Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus Statement
Abstract
:1. Introduction
2. Materials and Methods
3. Consensus Recommendations
3.1. Diagnosis of Breakthrough Infections Caused by Yeasts
3.1.1. Conventional Diagnostics
3.1.2. Serology Including Antigen-Based Tests
3.1.3. Nucleic Acid-Based Assays/Others
3.1.4. Consensus Recommendation
- -
- Direct examination of sterile samples is recommended for the proof of infection given the potential effect of antifungal therapy on fungal culture sensitivity. However, given limited sensitivity, a negative direct examination does not exclude infection.
- -
- Once an isolate is grown, identification should be performed. Particularly in the case of a positive blood culture, molecular blood culture identification (BCID) panels provide precise and rapid identification.
- -
- Antifungal susceptibility testing should be performed on invasive isolates to evaluate the activity of the current and alternative drugs.
- -
- Non-culture methods of detection (serology and/or PCR) can be considered but the impact of antifungal therapy on their sensitivity has not been well-enough studied. Specificity is also a concern, especially with non-sterile samples, because highly sensitive molecular techniques can also reflect the presence of commensal yeasts.
3.2. Diagnosis of Breakthrough Infections Caused by Molds
3.2.1. Conventional Diagnostics
3.2.2. Antigen-Based Diagnostics
3.2.3. Nucleic Acid-Based Assays/Others
3.2.4. Consensus Recommendation
- -
- Culture, microscopy, and antifungal susceptibility testing are essential for the diagnosis of breakthrough mold infections, particularly for infections other than invasive aspergillosis. Cultures of the lower respiratory tract are mostly preferred, although blood cultures may be positive in some cases. If necessary, and susceptibility testing, particularly for mold infections other than IA. Blood invasive procedures to obtain a biopsy and definite proof of bIFI should be considered. Importantly, a negative fungal culture does not rule out a breakthrough invasive mold infection, given the low sensitivity of culture in this setting.
- -
- Despite reduced sensitivities, antigen-based diagnostics, such as GM (in BALF and serum) and BDG (in serum only), or newer assays, such as LFA and LFD (both in BALF or serum), have important roles for diagnosing breakthrough IA when the degree of clinical suspicion is high, because the sensitivity of fungal culture may be even further reduced.
- -
- While we do not recommend using these tests for screening in patients on mold-active prophylaxis or treatment, a combination of multiple antigen-based diagnostics, conventional diagnostics, PCR-based assays, and novel diagnostic markers can help to diagnose breakthrough mold infections.
- -
- Many of the available antigen-based diagnostics such as GM or the LFA and the LFD tests are specific for IA and very few other mold infections such as fusariosis, therefore, negative test results do not automatically rule out a breakthrough mold infection, but instead should raise the suspicion for mucormycosis or another rare mold as a potential causative pathogen.
3.3. Diagnosis of Breakthrough Infections Due to Endemic Mycoses
3.3.1. Conventional Diagnostics
3.3.2. Serology
3.3.3. Nucleic Acid Based Assays/Others
3.3.4. Consensus Recommendation
- -
- Whenever possible, diagnosis of bIFI caused by endemic mycoses should be confirmed by obtaining affected tissue for examination by direct microscopy, histopathology, and fungal culture.
- -
- More nuanced approaches are required for individual diseases that are suspected based on the relevant clinical picture and exposure history. In acute disease in immunocompromised patients, histoplasmosis and talaromycosis can both be diagnosed with antigen tests, although the latter assay is not widely available.
- -
- Antibody tests for coccidioidomycosis, paracoccidioidomycosis, and acute and chronic histoplasmosis should be considered, but antibody tests for histoplasmosis are not recommended in patients with immunosuppression or those with cystic fibrosis. Serology for other endemic mycoses (i.e., blastomycosis, sporotrichosis, emergomycosis) have limited sensitivities and specificities or are not commercially available.
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Jenks, J.D.; Cornely, O.A.; Chen, S.C.; Thompson, G.R., III; Hoenigl, M. Breakthrough Invasive Fungal Infections: Who is at risk? Mycoses 2020, 63, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-S.; Hsieh, T.-C.; Ou, T.-Y.; Teng, S.-O.; Chen, F.-L.; Lee, W.-S. Breakthrough disseminated cryptococcosis during micafungin therapy. J. Microbiol. Immunol. Infect. 2015, 48, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Hoenigl, M.; Lass-Flörl, C.; Chen, S.C.-A.; Kontoyiannis, D.P.; Morrissey, C.O.; Iii, G.R.T.; for the Mycoses Study Group Education and Research Consortium (MSG-ERC) and the European Confederation of Medical Mycology (ECMM); Lass-Flör, C.; Mycoses Study Group Education and Research Consortium (MSG-ERC) and the European Confederation of Medical Mycology (ECMM); et al. Defining breakthrough invasive fungal infection–Position paper of the mycoses study group education and research consortium and the European Confederation of Medical Mycology. Mycoses 2019, 62, 716–729. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.; Spiess, B.; Buchheidt, D.; Hoenigl, M. (New) Methods for Detection of Aspergillus fumigatus Resistance in Clinical Samples. Curr. Fungal Infect. Rep. 2019, 13, 129–136. [Google Scholar] [CrossRef]
- Buchheidt, D.; Reinwald, M.; Hoenigl, M.; Hofmann, W.-K.; Spiess, B.; Boch, T. The evolving landscape of new diagnostic tests for invasive aspergillosis in hematology patients. Curr. Opin. Infect. Dis. 2017, 30, 539–544. [Google Scholar] [CrossRef]
- Hoenigl, M.; Prattes, J.; Neumeister, P.; Wölfler, A.; Krause, R. Real-world challenges and unmet needs in the diagnosis and treatment of suspected invasive pulmonary aspergillosis in patients with haematological diseases: An illustrative case study. Mycoses 2017, 61, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Eigl, S.; Prattes, J.; Reinwald, M.; Thornton, C.R.; Reischies, F.; Spiess, B.; Neumeister, P.; Zollner-Schwetz, I.; Raggam, R.B.; Flick, H.; et al. Influence of mould-active antifungal treatment on the performance of the Aspergillus-specific bronchoalveolar lavage fluid lateral-flow device test. Int. J. Antimicrob. Agents 2015, 46, 401–405. [Google Scholar] [CrossRef]
- Eigl, S.; Hoenigl, M.; Spiess, B.; Heldt, S.; Prattes, J.; Neumeister, P.; Wölfler, A.; Rabensteiner, J.; Prueller, F.; Krause, R.; et al. Galactomannan testing and Aspergillus PCR in same-day bronchoalveolar lavage and blood samples for diagnosis of invasive aspergillosis. Med. Mycol. 2017, 55, 528–534. [Google Scholar]
- Hoenigl, M.; Seeber, K.; Koidl, C.; Buzina, W.; Wölfler, A.; Duettmann, W.; Wagner, J.; Strenger, V.; Krause, R. Sensitivity of galactomannan enzyme immunoassay for diagnosing breakthrough invasive aspergillosis under antifungal prophylaxis and empirical therapy. Mycoses 2013, 56, 471–476. [Google Scholar] [CrossRef]
- Cornely, O.A.; Lass-Flörl, C.; Lagrou, K.; Arsic-Arsenijevic, V.; Hoenigl, M. Improving outcome of fungal diseases - Guiding experts and patients towards excellence. Mycoses 2017, 60, 420–425. [Google Scholar] [CrossRef] [Green Version]
- Hoenigl, M.; Gangneux, J.-P.; Segal, E.; Alanio, A.; Chakrabarti, A.; Chen, S.C.-A.; Govender, N.P.; Hagen, F.; Klimko, N.; Meis, J.F.; et al. Global guidelines and initiatives from the European Confederation of Medical Mycology to improve patient care and research worldwide: New leadership is about working together. Mycoses 2018, 61, 885–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickes, B.L.; Romanelli, A.M. Diagnostic Mycology: Xtreme Challenges. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [PubMed]
- Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal Susceptibility Testing: Current Approaches. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Estrella, M.; Verweij, P.E.; Arendrup, M.C.; Arikan-Akdagli, S.; Bille, J.; Donnelly, J.P.; Jensen, H.E.; Lass-Flörl, C.; Richardson, M.D.; Akova, M.; et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Diagnostic procedures. Clin. Microbiol. Infect. 2012, 18, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mery, A.; Sendid, B.; François, N.; Cornu, M.; Poissy, J.; Guerardel, Y.; Poulain, D. Application of Mass Spectrometry Technology to Early Diagnosis of Invasive Fungal Infections. J. Clin. Microbiol. 2016, 54, 2786–2797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lass-Flörl, C. How to make a fast diagnosis in invasive aspergillosis. Med. Mycol. 2019, 57, S155–S160. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.-H. Rapid diagnosis of invasive candidiasis. Curr. Opin. Infect. Dis. 2019, 32, 546–552. [Google Scholar] [CrossRef]
- Mikulska, M.; Calandra, T.; Sanguinetti, M.; Poulain, D.; Viscoli, C. The Third European Conference on Infections in Leukemia Group The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: Recommendations from the Third European Conference on Infections in Leukemia. Crit. Care 2010, 14, R222. [Google Scholar] [CrossRef] [Green Version]
- Ostrosky-Zeichner, L.; Alexander, B.D.; Kett, D.H.; Vazquez, J.; Pappas, P.G.; Saeki, F.; Ketchum, P.A.; Wingard, J.; Schiff, R.; Tamura, H.; et al. Multicenter clinical evaluation of the (1->3) beta-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin. Infect. Dis. 2005, 41, 654–659. [Google Scholar] [CrossRef]
- Marchetti, O.; Lamoth, F.; Mikulska, M.; Viscoli, C.; Verweij, P.; Bretagne, S. ECIL recommendations for the use of biological markers for the diagnosis of invasive fungal diseases in leukemic patients and hematopoietic SCT recipients. Bone Marrow Transplant. 2011, 47, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, R.; Rappold, E.; Bogdan, C.; Held, J. Comparative Analysis of the Wako β-Glucan Test and the Fungitell Assay for Diagnosis of Candidemia and Pneumocystis jirovecii Pneumonia. J. Clin. Microbiol. 2018, 56, e00464-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onishi, A.; Sugiyama, D.; Kogata, Y.; Saegusa, J.; Sugimoto, T.; Kawano, S.; Morinobu, A.; Nishimura, K.; Kumagai, S. Diagnostic Accuracy of Serum 1,3-β-d-Glucan for Pneumocystis jiroveci Pneumonia, Invasive Candidiasis, and Invasive Aspergillosis: Systematic Review and Meta-Analysis. J. Clin. Microbiol. 2011, 50, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karageorgopoulos, D.E.; Vouloumanou, E.K.; Ntziora, F.; Michalopoulos, A.; Rafailidis, P.I.; Falagas, M.E. beta-D-glucan assay for the diagnosis of invasive fungal infections: A meta-analysis. Clin. Infect. Dis. 2011, 52, 750–770. [Google Scholar] [CrossRef] [PubMed]
- Liss, B.J.; Cornely, O.A.; Hoffmann, D.; Dimitriou, V.; Wisplinghoff, H. 1,3-ß-D-glucan concentrations in blood products predict false positive post-transfusion results. Mycoses 2015, 59, 39–42. [Google Scholar] [CrossRef]
- Hoenigl, M. Fungal Translocation: A driving force behind the Occurrence of non-AIDS Events? Clin. Infect. Dis. 2019, 70, 242–244. [Google Scholar] [CrossRef]
- Yang, A.-M.; Inamine, T.; Hochrath, K.; Chen, P.; Wang, L.; Llorente, C.; Bluemel, S.; Hartmann, P.; Xu, J.; Koyama, Y.; et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Investig. 2017, 127, 2829–2841. [Google Scholar] [CrossRef] [Green Version]
- Wiederhold, N.P.; Najvar, L.K.; Bocanegra, R.; Kirkpatrick, W.R.; Patterson, T.F.; Thornton, C.R. Interlaboratory and Interstudy Reproducibility of a Novel Lateral-Flow Device and Influence of Antifungal Therapy on Detection of Invasive Pulmonary Aspergillosis. J. Clin. Microbiol. 2012, 51, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.H.; Wissel, M.C.; Shields, R.K.; Salomoni, M.A.; Hao, B.; Press, E.G.; Shields, R.M.; Cheng, S.; Mitsani, D.; Vadnerkar, A.; et al. Performance of Candida real-time polymerase chain reaction, beta-D-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clin. Infect. Dis. 2012, 54, 1240–1248. [Google Scholar] [CrossRef] [Green Version]
- Vidal, J.E.; Boulware, D.R. Lateral flow assay for cryptococcal antigen: An important advance to improve the continuum of hiv care and reduce cryptococcal meningitis-related mortality. Rev. Inst. Med. Trop. São Paulo 2015, 57, 38–45. [Google Scholar] [CrossRef]
- First WHO Model List of Essential In Vitro Diagnostics; World Health Organization: Geneva, Switzerland, 2019.
- WHO Guidelines Approved by the Guidelines Review Committee. Guidelines for the Diagnosis, Prevention and Management of Cryptococcal Disease in HIV-Infected Adults, Adolescents and Children: Supplement to the 2016 Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Camp, I.; Spettel, K.; Willinger, B. Molecular Methods for the Diagnosis of Invasive Candidiasis. J. Fungi 2020, 6, 101. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M. Non-Culture Diagnostics for Invasive Candidiasis: Promise and Unintended Consequences. J. Fungi 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arastehfar, A.; Fang, W.; Daneshnia, F.; Al-Hatmi, A.M.S.; Liao, W.; Pan, W.; Khan, Z.; Ahmad, S.; Rosam, K.; Lackner, M.; et al. Novel multiplex real-time quantitative PCR detecting system approach for direct detection of Candida auris and its relatives in spiked serum samples. Futur. Microbiol. 2019, 14, 33–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avni, T.; Leibovici, L.; Paul, M. PCR Diagnosis of Invasive Candidiasis: Systematic Review and Meta-Analysis. J. Clin. Microbiol. 2010, 49, 665–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurl, C.J.; Prattes, J.; Zollner-Schwetz, I.; Valentin, T.; Rabensteiner, J.; Wunsch, S.; Hoenigl, M.; Krause, R. T2Candida magnetic resonance in patients with invasive candidiasis: Strengths and limitations. Med. Mycol. 2019, 58. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Pappas, P.G.; Vazquez, J.; Judson, M.A.; Kontoyiannis, D.P.; Thompson, G.R.; Garey, K.W.; Reboli, A.; Greenberg, R.N.; Apewokin, S.; et al. Detecting Infections Rapidly and Easily for Candidemia Trial, Part 2 (DIRECT2): A Prospective, Multicenter Study of the T2Candida Panel. Clin. Infect. Dis. 2018, 66, 1678–1686. [Google Scholar] [CrossRef]
- Elamoth, F.; Clancy, C.J.; Tissot, F.; Squires, K.; Eggimann, P.; Flückiger, U.; Siegemund, M.; Orasch, C.; Zimmerli, S.; Calandra, T.; et al. Performance of the T2Candida Panel for the Diagnosis of Intra-abdominal Candidiasis. Open Forum Infect. Dis. 2020, 7, ofaa075. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Hu, C.; Luo, L.; Fang, F.; Chen, Y.; Li, J.; Peng, Z.; Pan, H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J. Clin. Virol. 2020, 127, 104364. [Google Scholar] [CrossRef]
- Simor, A.E.; Porter, V.; Mubareka, S.; Chouinard, M.; Katz, K.; Vermeiren, C.; Fattouh, R.; Matukas, L.M.; Tadros, M.; Mazzulli, T.; et al. Rapid Identification of Candida Species from Positive Blood Cultures by Use of the FilmArray Blood Culture Identification Panel. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, P.S.; Cresswell, F.V.; Meya, D.B.; Langelier, C.; Crawford, E.D.; DeRisi, J.L.; Boulware, D.R.; Wilson, M.R. Detection of Cryptococcus DNA by Metagenomic Next-generation Sequencing in Symptomatic Cryptococcal Antigenemia. Clin. Infect. Dis. 2018, 68, 1978–1979. [Google Scholar] [CrossRef]
- Xing, X.-W.; Zhang, J.-T.; Ma, Y.-B.; Zheng, N.; Yang, F.; Yu, S.-Y. Apparent performance of metagenomic next-generation sequencing in the diagnosis of cryptococcal meningitis: A descriptive study. J. Med. Microbiol. 2019, 68, 1204–1210. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Chen, F.; Huang, Z.; Fang, X.; Li, W.; Yang, B.; Zhang, W. Metagenomic Next-Generation Sequencing Technique Helps Identify Cryptococcal Infection in the Rib. JBJS Case Connect. 2019, 9, e0367. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2019, 71, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blot, S.I.; Taccone, F.S.; Abeele, A.-M.V.D.; Bulpa, P.; Meersseman, W.; Brusselaers, N.; Dimopoulos, G.; Paiva, J.A.; Misset, B.; Rello, J.; et al. A Clinical Algorithm to Diagnose Invasive Pulmonary Aspergillosis in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2012, 186, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweij, P.E.; Rijnders, B.; Bruggemann, R.J.; Azoulay, E.; Bassetti, M.; Blot, S.; Calandra, T.; Clancy, C.J.; Cornely, O.A.; Chiller, T.; et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: An expert opinion. Intensiv. Care Med. 2020, 46, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Alastruey-Izquierdo, A.; Arenz, D.; Chen, S.C.A.; Dannaoui, E.; Hochhegger, B.; Hoenigl, M.; Jensen, H.E.; Lagrou, K.; Lewis, R.E.; et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 2019, 19, e405–e421. [Google Scholar] [CrossRef]
- Jenks, J.D.; Seidel, D.; Cornely, O.A.; Chen, S.; Van Hal, S.; Kauffman, C.; Miceli, M.H.; Heinemann, M.; Christner, M.; Sáenz, A.J.; et al. Voriconazole plus terbinafine combination antifungal therapy for invasive Lomentospora prolificans infections: Analysis of 41 patients from the FungiScope® registry 2008–2019. Clin. Microbiol. Infect. 2020, 26, 784.e1–784.e5. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.D.; Seidel, D.; Cornely, O.A.; Chen, S.; Van Hal, S.; Kauffman, C.; Miceli, M.H.; Heinemann, M.; Christner, M.; Sáenz, A.J.; et al. Clinical Characteristics and Outcomes of invasive Lomentospora prolificans Infections: Analysis of Patients in the FungiScope® Registry. Mycoses 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.D.; Reed, S.L.; Seidel, D.; Koehler, P.; Cornely, O.A.; Mehta, S.R.; Hoenigl, M. Rare Mold Infections Caused by Mucorales, Lomentospora Prolificans and Fusarium, San Diego: The Role of Antifungal Combination Therapy. Int. J. Antimicrob. Agents 2018, 52, 706–712. [Google Scholar] [CrossRef]
- Nucci, M.; Marr, K.; Vehreschild, M.; De Souza, C.; Velasco, E.; Cappellano, P.; Carlesse, F.; Queiroz-Telles, F.; Sheppard, D.; Kindo, A.; et al. Improvement in the outcome of invasive fusariosis in the last decade. Clin. Microbiol. Infect. 2014, 20, 580–585. [Google Scholar] [CrossRef] [Green Version]
- Kontoyiannis, D.P.; Sumoza, D.; Tarrand, J.; Bodey, G.P.; Storey, R.; Raad, I. Significance of Aspergillemia in Patients with Cancer: A 10-Year Study. Clin. Infect. Dis. 2000, 31, 188–189. [Google Scholar] [CrossRef]
- Neofytos, D.; Horn, D.; Anaissie, E.; Steinbach, W.; Olyaei, A.; Fishman, J.; Pfaller, M.; Chang, C.; Webster, K.; Marr, K. Epidemiology and Outcome of Invasive Fungal Infection in Adult Hematopoietic Stem Cell Transplant Recipients: Analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance Registry. Clin. Infect. Dis. 2009, 48, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Hage, C.A.; Carmona, E.M.; Evans, S.E.; Limper, A.H.; Ruminjo, J.; Thomson, C.C. Summary for Clinicians: Microbiological Laboratory Testing in the Diagnosis of Fungal Infections in Pulmonary and Critical Care Practice. Ann. Am. Thorac. Soc. 2019, 16, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Reischies, F.M.; Raggam, R.B.; Prattes, J.; Krause, R.; Eigl, S.; List, A.; Quehenberger, F.; Strenger, V.; Wölfler, A.; Hoenigl, M. Urine Galactomannan-to-Creatinine Ratio for Detection of Invasive Aspergillosis in Patients with Hematological Malignancies. J. Clin. Microbiol. 2016, 54, 771–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heldt, S.; Prattes, J.; Eigl, S.; Spiess, B.; Flick, H.; Rabensteiner, J.; Johnson, G.; Prüller, F.; Wölfler, A.; Niedrist, T.; et al. Diagnosis of invasive aspergillosis in hematological malignancy patients: Performance of cytokines, Asp LFD, and Aspergillus PCR in same day blood and bronchoalveolar lavage samples. J. Infect. 2018, 77, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.D.; Mehta, S.R.; Taplitz, R.; Law, N.; Reed, S.L.; Hoenigl, M. Bronchoalveolar lavage Aspergillus Galactomannan lateral flow assay versus Aspergillus-specific lateral flow device test for diagnosis of invasive pulmonary Aspergillosis in patients with hematological malignancies. J. Infect. 2019, 78, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Singh, N. Invasive Aspergillosis in Transplant Recipients. Medicine 1999, 78, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; McCarthy, M.W. The expanding use of matrix-assisted laser desorption/ionization-time of flight mass spectroscopy in the diagnosis of patients with mycotic diseases. Expert Rev. Mol. Diagn. 2019, 19, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.F.; Sánchez-Ortega, I.; Cuesta, I.; Arnan, M.; Patiño, B.; De Sevilla, A.F.; Gudiol, C.; Ayats, J.; Cuenca-Estrella, M. Serum Galactomannan-Based Early Detection of Invasive Aspergillosis in Hematology Patients Receiving Effective Antimold Prophylaxis. Clin. Infect. Dis. 2014, 59, 1696–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vena, A.; Bouza, E.; Álvarez-Uría, A.; Gayoso, J.; Martín-Rabadán, P.; Cajuste, F.; Guinea, J.; Castellá, J.G.; Alonso, R.; Muñoz, P. The misleading effect of serum galactomannan testing in high-risk haematology patients receiving prophylaxis with micafungin. Clin. Microbiol. Infect. 2017, 23, 1000.e1–1000.e4. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Executive Summary of the 2017 ESCMID-ECMM Guideline for the Diagnosis and Management of Aspergillus Disease. Clin. Microb. Infect. 2018, 24, e1–e38. [Google Scholar] [CrossRef] [Green Version]
- Reischies, F.; Prattes, J.; Prüller, F.; Eigl, S.; List, A.; Wölfler, A.; Buzina, W.; Zollner-Schwetz, I.; Valentin, T.; Rabensteiner, J.; et al. Prognostic potential of 1,3-beta-d-glucan levels in bronchoalveolar lavage fluid samples. J. Infect. 2016, 72, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Danese, S.; Gangneux, J.-P.; Bassetti, M.; Brüggemann, R.J.M.; Cornely, O.A.; Koehler, P.; Lass-Flörl, C.; Van De Veerdonk, F.L.; Chakrabarti, A.; Hoenigl, M. Diagnosing COVID-19-associated pulmonary aspergillosis. Lancet Microbe 2020, 1, e53–e55. [Google Scholar] [CrossRef]
- Bergeron, A.; Porcher, R.; Sulahian, A.; De Bazelaire, C.; Chagnon, K.; Raffoux, E.; Vekhoff, A.; Cornet, M.; Isnard, F.; Brethon, B.; et al. The strategy for the diagnosis of invasive pulmonary aspergillosis should depend on both the underlying condition and the leukocyte count of patients with hematologic malignancies. Blood 2012, 119, 1831–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calmettes, C.; Gabriel, F.; Blanchard, E.; Servant, V.; Bouchet, S.; Kabore, N.; Forcade, E.; Leroyer, C.; Bidet, A.; Latrabe, V.; et al. Breakthrough invasive aspergillosis and diagnostic accuracy of serum galactomannan enzyme immune assay during acute myeloid leukemia induction chemotherapy with posaconazole prophylaxis. Oncotarget 2018, 9, 26724–26736. [Google Scholar] [CrossRef]
- Reinwald, M.; Spiess, B.; Heinz, W.J.; Vehreschild, J.J.; Lass-Flörl, C.; Kiehl, M.; Schultheis, B.; Krause, S.W.; Wolf, H.-H.; Bertz, H.; et al. Diagnosing pulmonary aspergillosis in patients with hematological malignancies: A multicenter prospective evaluation of an Aspergillus PCR assay and a galactomannan ELISA in bronchoalveolar lavage samples. Eur. J. Haematol. 2012, 89, 120–127. [Google Scholar] [CrossRef]
- Salzer, H.J.F.; Lange, C.; Hoenigl, M. Aspergillus in airway material: Ignore or treat? Internist (Berl.) 2017, 58, 1150–1162. [Google Scholar] [CrossRef]
- Boch, T.; Spiess, B.; Cornely, O.A.; Vehreschild, J.J.; Rath, P.M.; Steinmann, J.; Heinz, W.J.; Hahn, J.; Krause, S.W.; Kiehl, M.G.; et al. Diagnosis of invasive fungal infections in haematological patients by combined use of galactomannan, 1,3-beta-D-glucan, Aspergillus PCR, multifungal DNA-microarray, and Aspergillus azole resistance PCRs in blood and bronchoalveolar lavage samples: Results of a prospective multicentre study. Clin. Microbiol. Infect. 2016, 22, 862–868. [Google Scholar]
- Hoenigl, M.; Prattes, J.; Spiess, B.; Wagner, J.; Prueller, F.; Raggam, R.B.; Posch, V.; Duettmann, W.; Wolfler, A.; Koidl, C.; et al. Performance of Galactomannan, Beta-D-Glucan, Aspergillus Lateral-Flow Device, Conventional Culture, and PCR Tests with Bronchoalveolar Lavage Fluid for Diagnosis of Invasive Pulmonary Aspergillosis. J. Clin. Microbiol. 2014, 52, 2039–2045. [Google Scholar] [CrossRef] [Green Version]
- Jenks, J.D.; Salzer, H.J.F.; Hoenigl, M. Improving the rates of Aspergillus detection: An update on current diagnostic strategies. Expert Rev. Anti-Infect. Ther. 2018, 17, 39–50. [Google Scholar] [CrossRef]
- Jenks, J.D.; Mehta, S.R.; Taplitz, R.; Aslam, S.; Reed, S.L.; Hoenigl, M. Point-of-care diagnosis of invasive aspergillosis in non-neutropenic patients: Aspergillus Galactomannan Lateral Flow Assay versus Aspergillus -specific Lateral Flow Device test in bronchoalveolar lavage. Mycoses 2019, 62, 230–236. [Google Scholar] [CrossRef]
- Mercier, T.; Dunbar, A.; De Kort, E.; Schauwvlieghe, A.; Reynders, M.; Guldentops, E.; Blijlevens, N.M.A.; Vonk, A.G.; Rijnders, B.; Verweij, P.E.; et al. Lateral flow assays for diagnosing invasive pulmonary aspergillosis in adult hematology patients: A comparative multicenter study. Med. Mycol. 2019, 58, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.D.; Prattes, J.; Frank, J.; Spiess, B.; Mehta, S.R.; Boch, T.; Buchheidt, D.; Hoenigl, M. Performance of the Bronchoalveolar Lavage Fluid Aspergillus Galactomannan Lateral Flow Assay with Cube Reader for Diagnosis of Invasive Pulmonary Aspergillosis: A Multicenter Cohort Study. Clin. Infect. Dis. 2020, ciaa1281. [Google Scholar] [CrossRef]
- Jenks, J.D.; Hoenigl, M. Point-of-care diagnostics for invasive aspergillosis: Nearing the finish line. Expert Rev. Mol. Diagn. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cruz, A.; Semiglia, M.A.; Guinea, J.; Martínez-Jiménez, M.D.C.; Escribano, P.; Kwon, M.; Rodríguez-Macías, G.; Chamorro-De-Vega, E.; Rodríguez-González, C.; Navarro, R.; et al. A retrospective cohort of invasive fusariosis in the era of antimould prophylaxis. Med. Mycol. 2019, 58, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Carlesse, F.; Cappellano, P.; Varon, A.G.; Seber, A.; Garnica, M.; Nouér, S.A.; Colombo, A.L. Earlier Diagnosis of Invasive Fusariosis with Aspergillus Serum Galactomannan Testing. PLoS ONE 2014, 9, e87784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.L.; Wingard, J.R.; Bretagne, S.; Löffler, J.; Patterson, T.F.; Slavin, M.; Barnes, R.A.; Pappas, P.G.; Donnelly, J.P. Aspergillus Polymerase Chain Reaction: Systematic Review of Evidence for Clinical Use in Comparison With Antigen Testing. Clin. Infect. Dis. 2015, 61, 1293–1303. [Google Scholar] [CrossRef] [Green Version]
- Arastehfar, A.; Carvalho, A.; Van De Veerdonk, F.L.; Jenks, J.D.; Koehler, P.; Krause, R.; Cornely, O.A.; Perlin, D.; Lass-Flörl, C.; Hoenigl, M. COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From Immunology to Treatment. J. Fungi 2020, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M. Invasive Fungal Disease complicating COVID-19: When it rains it pours. Clin. Infect. Dis. 2020, ciaa1342. [Google Scholar] [CrossRef]
- Egger, M.; Jenks, J.D.; Hoenigl, M.; Prattes, J. Blood Aspergillus PCR: The Good, the Bad, and the Ugly. J. Fungi 2020, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Baldin, C.; Soliman, S.S.M.; Jeon, H.H.; Alkhazraji, S.; Gebremariam, T.; Gu, Y.; Bruno, V.M.; Cornely, O.A.; Leather, H.L.; Sugrue, M.W.; et al. PCR-Based Approach Targeting Mucorales-Specific Gene Family for Diagnosis of Mucormycosis. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [Green Version]
- Rocchi, S.; Scherer, E.; Mengoli, C.; Alanio, A.; Botterel, F.; Bougnoux, M.E.; Bretagne, S.; Cogliati, M.; Cornu, M.; Dalle, F.; et al. Interlaboratory evaluation of Mucorales PCR assays for testing serum specimens: A study by the fungal PCR Initiative and the Modimucor study group. Med. Mycol. 2020, myaa036. [Google Scholar] [CrossRef]
- Springer, J.; Lackner, M.; Nachbaur, D.; Girschikofsky, M.; Risslegger, B.; Mutschlechner, W.; Fritz, J.; Heinz, W.J.; Einsele, H.; Ullmann, A.J.; et al. Prospective multicentre PCR-based Aspergillus DNA screening in high-risk patients with and without primary antifungal mould prophylaxis. Clin. Microbiol. Infect. 2016, 22, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Reinwald, M.; Hummel, M.; Kovalevskaya, E.; Spiess, B.; Heinz, W.J.; Vehreschild, J.J.; Schultheis, B.; Krause, S.W.; Claus, B.; Suedhoff, T.; et al. Therapy with antifungals decreases the diagnostic performance of PCR for diagnosing invasive aspergillosis in bronchoalveolar lavage samples of patients with haematological malignancies. J. Antimicrob. Chemother. 2012, 67, 2260–2267. [Google Scholar] [CrossRef]
- Boch, T.; Reinwald, M.; Spiess, B.; Liebregts, T.; Schellongowski, P.; Meybohm, P.; Rath, P.-M.; Steinmann, J.; Trinkmann, F.; Britsch, S.; et al. Detection of invasive pulmonary aspergillosis in critically ill patients by combined use of conventional culture, galactomannan, 1-3-beta-D-glucan and Aspergillus specific nested polymerase chain reaction in a prospective pilot study. J. Crit. Care 2018, 47, 198–203. [Google Scholar] [CrossRef]
- Rawlings, S.A.; Heldt, S.; Prattes, J.; Eigl, S.; Jenks, J.D.; Flick, H.; Rabensteiner, J.; Prüller, F.; Wölfler, A.; Neumeister, P.; et al. Using Interleukin 6 and 8 in Blood and Bronchoalveolar Lavage Fluid to Predict Survival in Hematological Malignancy Patients with Suspected Pulmonary Mold Infection. Front. Immunol. 2019, 10, 1798. [Google Scholar] [CrossRef] [Green Version]
- Jenks, J.D.; Rawlings, S.A.; Garcia-Vidal, C.; Koehler, P.; Mercier, T.; Prattes, J.; Lass-Flörl, C.; Martín-Gómez, M.T.; Buchheidt, D.; Pagano, L.; et al. Immune Parameters for Diagnosis and Treatment Monitoring in Invasive Mold Infection. J. Fungi 2019, 5, 116. [Google Scholar] [CrossRef] [Green Version]
- Heldt, S.; Eigl, S.; Prattes, J.; Flick, H.; Rabensteiner, J.; Prüller, F.; Niedrist, T.; Neumeister, P.; Wölfler, A.; Strohmaier, H.; et al. Levels of interleukin (IL)-6 and IL-8 are elevated in serum and bronchoalveolar lavage fluid of haematological patients with invasive pulmonary aspergillosis. Mycoses 2017, 60, 818–825. [Google Scholar] [CrossRef]
- Hoenigl, M.; Orasch, T.; Faserl, K.; Prattes, J.; Loeffler, J.; Springer, J.; Gsaller, F.; Reischies, F.; Duettmann, W.; Raggam, R.B.; et al. Triacetylfusarinine C: A urine biomarker for diagnosis of invasive aspergillosis. J. Infect. 2019, 78, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Orasch, T.; Prattes, J.; Faserl, K.; Eigl, S.; Düttmann, W.; Lindner, H.; Haas, H.; Hoenigl, M.; Orascha, T.; Prattesa, J. Bronchoalveolar lavage triacetylfusarinine C (TAFC) determination for diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies. J. Infect. 2017, 75, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Haas, H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014, 31, 1266–1276. [Google Scholar] [CrossRef] [Green Version]
- Koo, S.; Thomas, H.R.; Daniels, S.D.; Lynch, R.C.; Fortier, S.M.; Shea, M.M.; Rearden, P.; Comolli, J.C.; Baden, L.R.; Marty, F.M. A Breath Fungal Secondary Metabolite Signature to Diagnose Invasive Aspergillosis. Clin. Infect. Dis. 2014, 59, 1733–1740. [Google Scholar] [CrossRef] [Green Version]
- Vidal-García, M.; Redrado, S.; Domingo, M.P.; Marquina, P.; Colmenarejo, C.; Meis, J.F.; Rezusta, A.; Pardo, J.; Gálvez, E.M. Production of the Invasive Aspergillosis Biomarker Bis(methylthio)gliotoxin Within the Genus Aspergillus: In Vitro and in Vivo Metabolite Quantification and Genomic Analysis. Front. Microbiol. 2018, 9, 1246. [Google Scholar] [CrossRef]
- Normand, A.-C.; Becker, P.; Gabriel, F.; Cassagne, C.; Accoceberry, I.; Gari-Toussaint, M.; Hasseine, L.; De Geyter, D.; Pierard, D.; Surmont, I.; et al. Validation of a New Web Application for Identification of Fungi by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2017, 55, 2661–2670. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.R.; Barker, B.M.; Wiederhold, N.P. Large-Scale Evaluation of In Vitro Amphotericin B, Triazole, and Echinocandin Activity against Coccidioides Species from U.S. Institutions. Antimicrob. Agents Chemother. 2017, 61, e02634-16. [Google Scholar] [CrossRef] [Green Version]
- Brilhante, R.S.N.; Guedes, G.M.D.M.; Da Silva, M.L.Q.; Castelo-Branco, D.S.; Cordeiro, R.D.A.; Sidrim, J.J.C.; Rocha, M.F.G. A proposal for antifungal epidemiological cut-off values against Histoplasma capsulatum var. capsulatum based on the susceptibility of isolates from HIV-infected patients with disseminated histoplasmosis in Northeast Brazil. Int. J. Antimicrob. Agents 2018, 52, 272–277. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; De Hoog, G.S.; Pires, D.D.C.; Brilhante, R.S.N.; Sidrim, J.J.D.C.; Rocha, M.F.G.; Colombo, A.L.; De Camargo, Z.P. Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis. BMC Infect. Dis. 2014, 14, 219. [Google Scholar] [CrossRef] [Green Version]
- Borba-Santos, L.P.; Rodrigues, A.M.; Gagini, T.B.; Fernandes, G.F.; Castro, R.; De Camargo, Z.P.; Nucci, M.; Lopes-Bezerra, L.M.; Ishida, K.; Rozental, S. Susceptibility of Sporothrix brasiliensis isolates to amphotericin B, azoles, and terbinafine. Med. Mycol. 2014, 53, 178–188. [Google Scholar] [CrossRef]
- McHardy, I.H.; Dinh, B.-T.N.; Waldman, S.; Stewart, E.; Bays, D.; Pappagianis, D.; Thompson, G.R. Coccidioidomycosis Complement Fixation Titer Trends in the Age of Antifungals. J. Clin. Microbiol. 2018, 56, e01318-18. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.; Kaufman, L.; Jalbert, M. Diagnostic assessment of an enzyme-linked immunosorbent assay for human and canine blastomycosis. J. Clin. Microbiol. 1986, 23, 294–297. [Google Scholar] [CrossRef] [Green Version]
- Klein, B.S.; Kuritsky, J.N.; Chappell, W.A.; Kaufman, L.; Green, J.; Davies, S.F.; Williams, J.E.; Sarosi, G.A. Comparison of the Enzyme Immunoassay, Immunodiffusion, and Complement Fixation Tests in Detecting Antibody in Human Serum to the A Antigen ofBlastomyces dermatitidis1-3. Am. Rev. Respir. Dis. 1986, 133, 144–148. [Google Scholar] [CrossRef]
- Klein, B.S.; Vergeront, J.M.; Kaufman, L.; Bradsher, R.W.; Kumar, U.N.; Mathai, G.; Varkey, B.; Davis, J.P. Serological Tests for Blastomycosis: Assessments During a Large Point-Source Outbreak in Wisconsin. J. Infect. Dis. 1987, 155, 262–268. [Google Scholar] [CrossRef]
- Leimann, B.C.Q.; Pizzini, C.V.; Muniz, M.D.M.; Albuquerque, P.C.; Monteiro, P.C.F.; Reis, R.S.; Almeida-Paes, R.; Lazéra, M.D.S.; Wanke, B.; Pérez, M.A.; et al. Histoplasmosis in a Brazilian center: Clinical forms and laboratory tests. Rev. Iberoam. Micol. 2005, 22. [Google Scholar]
- Falci, D.R.; Hoffmann, E.R.; Paskulin, D.D.; Pasqualotto, A.C. Progressive disseminated histoplasmosis: A systematic review on the performance of non-culture-based diagnostic tests. Braz. J. Infect. Dis. 2017, 21, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Dantas, K.; De Freitas, R.S.; Da Silva, M.V.; Criado, P.R.; Luiz, O.D.C.; Vicentini, A.P. Comparison of diagnostic methods to detect Histoplasma capsulatum in serum and blood samples from AIDS patients. PLoS ONE 2018, 13, e0190408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caceres, D.H.; Knuth, M.; Derado, G.; Lindsley, M.D. Diagnosis of Progressive Disseminated Histoplasmosis in Advanced HIV: A Meta-Analysis of Assay Analytical Performance. J. Fungi 2019, 5, 76. [Google Scholar] [CrossRef] [Green Version]
- De Camargo, Z.P. Serology of paracoccidioidomycosis. Mycopathologia 2008, 165, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Perenha-Viana, M.C.Z.; Gonzales, I.A.A.; Brockelt, S.R.; Machado, L.N.C.; Svidzinski, T.I. Serological Diagnosis of Paracoccidioidomycosis through a Western Blot Technique. Clin. Vaccine Immunol. 2012, 19, 616–619. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.F.; Gegembauer, G.; Chang, M.R.; De Camargo, Z.P.; Nunes, T.F.; Ribeiro, S.M.; De Carvalho, L.R.; Maldonado, B.M.; Mendes, R.P.; Paniago, A.M.M. Comparison of clinico-epidemiological and radiological features in paracoccidioidomycosis patients regarding serological classification using antigens from Paracoccidioides brasiliensis complex and Paracoccidioides lutzii. PLoS Negl. Trop. Dis. 2020, 14, e0008485. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Cai, J.-P.; Wang, Y.-D.; Dong, H.; Hao, W.; Jiang, L.-X.; Long, J.; Chan, C.; Woo, P.C.Y.; Lau, S.K.P.; et al. Immunoassays Based on Penicillium marneffei Mp1p Derived from Pichia pastoris Expression System for Diagnosis of Penicilliosis. PLoS ONE 2011, 6, e28796. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Chen, D.-L.; Lee, C.; Chan, C.-M.; Chan, K.-M.; Vanittanakom, N.; Tsang, D.N.C.; Yuen, K.-Y. Detection of Specific Antibodies to an Antigenic Mannoprotein for Diagnosis of Penicillium marneffeiPenicilliosis. J. Clin. Microbiol. 1998, 36, 3028–3031. [Google Scholar] [CrossRef] [Green Version]
- Jenks, J.D.; Reed, S.L.; Hoenigl, M. Risk factors and outcomes of culture-proven acute Coccidioides spp. infection in San Diego, California, United States. Mycoses 2020, 63, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, M.J.; Bernal-Martínez, L.; Castelli, M.V.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M. Histoplasmosis and Paracoccidioidomycosis in a Non-Endemic Area: A Review of Cases and Diagnosis. J. Travel Med. 2011, 18, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Durkin, M.; Witt, J.; Lemonte, A.; Wheat, B.; Connolly, P. Antigen Assay with the Potential To Aid in Diagnosis of Blastomycosis. J. Clin. Microbiol. 2004, 42, 4873–4875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bariola, J.R.; Hage, C.A.; Durkin, M.; Bensadoun, E.; Gubbins, P.O.; Wheat, L.J.; Bradsher, R.W. Detection of Blastomyces dermatitidis antigen in patients with newly diagnosed blastomycosis. Diagn. Microbiol. Infect. Dis. 2011, 69, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Connolly, P.A.; Hage, C.A.; Bariola, J.R.; Bensadoun, E.; Rodgers, M.; Bradsher, R.W.; Wheat, L.J. Blastomyces dermatitidis Antigen Detection by Quantitative Enzyme Immunoassay. Clin. Vaccine Immunol. 2011, 19, 53–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, H.M.; Novicki, T.J. Blastomyces Antigen Detection for Diagnosis and Management of Blastomycosis. J. Clin. Microbiol. 2015, 53, 3660–3662. [Google Scholar] [CrossRef] [Green Version]
- Wheat, J.; Wheat, H.; Connolly, P.; Kleiman, M.; Supparatpinyo, K.; Nelson, K.; Bradsher, R.; Restrepo, A. Cross-reactivity in Histoplasma capsulatum variety capsulatum antigen assays of urine samples from patients with endemic mycoses. Clin. Infect. Dis. 1997, 24, 1169–1171. [Google Scholar] [CrossRef] [Green Version]
- Durkin, M.; Connolly, P.; Kuberski, T.; Myers, R.; Kubak, B.M.; Bruckner, D.; Pegues, D.; Wheat, L.J. Diagnosis of Coccidioidomycosis with Use of theCoccidioidesAntigen Enzyme Immunoassay. Clin. Infect. Dis. 2008, 47, e69–e73. [Google Scholar] [CrossRef] [Green Version]
- Libert, D.; Procop, G.W.; Ansari, M.Q. Histoplasma Urinary Antigen Testing Obviates the Need for Coincident Serum Antigen Testing. Am. J. Clin. Pathol. 2018, 149, 362–368. [Google Scholar] [CrossRef]
- Wheat, L.J.; Connolly-Stringfield, P.; Kohler, R.B.; Frame, P.T.; Gupta, M.R. Histoplasma capsulatum polysaccharide antigen detection in diagnosis and management of disseminated histoplasmosis in patients with acquired immunodeficiency syndrome. Am. J. Med. 1989, 87. [Google Scholar]
- Moreira, A.L.E.; Oliveira, M.A.P.; Silva, L.O.S.; Inácio, M.M.; Bailão, A.M.; Parente-Rocha, J.A.; Cruz-Leite, V.R.M.; Paccez, J.D.; Soares, C.M.D.A.; Weber, S.S.; et al. Immunoproteomic Approach of Extracellular Antigens From Paracoccidioides Species Reveals Exclusive B-Cell Epitopes. Front. Microbiol. 2020, 10, 2968. [Google Scholar] [CrossRef] [PubMed]
- Thu, N.; Chan, J.; Hien, H.; Tung, N.; Thanh, N.; Day, J.; Chau, N.; Thwaites, G.E.; Woo, P.; Yuen, K.; et al. Clinical Performance of the Mp1p Immunoassay for Rapid Diagnosis of Talaromyces marneffei Infection. In Proceedings of the Conference on Retroviruses and Opportunistic Infections (CROI), Seattle, WA, USA, 13–16 February 2017. [Google Scholar]
- Bialek, R.; Cirera, A.C.; Herrmann, T.; Aepinus, C.; Shearn-Bochsler, V.I.; Legendre, A.M. Nested PCR Assays for Detection of Blastomyces dermatitidis DNA in Paraffin-Embedded Canine Tissue. J. Clin. Microbiol. 2003, 41, 205–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidamonidze, K.; Peck, M.K.; Perez, M.; Baumgardner, D.; Smith, G.; Chaturvedi, V.; Chaturvedi, S. Real-Time PCR Assay for Identification of Blastomyces dermatitidis in Culture and in Tissue. J. Clin. Microbiol. 2012, 50, 1783–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babady, N.E.; Buckwalter, S.P.; Hall, L.; Le Febre, K.M.; Binnicker, M.J.; Wengenack, N.L. Detection of Blastomyces dermatitidis and Histoplasma capsulatum from Culture Isolates and Clinical Specimens by Use of Real-Time PCR. J. Clin. Microbiol. 2011, 49, 3204–3208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vucicevic, D.; Blair, J.E.; Binnicker, M.J.; McCullough, A.E.; Kusne, S.; Vikram, H.R.; Parish, J.M.; Wengenack, N.L. The Utility of Coccidioides Polymerase Chain Reaction Testing in the Clinical Setting. Mycopathologia 2010, 170, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R., III; Sharma, S.; Bays, D.J.; Pruitt, R.; Engelthaler, D.M.; Bowers, J.; Driebe, E.M.; Davis, M.; Libke, R.; Cohen, S.H.; et al. Coccidioidomycosis: Adenosine deaminase levels, serologic parameters, culture results, and polymerase chain reaction testing in pleural fluid. Chest 2013, 143, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Vasconcellos, I.C.D.S.; Lana, D.F.D.; Pasqualotto, A.C. The Role of Molecular Tests in the Diagnosis of Disseminated Histoplasmosis. J. Fungi 2019, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Silva, F.; De Figueiredo, S.M.; La Santrer, E.F.R.; Machado, A.S.; Fernandes, B.; Assunção, C.B.; Góes, A.M.; Caligiorne, R.B. Paracoccidioidomycosis: Detection of Paracoccidioides brasiliensis’ genome in biological samples by quantitative chain reaction polymerase (qPCR). Microb. Pathog. 2018, 121, 359–362. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Hou, B.; Wang, D.; Sun, T.; Li, F.; Wang, H.; Han, S. Rapid identification ofSporothrix schenckiiin biopsy tissue by PCR. J. Eur. Acad. Dermatol. Venereol. 2012, 27, 1491–1497. [Google Scholar] [CrossRef]
- Hu, S.; Chung, W.-H.; Hung, S.-I.; Ho, H.-C.; Wang, Z.-W.; Chen, C.-H.; Lu, S.-C.; Kuo, T.-T.; Hong, H.-S. Detection of Sporothrix schenckii in Clinical Samples by a Nested PCR Assay. J. Clin. Microbiol. 2003, 41, 1414–1418. [Google Scholar] [CrossRef] [Green Version]
- Bernardes-Engemann, A.R.; Barros, M.D.L.; Zeitune, T.; Russi, D.C.; Orofino-Costa, R.; Lopes-Bezerra, L.M. Validation of a serodiagnostic test for sporotrichosis: A follow-up study of patients related to the Rio de Janeiro zoonotic outbreak. Med. Mycol. 2014, 53, 28–33. [Google Scholar] [CrossRef]
- Hien, H.T.A.; Thanh, T.T.; Thu, N.T.M.; Nguyen, A.; Thanh, N.T.; Lan, N.P.H.; Simmons, C.; Shikuma, C.; Chau, N.V.V.; Thwaites, G.E.; et al. Development and evaluation of a real-time polymerase chain reaction assay for the rapid detection of Talaromyces marneffei MP1 gene in human plasma. Mycoses 2016, 59, 773–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girouard, G.; Lachance, C.; Pelletier, R. Observations on (1-3)-beta-D-glucan detection as a diagnostic tool in endemic mycosis caused by Histoplasma or Blastomyces. J. Med. Microbiol. 2007, 56, 1001–1002. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R., III; Bays, D.J.; Johnson, S.M.; Cohen, S.H.; Pappagianis, D.; Finkelman, M.A. Serum (1->3)-beta-D-glucan measurement in coccidioidomycosis. J. Clin. Microbiol. 2012, 50, 3060–3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenks, J.D.; Gangneux, J.-P.; Schwartz, I.S.; Alastruey-Izquierdo, A.; Lagrou, K.; Thompson III, G.R.; Lass-Flörl, C.; Hoenigl, M.; Investigators, E.C.o.M.M. C. Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus Statement. J. Fungi 2020, 6, 216. https://doi.org/10.3390/jof6040216
Jenks JD, Gangneux J-P, Schwartz IS, Alastruey-Izquierdo A, Lagrou K, Thompson III GR, Lass-Flörl C, Hoenigl M, Investigators ECoMMC. Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus Statement. Journal of Fungi. 2020; 6(4):216. https://doi.org/10.3390/jof6040216
Chicago/Turabian StyleJenks, Jeffrey D., Jean-Pierre Gangneux, Ilan S. Schwartz, Ana Alastruey-Izquierdo, Katrien Lagrou, George R. Thompson III, Cornelia Lass-Flörl, Martin Hoenigl, and European Confederation of Medical Mycology (ECMM) Council Investigators. 2020. "Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus Statement" Journal of Fungi 6, no. 4: 216. https://doi.org/10.3390/jof6040216
APA StyleJenks, J. D., Gangneux, J. -P., Schwartz, I. S., Alastruey-Izquierdo, A., Lagrou, K., Thompson III, G. R., Lass-Flörl, C., Hoenigl, M., & Investigators, E. C. o. M. M. C. (2020). Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus Statement. Journal of Fungi, 6(4), 216. https://doi.org/10.3390/jof6040216