Amaro, R.; Lozano-Martinez, P.; Jimenez, A.; Revuelta, J.L. Engineering Ashbya gossypii for efficient biolipid production. Bioengineered 2015, 6, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Amatriain, C.; Ledesma-Amaro, R.; Lopez-Nicolas, R.; Ros, G.; Jimenez, A.; Revuelta, J.L. Folic Acid Production by Engineered Ashbya gossypii. Metab. Eng. 2016, 38, 473–482. [Google Scholar] [CrossRef]
- Birk, F.; Fraatz, M.A.; Esch, P.; Heiles, S.; Pelzer, R.; Zorn, H. Industrial Riboflavin Fermentation Broths Represent a Diverse Source of Natural Saturated and Unsaturated Lactones. J. Agric. Food Chem. 2019, 67, 13460–13469. [Google Scholar] [CrossRef]
- Silva, R.; Aguiar, T.Q.; Coelho, E.; Jimenez, A.; Revuelta, J.L.; Domingues, L. Metabolic engineering of Ashbya gossypii for deciphering the de novo biosynthesis of gamma-lactones. Microb. Cell Fact. 2019, 18, 62. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, T.Q.; Silva, R.; Domingues, L. New biotechnological applications for Ashbya gossypii: Challenges and perspectives. Bioengineered 2017, 8, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.C.; Philippsen, P. Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 1991, 109, 99–105. [Google Scholar] [CrossRef]
- Steiner, S.; Wendland, J.; Wright, M.C.; Philippsen, P. Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii. Genetics 1995, 140, 973–987. [Google Scholar]
- Wendland, J.; Ayad-Durieux, Y.; Knechtle, P.; Rebischung, C.; Philippsen, P. PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene 2000, 242, 381–391. [Google Scholar] [CrossRef]
- Dunkler, A.; Wendland, J. Use of MET3 promoters for regulated gene expression in Ashbya gossypii. Curr. Genet. 2007, 52, 1–10. [Google Scholar] [CrossRef]
- Kaufmann, A. A plasmid collection for PCR-based gene targeting in the filamentous ascomycete Ashbya gossypii. Fungal Genet. Biol. 2009, 46, 595–603. [Google Scholar] [CrossRef]
- Aguiar, T.Q.; Dinis, C.; Domingues, L. Cre-loxP-based system for removal and reuse of selection markers in Ashbya gossypii targeted engineering. Fungal Genet. Biol. 2014, 68, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, A.; Hoff, B.; Revuelta, J.L. Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1. New Biotechnol. 2020, 57, 29–33. [Google Scholar] [CrossRef]
- Jimenez, A.; Munoz-Fernandez, G.; Ledesma-Amaro, R.; Buey, R.M.; Revuelta, J.L. One-vector CRISPR/Cas9 genome engineering of the industrial fungus Ashbya gossypii. Microb. Biotechnol. 2019, 12, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, F.S.; Voegeli, S.; Brachat, S.; Lerch, A.; Gates, K.; Steiner, S.; Mohr, C.; Pohlmann, R.; Luedi, P.; Choi, S.; et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 2004, 304, 304–307. [Google Scholar] [CrossRef] [Green Version]
- Kellis, M.; Birren, B.W.; Lander, E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004, 428, 617–624. [Google Scholar] [CrossRef]
- Dietrich, F.S.; Voegeli, S.; Kuo, S.; Philippsen, P. Genomes of Ashbya fungi isolated from insects reveal four mating-type loci, numerous translocations, lack of transposons, and distinct gene duplications. G3 (Bethesda) 2013, 3, 1225–1239. [Google Scholar] [CrossRef] [Green Version]
- Wendland, J.; Walther, A. Genome evolution in the eremothecium clade of the Saccharomyces complex revealed by comparative genomics. G3 (Bethesda) 2011, 1, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Wendland, J.; Walther, A. Chromosome number reduction in Eremothecium coryli by two telomere-to-telomere fusions. Genome Biol. Evol. 2014, 6, 1186–1198. [Google Scholar] [CrossRef]
- Wendland, J.; Walther, A. Ashbya gossypii: A model for fungal developmental biology. Nat. Rev. Microbiol. 2005, 3, 421–429. [Google Scholar] [CrossRef]
- Wendland, J.; Philippsen, P. Cell polarity and hyphal morphogenesis are controlled by multiple rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics 2001, 157, 601–610. [Google Scholar]
- Bauer, Y.; Knechtle, P.; Wendland, J.; Helfer, H.; Philippsen, P. A Ras-like GTPase is involved in hyphal growth guidance in the filamentous fungus Ashbya gossypii. Mol. Biol. Cell 2004, 15, 4622–4632. [Google Scholar] [CrossRef] [Green Version]
- Philippsen, P.; Kaufmann, A.; Schmitz, H.P. Homologues of yeast polarity genes control the development of multinucleated hyphae in Ashbya gossypii. Curr. Opin. Microbiol. 2005, 8, 370–377. [Google Scholar] [CrossRef]
- Schmitz, H.P.; Kaufmann, A.; Kohli, M.; Laissue, P.P.; Philippsen, P. From function to shape: A novel role of a formin in morphogenesis of the fungus Ashbya gossypii. Mol. Biol. Cell 2006, 17, 130–145. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, P.; Wendland, J.; Philippsen, P. The SH3/PH domain protein AgBoi1/2 collaborates with the Rho-type GTPase AgRho3 to prevent nonpolar growth at hyphal tips of Ashbya gossypii. Eukaryot. Cell 2006, 5, 1635–1647. [Google Scholar] [CrossRef] [Green Version]
- Kohli, M.; Buck, S.; Schmitz, H.P. The function of two closely related Rho proteins is determined by an atypical switch I region. J. Cell Sci. 2008, 121, 1065–1075. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, D.; Lickfeld, M.; Warnsmann, V.; Wiechert, J.; Jendretzki, A.; Schmitz, H.P. The small GTP-binding proteins AgRho2 and AgRho5 regulate tip-branching, maintenance of the growth axis and actin-ring-integrity in the filamentous fungus Ashbya gossypii. PLoS ONE 2014, 9, e106236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Occhipinti, P.; Gladfelter, A.S. PolyQ-dependent RNA-protein assemblies control symmetry breaking. J. Cell Biol. 2015, 208, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Gerbich, T.M.; McLaughlin, G.A.; Cassidy, K.; Gerber, S.; Adalsteinsson, D.; Gladfelter, A.S. Phosphoregulation provides specificity to biomolecular condensates in the cell cycle and cell polarity. J. Cell Biol. 2020, 219. [Google Scholar] [CrossRef] [PubMed]
- Walther, A.; Wendland, J. Apical localization of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p. J. Cell Sci. 2004, 117, 4947–4958. [Google Scholar] [CrossRef] [Green Version]
- Kohli, M.; Galati, V.; Boudier, K.; Roberson, R.W.; Philippsen, P. Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. J. Cell Sci. 2008, 121, 3878–3889. [Google Scholar] [CrossRef] [Green Version]
- Oscarsson, T.; Walther, A.; Lengeler, K.B.; Wendland, J. An Arf-GAP promotes endocytosis and hyphal growth of Ashbya gossypii. FEMS Microbiol. Lett. 2017, 364, fnx240. [Google Scholar] [CrossRef] [Green Version]
- Wendland, J.; Philippsen, P. An IQGAP-related protein, encoded by AgCYK1, is required for septation in the filamentous fungus Ashbya gossypii. Fungal Genet. Biol. 2002, 37, 81–88. [Google Scholar] [CrossRef]
- Wendland, J. Analysis of the landmark protein Bud3 of Ashbya gossypii reveals a novel role in septum construction. EMBO Rep. 2003, 4, 200–204. [Google Scholar] [CrossRef] [Green Version]
- DeMay, B.S.; Meseroll, R.A.; Occhipinti, P.; Gladfelter, A.S. Regulation of distinct septin rings in a single cell by Elm1p and Gin4p kinases. Mol. Biol. Cell 2009, 20, 2311–2326. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, A.; Philippsen, P. Of bars and rings: Hof1-dependent cytokinesis in multiseptated hyphae of Ashbya gossypii. Mol. Cell. Biol. 2009, 29, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Anker, J.F.; Gladfelter, A.S. Axl2 integrates polarity establishment, maintenance, and environmental stress response in the filamentous fungus Ashbya gossypii. Eukaryot. Cell 2011, 10, 1679–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meseroll, R.A.; Occhipinti, P.; Gladfelter, A.S. Septin phosphorylation and coiled-coil domains function in cell and septin ring morphology in the filamentous fungus Ashbya gossypii. Eukaryot. Cell 2013, 12, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, C.; Yu, C.; Ewers, H. Ashbya gossypii as a model system to study septin organization by single-molecule localization microscopy. Methods Cell Biol. 2016, 136, 161–182. [Google Scholar] [CrossRef]
- Gladfelter, A.S. Nuclear anarchy: Asynchronous mitosis in multinucleated fungal hyphae. Curr. Opin. Microbiol. 2006, 9, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Grava, S.; Philippsen, P. Dynamics of multiple nuclei in Ashbya gossypii hyphae depend on the control of cytoplasmic microtubules length by Bik1, Kip2, Kip3, and not on a capture/shrinkage mechanism. Mol. Biol. Cell 2010, 21, 3680–3692. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.; Grava, S.; Finlayson, M.; Trimble, R.; Philippsen, P.; Jaspersen, S.L. Structural mutants of the spindle pole body cause distinct alteration of cytoplasmic microtubules and nuclear dynamics in multinucleated hyphae. Mol. Biol. Cell 2010, 21, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.; Grava, S.; van den Hoorn, T.; Trimble, R.; Philippsen, P.; Jaspersen, S.L. Mobility, microtubule nucleation and structure of microtubule-organizing centers in multinucleated hyphae of Ashbya gossypii. Mol. Biol. Cell 2010, 21, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Nair, D.R.; D’Ausilio, C.A.; Occhipinti, P.; Borsuk, M.E.; Gladfelter, A.S. A conserved G(1) regulatory circuit promotes asynchronous behavior of nuclei sharing a common cytoplasm. Cell Cycle 2010, 9, 3771–3779. [Google Scholar] [CrossRef] [Green Version]
- Grava, S.; Keller, M.; Voegeli, S.; Seger, S.; Lang, C.; Philippsen, P. Clustering of nuclei in multinucleated hyphae is prevented by dynein-driven bidirectional nuclear movements and microtubule growth control in Ashbya gossypii. Eukaryot. Cell 2011, 10, 902–915. [Google Scholar] [CrossRef] [Green Version]
- Gibeaux, R.; Hoepfner, D.; Schlatter, I.; Antony, C.; Philippsen, P. Organization of organelles within hyphae of Ashbya gossypii revealed by electron tomography. Eukaryot. Cell 2013, 12, 1423–1432. [Google Scholar] [CrossRef] [Green Version]
- Osherov, N.; May, G.S. The molecular mechanisms of conidial germination. FEMS Microbiol. Lett. 2001, 199, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.D.; Hofmann, A.F.; Tedford, H.W.; Lee, M.P. Identification and characterization of genes required for hyphal morphogenesis in the filamentous fungus Aspergillus nidulans. Genetics 1999, 151, 1015–1025. [Google Scholar] [PubMed]
- Lickfeld, M.; Schmitz, H.P. A network involving Rho-type GTPases, a paxillin and a formin homologue regulates spore length and spore wall integrity in the filamentous fungus Ashbya gossypii. Mol. Microbiol. 2012, 85, 574–593. [Google Scholar] [CrossRef] [PubMed]
- Wasserstrom, L.; Lengeler, K.B.; Walther, A.; Wendland, J. Molecular determinants of sporulation in Ashbya gossypii. Genetics 2013, 195, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Mata, J.; Bahler, J. Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast. Proc. Natl. Acad. Sci. USA 2006, 103, 15517–15522. [Google Scholar] [CrossRef] [Green Version]
- Hanson, S.J.; Wolfe, K.H. An Evolutionary Perspective on Yeast Mating-Type Switching. Genetics 2017, 206, 9–32. [Google Scholar] [CrossRef] [Green Version]
- Wendland, J.; Dunkler, A.; Walther, A. Characterization of alpha-factor pheromone and pheromone receptor genes of Ashbya gossypii. FEMS Yeast Res. 2011, 11, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Wasserstrom, L.; Dunkler, A.; Walther, A.; Wendland, J. The APSES protein Sok2 is a positive regulator of sporulation in Ashbya gossypii. Mol. Microbiol. 2017, 106, 949–960. [Google Scholar] [CrossRef] [Green Version]
- Wasserstrom, L.; Lengeler, K.; Walther, A.; Wendland, J. Developmental Growth Control Exerted via the Protein A Kinase Tpk2 in Ashbya gossypii. Eukaryot. Cell 2015, 14, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Grunler, A.; Walther, A.; Lammel, J.; Wendland, J. Analysis of flocculins in Ashbya gossypii reveals FIG2 regulation by TEC1. Fungal Genet. Biol. 2010, 47, 619–628. [Google Scholar] [CrossRef]
- Lin, X.; Hull, C.M.; Heitman, J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 2005, 434, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Sun, S.; Billmyre, R.B.; Roach, K.C.; Heitman, J. Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genet. Biol. 2015, 78, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, C.R.; Booth, L.N.; Sorrells, T.R.; Johnson, A.D. Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification. Cell 2012, 151, 80–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 2001, 52, 1–53. [Google Scholar] [CrossRef]
- Keeney, S.; Giroux, C.N.; Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 1997, 88, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Bishop, D.K.; Park, D.; Xu, L.; Kleckner, N. DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 1992, 69, 439–456. [Google Scholar] [CrossRef]
- Gattiker, A.; Rischatsch, R.; Demougin, P.; Voegeli, S.; Dietrich, F.S.; Philippsen, P.; Primig, M. Ashbya Genome Database 3.0: A cross-species genome and transcriptome browser for yeast biologists. BMC Genom. 2007, 8, 9. [Google Scholar] [CrossRef]
- Kobayashi, N.; McEntee, K. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 1993, 13, 248–256. [Google Scholar] [CrossRef]
- Honigberg, S.M.; Lee, R.H. Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1998, 18, 4548–4555. [Google Scholar] [CrossRef] [Green Version]
- Purnapatre, K.; Gray, M.; Piccirillo, S.; Honigberg, S.M. Glucose inhibits meiotic DNA replication through SCFGrr1p-dependent destruction of Ime2p kinase. Mol. Cell. Biol. 2005, 25, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Wabner, D.; Overhagebock, T.; Nordmann, D.; Kronenberg, J.; Kramer, F.; Schmitz, H.P. Analysis of the protein composition of the spindle pole body during sporulation in Ashbya gossypii. PLoS ONE 2019, 14, e0223374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemper, M.; Mohlzahn, L.; Lickfeld, M.; Lang, C.; Wahlisch, S.; Schmitz, H.P. A Bnr-like formin links actin to the spindle pole body during sporulation in the filamentous fungus Ashbya gossypii. Mol. Microbiol. 2011, 80, 1276–1295. [Google Scholar] [CrossRef] [PubMed]
- Gibeaux, R.; Knop, M. When yeast cells meet, karyogamy! An example of nuclear migration slowly resolved. Nucleus 2013, 4, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibeaux, R.; Politi, A.Z.; Nedelec, F.; Antony, C.; Knop, M. Spindle pole body-anchored Kar3 drives the nucleus along microtubules from another nucleus in preparation for nuclear fusion during yeast karyogamy. Genes Dev. 2013, 27, 335–349. [Google Scholar] [CrossRef] [Green Version]
- van Werven, F.J.; Neuert, G.; Hendrick, N.; Lardenois, A.; Buratowski, S.; van Oudenaarden, A.; Primig, M.; Amon, A. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 2012, 150, 1170–1181. [Google Scholar] [CrossRef] [Green Version]
- Moretto, F.; Wood, N.E.; Kelly, G.; Doncic, A.; van Werven, F.J. A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast. Nat. Commun. 2018, 9, 780. [Google Scholar] [CrossRef]
- Rubio-Texeira, M.; Van Zeebroeck, G.; Voordeckers, K.; Thevelein, J.M. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res. 2010, 10, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Cameron, S.; Levin, L.; Zoller, M.; Wigler, M. cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 1988, 53, 555–566. [Google Scholar] [CrossRef]
- Grosse, C.; Heinekamp, T.; Kniemeyer, O.; Gehrke, A.; Brakhage, A.A. Protein kinase A regulates growth, sporulation, and pigment formation in Aspergillus fumigatus. Appl. Environ. Microbiol. 2008, 74, 4923–4933. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.P.; Gimeno, C.J.; Fink, G.R.; Garrett, S. SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol. Cell. Biol. 1995, 15, 6854–6863. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Heitman, J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999, 19, 4874–4887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briza, P.; Ellinger, A.; Winkler, G.; Breitenbach, M. Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J. Biol. Chem. 1988, 263, 11569–11574. [Google Scholar]
- Kock, J.L.; Strauss, C.J.; Pohl, C.H.; Nigam, S. The distribution of 3-hydroxy oxylipins in fungi. Prostaglandins Other Lipid Mediat. 2003, 71, 85–96. [Google Scholar] [CrossRef]
- Leeuw, N.J.; Kock, J.L.; Pohl, C.H.; Bareetseng, A.S.; Sebolai, O.M.; Joseph, M.; Strauss, C.J.; Botes, P.J.; van Wyk, P.W.; Nigam, S. Oxylipin covered ascospores of Eremothecium coryli. Antonie Van Leeuwenhoek 2006, 89, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Sebolai, O.M.; Kock, J.L.; Pohl, C.H.; Botes, P.J.; Strauss, C.J.; Van Wyk, P.W.; Nigam, S. The presence of 3-hydroxy oxylipins on the ascospore surfaces of some species representing Saccharomycopsis Schionning. Can. J. Microbiol. 2005, 51, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Joseph-Strauss, D.; Zenvirth, D.; Simchen, G.; Barkai, N. Spore germination in Saccharomyces cerevisiae: Global gene expression patterns and cell cycle landmarks. Genome Biol. 2007, 8, R241. [Google Scholar] [CrossRef] [Green Version]
- Geijer, C.; Pirkov, I.; Vongsangnak, W.; Ericsson, A.; Nielsen, J.; Krantz, M.; Hohmann, S. Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response. BMC Genom. 2012, 13, 554. [Google Scholar] [CrossRef] [Green Version]
- Hatanaka, M.; Shimoda, C. The cyclic AMP/PKA signal pathway is required for initiation of spore germination in Schizosaccharomyces pombe. Yeast 2001, 18, 207–217. [Google Scholar] [CrossRef]
- Hickey, P.C.; Jacobson, D.; Read, N.D.; Glass, N.L. Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet. Biol. 2002, 37, 109–119. [Google Scholar] [CrossRef]
- Roca, M.G.; Arlt, J.; Jeffree, C.E.; Read, N.D. Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot. Cell 2005, 4, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Fleissner, A.; Herzog, S. Signal exchange and integration during self-fusion in filamentous fungi. Semin. Cell Dev. Biol. 2016, 57, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Lahav, R.; Gammie, A.; Tavazoie, S.; Rose, M.D. Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway. Mol. Cell. Biol. 2007, 27, 818–829. [Google Scholar] [CrossRef] [Green Version]
- Bardwell, L. A walk-through of the yeast mating pheromone response pathway. Peptides 2005, 26, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Spellig, T.; Bolker, M.; Lottspeich, F.; Frank, R.W.; Kahmann, R. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J. 1994, 13, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.P.; Xue, C.; Heitman, J. A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J. 2009, 28, 1220–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, P.; Weinzierl, G.; Brachmann, A.; Feldbrugge, M.; Kahmann, R. Mating and pathogenic development of the Smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot. Cell 2003, 2, 1187–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, I.M.; Laaberki, M.H.; Popham, D.L.; Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 2008, 135, 486–496. [Google Scholar] [CrossRef] [Green Version]
- Kiba, A.; Takeda, T.; Kanemitsu, T.; Toyoda, K.; Ichinose, Y.; Yamada, T.; Shiraishi, T. Induction of defense responses by synthetic glycopeptides that have a partial structure of the elicitor in the spore germination fluid of Mycosphaerella pinodes. Plant Cell Physiol. 1999, 40, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Silipo, A.; Erbs, G.; Shinya, T.; Dow, J.M.; Parrilli, M.; Lanzetta, R.; Shibuya, N.; Newman, M.A.; Molinaro, A. Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 2010, 20, 406–419. [Google Scholar] [CrossRef] [Green Version]
- Ao, Y.; Li, Z.; Feng, D.; Xiong, F.; Liu, J.; Li, J.F.; Wang, M.; Wang, J.; Liu, B.; Wang, H.B. OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J. 2014, 80, 1072–1084. [Google Scholar] [CrossRef]
Gene | Phenotype | Genetic Alteration | Reference |
---|---|---|---|
ScMATα2 | no sporulation | overexpression | [58] |
ime1 | no sporulation | deletion | [54] |
ime2 | no sporulation | deletion | [54] |
ime4 | no sporulation | deletion | [54] |
kar4 | no sporulation | deletion | [54] |
ndt80 | no sporulation | deletion | [54] |
dig1 | no sporulation | deletion | [54] |
sok2 | no sporulation | deletion | [58] |
+cAMP in WT | no sporulation | none, exogenous addition of cAMP | [59] |
+cAMP in tpk1 | no sporulation | none, exogenous addition of cAMP | [59] |
dmc1 | severely reduced sporulation | deletion | [54] |
kar3 | severely reduced sporulation | deletion | [54] |
spo14 | severely reduced sporulation | deletion | [54] |
ume6 | severely reduced sporulation | deletion | [54] |
spo1 | reduced sporulation | deletion | [54] |
msn2/4 | poor spore viability | deletion | [59] |
ste2/ste3 | sporulation | single or double deletion | [57] |
spo11 | sporulation | deletion | [54] |
+cAMP in tpk2 | sporulation | deletion, exogenous addition of cAMP | [59] |
tpk1 | sporulation | deletion | [59] |
tpk2 | sporulation | deletion | [59] |
ste11 | increased sporulation | deletion | [54] |
ste7 | increased sporulation | deletion | [54] |
ste12 | increased sporulation | deletion | [57] |
tec1 | increased sporulation | deletion | [60] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendland, J. Sporulation in Ashbya gossypii. J. Fungi 2020, 6, 157. https://doi.org/10.3390/jof6030157
Wendland J. Sporulation in Ashbya gossypii. Journal of Fungi. 2020; 6(3):157. https://doi.org/10.3390/jof6030157
Chicago/Turabian StyleWendland, Jürgen. 2020. "Sporulation in Ashbya gossypii" Journal of Fungi 6, no. 3: 157. https://doi.org/10.3390/jof6030157
APA StyleWendland, J. (2020). Sporulation in Ashbya gossypii. Journal of Fungi, 6(3), 157. https://doi.org/10.3390/jof6030157