Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Manganese Oxide
2.3. Fungal Strain
2.4. Fungal Cultivation in Presence of Manganese Oxides with Pre-Adsorbed Arsenic
2.5. Analytical Procedures
3. Results
3.1. Characterization of Synthesized Manganese Oxide
3.2. Immobilization of Arsenic in the Manganese Mineral Phase(s)
3.3. Manganese Bioextraction and Bioaccumulation by Fungus
3.4. Effects of Manganese Mineral Phase(s) on Arsenic Bioaccumulation
3.5. Formation of Biogenic Manganese Oxalate
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Gadd, G.M.; Rhee, Y.J.; Stephenson, K.; Wei, Z. Geomycology: Metals, actinides and biominerals. Environ. Microbiol. Rep. 2012, 4, 270–296. [Google Scholar] [CrossRef]
- Gadd, G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.L.; Chen, J.; Teng, H.H. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology 2016, 44, 319–322. [Google Scholar] [CrossRef]
- Watanabe, J.I.; Tani, Y.; Miyata, N.; Seyama, H.; Mitsunobu, S.; Naitou, H. Concurrent sorption of As (V) and Mn (II) during biogenic manganese oxide formation. Chem. Geol. 2012, 306, 123–128. [Google Scholar] [CrossRef]
- Kolenčík, M.; Urík, M.; Gardošová, K.; Littera, P.; Matúš, P. Biological and chemical leaching of arsenic and zinc from adamite. Chem. Listy 2011, 105, 961–965. [Google Scholar]
- Milová-Žiaková, B.; Urík, M.; Boriová, K.; Bujdoš, M.; Kolenčík, M.; Mikušová, P.; Takáčová, A.; Matúš, P. Fungal solubilization of manganese oxide and its significance for antimony mobility. Int. Biodeterior. Biodegrad. 2016, 114, 157–163. [Google Scholar] [CrossRef]
- Mayanna, S.; Peacock, C.L.; Schäffner, F.; Grawunder, A.; Merten, D.; Kothe, E.; Büchel, G. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chem. Geol. 2015, 402, 6–17. [Google Scholar] [CrossRef]
- Gupta, K.; Maity, A.; Ghosh, U.C. Manganese associated nanoparticles agglomerate of iron (III) oxide: Synthesis, characterization and arsenic (III) sorption behavior with mechanism. J. Hazard. Mater. 2010, 184, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, S.; Dureja, V.; Bhattacharyya, G.; Maity, S.; Bhattacharjee, S. Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res. 2002, 36, 625–632. [Google Scholar] [CrossRef]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Tebo, B.M.; Bargar, J.R.; Clement, B.G.; Dick, G.J.; Murray, K.J.; Parker, D.; Verity, R.; Webb, S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287–328. [Google Scholar] [CrossRef] [Green Version]
- Antao, S.M.; Cruickshank, L.A.; Hazrah, K.S. Structural trends and solid-solutions based on the crystal chemistry of two hausmannite (Mn3O4) samples from the kalahari manganese field. Minerals 2019, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Ergül, B.; Bektaş, N.; Öncel, M.S. The use of manganese oxide minerals for the removal arsenic and selenium anions from aqueous solutions. Energy Environ. Eng. 2014, 2, 103–112. [Google Scholar] [CrossRef]
- Wang, P.; Sun, G.; Jia, Y.; Meharg, A.A.; Zhu, Y. A review on completing arsenic biogeochemical cycle: Microbial volatilization of arsines in environment. J. Environ. Sci. 2014, 26, 371–381. [Google Scholar] [CrossRef]
- Smedley, P.; Kinniburgh, D. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P.; Welch, A.H.; Stollenwerk, K.G.; McLaughlin, M.J.; Bundschuh, J.; Panaullah, G. Arsenic in the Environment: Biology and Chemistry; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Žemberyová, M.; Shearman, A.; Šimonovičová, A.; Hagarová, I. Bio-accumulation of As(III) and As(V) species from water samples by two strains of Aspergillus niger using hydride generation atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2009, 89, 569–581. [Google Scholar] [CrossRef]
- Hagarová, I. Speciation of arsenic in waters by AAS techniques. Chem. Listy 2007, 101, 768–775. [Google Scholar]
- Hagarová, I.; Žemberyová, M.; Hrušovská, Z.; Ševc, J.; Klimek, J. Determination of arsenic in non-contaminated environmental samples by flow-injection hydrogen-generation AAS. Chem. Listy 2006, 100, 901–905. [Google Scholar]
- Hagarová, I.; Žemberyová, M. Determination of arsenic in biological and environmental samples by AAS techniques. Chem. Listy 2005, 99, 578–584. [Google Scholar]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van ’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Polák, F.; Urík, M.; Bujdoš, M.; Uhlík, P.; Matúš, P. Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains’ acidic and chelating exometabolites. J. Inorg. Biochem. 2018, 181, 162–168. [Google Scholar] [CrossRef]
- Osman, Y.; Gebreil, A.; Mowafy, A.M.; Anan, T.I.; Hamed, S.M. Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World J. Microbiol. Biotechnol. 2019, 35, 93. [Google Scholar] [CrossRef]
- Kolenčík, M.; Urík, M.; Štubňa, J. Heterotrophic leaching and its application in biohydrometallurgy. Chem. Listy 2014, 108, 1040–1045. [Google Scholar]
- Urík, M.; Polák, F.; Bujdoš, M.; Pifková, I.; Kořenková, L.; Littera, P.; Matúš, P. Aluminium leaching by heterotrophic microorganism Aspergillus niger: An acidic leaching? Arab. J. Sci. Eng. 2018, 43, 2369–2374. [Google Scholar] [CrossRef]
- Kolenčík, M.; Urík, M.; Čerñanský, S.; Molnárová, M.; Matúš, P. Leaching of zinc, cadmium, lead and copper from electronic scrap using organic acids and the Aspergillus niger strain. Fresenius Environ. Bull. 2013, 22, 3673–3679. [Google Scholar]
- Kolenčík, M.; Urík, M.; Bujdoš, M.; Gardošová, K.; Littera, P.; Puškelová, L.; Gregor, M.; Matúš, P. Leaching of Al, Fe, Sn, Co and Au from electronics wastes using organic acid and microscopic fibrous fungus Aspergillus niger. Chem. Listy 2013, 107, 182–185. [Google Scholar]
- Ferrier, J.; Yang, Y.; Csetenyi, L.; Gadd, G.M. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger. Environ. Microbiol. 2019, 21, 1821–1832. [Google Scholar] [CrossRef] [Green Version]
- Gadd, G.M.; Bahri-Esfahani, J.; Li, Q.; Rhee, Y.J.; Wei, Z.; Fomina, M.; Liang, X. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 2014, 28, 36–55. [Google Scholar] [CrossRef]
- Wei, Z.; Hillier, S.; Gadd, G.M. Biotransformation of manganese oxides by fungi: Solubilization and production of manganese oxalate biominerals. Environ. Microbiol. 2012, 14, 1744–1753. [Google Scholar] [CrossRef]
- Oggerin, M.; Tornos, F.; Rodríguez, N.; del Moral, C.; Sánchez-Román, M.; Amils, R. Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Environ. Microbiol. 2013, 15, 2228–2237. [Google Scholar] [CrossRef]
- Livne, A.; Mijowska, S.C.; Polishchuk, I.; Mashikoane, W.; Katsman, A.; Pokroy, B. A fungal mycelium templates the growth of aragonite needles. J. Mater. Chem. B 2019, 7, 5725–5731. [Google Scholar] [CrossRef] [PubMed]
Manganese Oxide | |
---|---|
crystal symmetry | tetragonal |
a (Å) | 5.763 (2) |
c (Å) | 9.459 (4) |
α = β = γ | 90° |
Manganese Oxalate Hydrate | |
---|---|
crystal symmetry | orthorhombic |
a (Å) | 10.524 (2) |
b (Å) | 6.614 (2) |
c (Å) | 9.769 (3) |
α = β = γ | 90° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farkas, B.; Kolenčík, M.; Hain, M.; Dobročka, E.; Kratošová, G.; Bujdoš, M.; Feng, H.; Deng, Y.; Yu, Q.; Illa, R.; et al. Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals. J. Fungi 2020, 6, 270. https://doi.org/10.3390/jof6040270
Farkas B, Kolenčík M, Hain M, Dobročka E, Kratošová G, Bujdoš M, Feng H, Deng Y, Yu Q, Illa R, et al. Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals. Journal of Fungi. 2020; 6(4):270. https://doi.org/10.3390/jof6040270
Chicago/Turabian StyleFarkas, Bence, Marek Kolenčík, Miroslav Hain, Edmund Dobročka, Gabriela Kratošová, Marek Bujdoš, Huan Feng, Yang Deng, Qian Yu, Ramakanth Illa, and et al. 2020. "Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals" Journal of Fungi 6, no. 4: 270. https://doi.org/10.3390/jof6040270
APA StyleFarkas, B., Kolenčík, M., Hain, M., Dobročka, E., Kratošová, G., Bujdoš, M., Feng, H., Deng, Y., Yu, Q., Illa, R., Sunil, B. R., Kim, H., Matúš, P., & Urík, M. (2020). Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals. Journal of Fungi, 6(4), 270. https://doi.org/10.3390/jof6040270