Coccidioidomycosis: Changing Concepts and Knowledge Gaps
Abstract
:1. Introduction
2. Defining the Ecology and Changing Epidemiology of Coccidioidomycosis
3. Issues with Diagnosis
4. Treatment: When and What
5. Antifungals on the Horizon
6. Vaccines
Funding
Conflicts of Interest
References
- Galgiani, J.N. Coccidioidomycosis: A regional disease of national importance. Rethinking approaches for control. Ann. Intern. Med. 1999, 130, 293–300. [Google Scholar] [CrossRef]
- McCotter, O.Z.; Benedict, K.; Engelthaler, D.M.; Komatsu, K.; Lucas, K.D.; Mohle-Boetani, J.C.; Oltean, H.; Vugia, D.; Chiller, T.M.; Cooksey, G.L.S.; et al. Update on the Epidemiology of coccidioidomycosis in the United States. Med. Mycol. 2019, 57, S30–S40. [Google Scholar] [CrossRef]
- Wilson, L.; Ting, J.; Lin, H.; Shah, R.; MacLean, M.; Peterson, M.W.; Stockamp, N.; Libke, R.; Brown, P. The Rise of Valley Fever: Prevalence and Cost Burden of Coccidioidomycosis Infection in California. Int. J. Environ. Res. Public Health 2019, 16, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laniado-Laborín, R.; Arathoon, E.G.; Canteros, C.; Muñiz-Salazar, R.; Rendon, A. Coccidioidomycosis in Latin America. Med. Mycol. 2019, 57, S46–S55. [Google Scholar] [CrossRef]
- Ashraf, N.; Kubat, R.C.; Poplin, V.; Adenis, A.; Denning, D.W.; Wright, L.; McCotter, O.; Schwartz, I.S.; Jackson, B.R.; Chiller, T.; et al. Re-drawing the Maps for Endemic Mycoses. Mycopathologia 2020, 185, 843–865. [Google Scholar]
- Drutz, J.D.; Catanzaro, A. Coccidioidomycosis: Part I. Am. Rev. Respir. Dis. 1978, 117, 559–585. [Google Scholar]
- Fisher, M.C.; Koenig, G.L.; White, T.J.; Taylor, J.W. Molecular and Phenotypic Description of Coccidioides posadasii sp. nov., Previously Recognized as the Non-California Population of Coccidioides immitis. Mycologia 2002, 94, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Engelthaler, D.M.; Roe, C.C.; Hepp, C.M.; Teixeira, M.; Driebe, E.M.; Schupp, J.M.; Gade, L.; Waddell, V.; Komatsu, K.; Arathoon, E.; et al. Local Population Structure and Patterns of Western Hemisphere Dispersal for Coccidioides spp. the Fungal Cause of Valley Fever. MBio 2016, 7, e00550. [Google Scholar] [CrossRef] [Green Version]
- Barker, B.M.; Litvintseva, A.P.; Riquelme, M.; Vargas-Gastélum, L. Coccidioides ecology and genomics. Med. Mycol. 2019, 57 (Suppl. S1), S21–S29. [Google Scholar] [CrossRef]
- Neafsey, D.E.; Barker, B.M.; Sharpton, T.J.; Stajich, J.E.; Park, D.J.; Whiston, E.; Hung, C.-Y.; Mcmahan, C.; White, J.; Sykes, S.; et al. Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res. 2010, 20, 938–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, B.M.; Rajan, S.; Teixeira, M.D.M.; Sewnarine, M.; Roe, C.; Engelthaler, D.M.; Galgiani, J.N. Coccidioidal Meningitis in New York Traced to Texas by Fungal Genomic Analysis. Clin. Infect. Dis. 2019, 69, 1060–1062. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.S.; Bultman, M.W.; Johnson, S.M.; Pappagianis, D.; Zaborsky, E. Coccidioidesniches and habitat parameters in the southwestern United States: A matter of scale. Ann. N. Y. Acad. Sci. 2007, 1111, 47–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmons, C.W. Coccidioidomycosis in Wild Rodents. A Method of Determining the Extent of Endemic Areas. Public Health Rep. (1896–1970) 1943, 58, 1–5. [Google Scholar] [CrossRef]
- Taylor, J.W.; Barker, B.M. The endozoan, small-mammal reservoir hypothesis and the life cycle of Coccidioides species. Med. Mycol. 2019, 57, S16–S20. [Google Scholar] [CrossRef]
- Sharpton, T.J.; Stajich, J.E.; Rounsley, S.D.; Gardner, M.J.; Wortman, J.R.; Jordar, V.S.; Maiti, R.; Kodira, C.D.; Neafsey, D.E.; Zeng, Q.; et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009, 19, 1722–1731. [Google Scholar] [CrossRef] [Green Version]
- Kollath, D.R.; Teixeira, M.M.; Funke, A.; Miller, K.J.; Barker, B.M. Investigating the Role of Animal Burrows on the Ecology and Distribution of Coccidioides spp. in Arizona Soils. Mycopathol. 2019, 185, 1–15. [Google Scholar] [CrossRef]
- Baptista-Rosas, R.C.; Catalán-Dibene, J.; Romero-Olivares, A.L.; Hinojosa, A.; Cavazos, T.; Riquelme, M. Molecular detection of Coccidioides spp. from environmental samples in Baja California: Linking Valley Fever to soil and climate conditions. Fungal Ecol. 2012, 5, 177–190. [Google Scholar] [CrossRef]
- Catalán-Dibene, J.; Johnson, S.M.; Eaton, R.; Romero-Olivares, A.L.; Baptista-Rosas, R.C.; Pappagianis, D.; Riquelme, M. Detection of coccidioidal antibodies in serum of a small rodent community in Baja California, Mexico. Fungal Biol. 2014, 118, 330–339. [Google Scholar] [CrossRef]
- Hamm, P.S.; Taylor, J.W.; Cook, J.A.; Natvig, D.O. Decades-old studies of fungi associated with mammalian lungs and modern DNA sequencing approaches help define the nature of the lung mycobiome. PLoS Pathog. 2020, 16, e1008684. [Google Scholar] [CrossRef]
- Shubitz, L.; Peng, T.; Perrill, R.; Simons, J.; Orsborn, K.; Galgiani, J.N. Protection of Mice against Coccidioides immitis Intranasal Infection by Vaccination with Recombinant Antigen 2/PRA. Infect. Immun. 2002, 70, 3287–3289. [Google Scholar] [CrossRef] [Green Version]
- Larsen, R.; Jacobson, J.; Morris, A.H.; Benowitz, B. Acute respiratory failure caused by primary pulmonary coccidioidomycosis. Two case reports and a review of the literature. Am. Rev. Respir. Dis. 1985, 131, 797–799. [Google Scholar] [PubMed]
- Werner, S.B.; Pappagianis, D. Coccidioidomycosis in Northern California. An outbreak among archeology students near Red Bluff. Calif. Med. 1973, 119, 16–20. [Google Scholar] [PubMed]
- Leake, J.A.D.; Mosley, D.G.; England, B.; Graham, J.V.; Plikaytis, B.D.; Ampel, N.M.; Perkins, B.A.; Hajjeh, R.A. Risk Factors for Acute Symptomatic Coccidioidomycosis among Elderly Persons in Arizona, 1996–1997. J. Infect. Dis. 2000, 181, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Kollath, D.R.; Miller, K.J.; Barker, B.M. The mysterious desert dwellers: Coccidioides immitis and Coccidioides posadasii, causative fungal agents of coccidioidomycosis. Virulence 2019, 10, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Gade, L.; McCotter, O.Z.; Bowers, J.R.; Waddell, V.; Brady, S.; Carvajal, J.; Sunenshine, R.; Komatsu, K.K.; Engelthaler, D.M.; Chiller, T.; et al. The detection of Coccidioides from ambient air in Phoenix, Arizona: Evidence of uneven distribution and seasonality. Med. Mycol. 2019, 58, 552–559. [Google Scholar] [CrossRef]
- Pappagianis, D.; Einstein, H. Tempest from Tehachapi takes toll or Coccidioides conveyed aloft and afar. West. J. Med. 1978, 129, 527–530. [Google Scholar]
- Johnson, S.M.; Carlson, E.L.; Fisher, F.S.; Pappagianis, D. Demonstration of Coccidioides immitis and Coccidioides posadasii DNA in soil samples collected from Dinosaur National Monument, Utah. Med. Mycol. 2014, 52, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Litvintseva, A.P.; Marsden-Haug, N.; Hurst, S.; Hill, H.; Gade, L.; Driebe, E.M.; Ralston, C.; Roe, C.; Barker, B.M.; Goldoft, M.; et al. Valley Fever: Finding New Places for an Old Disease: Coccidioides immitis Found in Washington State Soil Associated with Recent Human Infection. Clin. Infect. Dis. 2014, 60, e1–e3. [Google Scholar] [CrossRef] [Green Version]
- Oltean, H.N.; Springer, M.; Bowers, J.R.; Barnes, R.; Reid, G.; Valentine, M.; Engelthaler, D.M.; Toda, M.; McCotter, O.Z. Suspected Locally Acquired Coccidioidomycosis in Human, Spokane, Washington, USA. Emerg. Infect. Dis. 2020, 26, 606–609. [Google Scholar] [CrossRef]
- Gorris, M.E.; Treseder, K.K.; Zender, C.; Randerson, J.T. Expansion of Coccidioidomycosis Endemic Regions in the United States in Response to Climate Change. GeoHealth 2019, 3, 308–327. [Google Scholar] [CrossRef] [Green Version]
- Mirbod-Donovan, F.; Zangeneh, T.T.; Malo, J.; Galgiani, J.N. Top Questions in the Diagnosis and Treatment of Coccidioidomycosis. Open Forum Infect. Dis. 2017, 4, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, J.E.; Mendoza, N.; Force, S.; Chang, Y.-H.H.; Grys, T.E. Clinical Specificity of the Enzyme Immunoassay Test for Coccidioidomycosis Varies According to the Reason for Its Performance. Clin. Vaccine Immunol. 2012, 20, 95–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, J.; Kollampare, S.; Bode, B.; Lisse, J.R.; Hoover, S.E.; Sudano, D.; Ampel, N.M. Management of asymptomatic coccidioidomycosis in patients with rheumatic diseases. Rheumatol. Int. 2019, 39, 1257–1262. [Google Scholar] [CrossRef]
- McHardy, I.H.; Dinh, B.-T.N.; Waldman, S.; Stewart, E.; Bays, D.; Pappagianis, D.; Thompson, G.R. Coccidioidomycosis Complement Fixation Titer Trends in the Age of Antifungals. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [Green Version]
- Donovan, F.M.; Wightman, P.; Zong, Y.; Gabe, L.; Majeed, A.; Ynosencio, T.; Bedrick, E.J.; Galgiani, J.N. Delays in Coccidioidomycosis Diagnosis and Associated Healthcare Utilization, Tucson, Arizona, USA. Emerg. Infect. Dis. 2019, 25, 1745–1747. [Google Scholar] [CrossRef] [Green Version]
- Maddox, S.; Doherty, B.; Pelfrey, J.; Thompson, G.; Bauman, S. Rapid detection of anti-coccidioides antibodies using the sona™ Coccidioides Ab lateral flow assay. In Proceedings of the 7th International Conference on Coccidioidomycosis, Stanford, CA, USA, 10–13 August 2017. [Google Scholar]
- Donovan, F.M.; Ramadan, F.A.; Khan, S.A.; Bhaskara, A.; Lainhart, W.D.; Narang, A.T.; Mosier, J.M.; Ellingson, K.D.; Bedrick, E.J.; Saubolle, M.A.; et al. Comparison of a Novel Rapid Lateral Flow Assay to Enzyme Immunoassay Results for Early Diagnosis of Coccidioidomycosis. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Thompson, G.R., 3rd; Bays, D.J.; Johnson, S.M.; Cohen, S.H.; Pappagianis, D.; Finkelman, M.A. Serum (1->3)-beta-D-glucan measurement in coccidioidomycosis. J. Clin. Microbiol. 2012, 50, 3060–3062. [Google Scholar] [CrossRef] [Green Version]
- Saubolle, M.A.; Wojack, B.R.; Wertheimer, A.M.; Fuayagem, A.Z.; Young, S.; Koeneman, B.A. Multicenter Clinical Validation of a Cartridge-Based Real-Time PCR System for Detection of Coccidioides spp. in Lower Respiratory Specimens. J. Clin. Microbiol. 2017, 56, e01277-17. [Google Scholar] [CrossRef] [Green Version]
- Dizon, D.; Mitchell, M.; Dizon, B.; Libke, R.; Peterson, M.W. The utility of real-time polymerase chain reaction in detecting Coccidioides immitis among clinical specimens in the Central California San Joaquin Valley. Med. Mycol. 2019, 57, 688–693. [Google Scholar] [CrossRef]
- Johnson, R.; Kernerman, S.M.; Sawtelle, B.G.; Rastogi, S.C.; Nielsen, H.S.; Ampel, N.M. A Reformulated Spherule-Derived Coccidioidin (Spherusol) to Detect Delayed-Type Hypersensitivity in Coccidioidomycosis. Mycopathologia 2012, 174, 353–358. [Google Scholar] [CrossRef]
- Wheeler, C.; Lucas, K.D.; Derado, G.; McCotter, O.; Tharratt, R.S.; Chiller, T.; Mohle-Boetani, J.C. Risk Stratification with Coccidioidal Skin Test to Prevent Valley Fever Among Inmates, California, 2015. J. Correct. Health Care 2018, 24, 342–351. [Google Scholar] [CrossRef]
- Ampel, N.M.; Robey, I.; Nguyen, C.T. An Analysis of Skin Test Responses to Spherulin-Based Coccidioidin (Spherusol®) Among a Group of Subjects with Various Forms of Active Coccidioidomycosis. Mycopathologia 2019, 184, 533–538. [Google Scholar] [CrossRef]
- Mafi, N.; Murphy, C.B.; Girardo, M.E.; Blair, J.E. Coccidioides (spherulin) skin testing in patients with pulmonary coccidioidomycosis in an endemic regiondagger. Med. Mycol. 2020, 58, 626–631. [Google Scholar] [CrossRef]
- Benedict, K.; McCotter, O.Z.; Jackson, B.R. Coccidioidomycosis Skin Testing in a Commercially Insured Population, United States, 2014–2017. Emerg. Infect. Dis. 2020, 26, 619–621. [Google Scholar] [CrossRef] [Green Version]
- Ampel, N.M.; Hector, R.F.; Lindan, C.P.; Rutherford, G.W. An Archived Lot of Coccidioidin Induces Specific Coccidioidal Delayed-type Hypersensitivity and Correlates with in vitro Assays of Coccidioidal Cellular Immune Response. Mycopathologia 2006, 161, 67–72. [Google Scholar] [CrossRef]
- Nesbit, L.; Johnson, S.M.; Pappagianis, D.; Ampel, N.M. Polyfunctional T Lymphocytes Are in the Peripheral Blood of Donors Naturally Immune to Coccidioidomycosis and Are Not Induced by Dendritic Cells. Infect. Immun. 2010, 78, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Nesbit, L.A.; Knox, K.S.; Nguyen, C.T.; Roesch, J.; Wheat, L.J.; Johnson, S.M.; Pappagianis, D.; Chavez, S.; Ampel, N.M. Immunological Characterization of Bronchoalveolar Lavage Fluid in Patients with Acute Pulmonary Coccidioidomycosis. J. Infect. Dis. 2013, 208, 857–863. [Google Scholar] [CrossRef] [Green Version]
- Ampel, N.M.; Nesbit, L.A.; Nguyen, C.T.; Chavez, S.; Knox, K.S.; Johnson, S.M.; Pappagianis, D. Cytokine Profiles from Antigen-Stimulated Whole-Blood Samples among Patients with Pulmonary or Nonmeningeal Disseminated Coccidioidomycosis. Clin. Vaccine Immunol. 2015, 22, 917–922. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Zong, Y.; Johnson, M.D.; Menghani, S.V.; Lewis, M.L.; Galgiani, J.N. A quantitative enzyme-linked immunoassay (ELISA) to approximate complement-fixing antibody titers in serum from patients with coccidioidomycosis. Diagn. Microbiol. Infect. Dis. 2021, 99, 115198. [Google Scholar] [CrossRef]
- Zimmermann, C.R.; Johnson, S.M.; Martens, G.W.; White, A.G.; Pappagianis, D. Cloning and expression of the complement fixation antigen-chitinase of Coccidioides immitis. Infect. Immun. 1996, 64, 4967–4975. [Google Scholar] [CrossRef] [Green Version]
- Mead, H.L.; Roe, C.C.; Keppler, E.A.H.; Van Dyke, M.C.C.; Laux, K.L.; Funke, A.; Miller, K.J.; Bean, H.D.; Sahl, J.W.; Barker, B.M. Defining Critical Genes During Spherule Remodeling and Endospore Development in the Fungal Pathogen, Coccidioides posadasii. Front. Genet. 2020, 11, 483. [Google Scholar] [CrossRef] [PubMed]
- Bean, H. Identifying volatile breathmarkers for a Valley fever breath test. In Proceedings of the Coccidioidomycosis Study Group Annual Meeting, Davis, CA, USA, 5 April 2019. [Google Scholar]
- Jasbi, P.; Mitchell, N.M.; Shi, X.; Grys, T.E.; Wei, Y.; Liu, L.; Lake, D.F.; Gu, H. Coccidioidomycosis Detection Using Targeted Plasma and Urine Metabolic Profiling. J. Proteome Res. 2019, 18, 2791–2802. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.E.; Beard, R.R. Varieties of Coccidioidal Infection in Relation to the Epidemiology and Control of the Diseases. Am. J. Public Health Nations Health 1946, 36, 1394–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bays, D.J.; Thompson, G.R.; Reef, S.; Snyder, L.; Freifeld, A.J.; Huppert, M.; Salkin, D.; Wilson, M.D.; Galgiani, J.N. Natural History of Disseminated Coccidioidomycosis: Examination of the Veterans Affairs–Armed Forces Database. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ampel, N.M.; Giblin, A.; Mourani, J.P.; Galgiani, J.N. Factors and Outcomes Associated with the Decision to Treat Primary Pulmonary Coccidioidomycosis. Clin. Infect. Dis. 2009, 48, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.E.; Chang, Y.-H.H.; Cheng, M.-R.; Vaszar, L.T.; Vikram, H.R.; Orenstein, R.; Kusne, S.; Ho, S.; Seville, M.T.; Parish, J.M. Characteristics of Patients with Mild to Moderate Primary Pulmonary Coccidioidomycosis. Emerg. Infect. Dis. 2014, 20, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Graybill, J.R.; Stevens, D.A.; Galgiani, J.N.; Dismukes, W.E.; Cloud, G.A. Itraconazole treatment of coccidioidomycosis: NIAID Mycoses Study Group. Am. J. Med. 1990, 89, 282–290. [Google Scholar] [CrossRef]
- Catanzaro, A.; Galgiani, J.N.; Levine, B.E.; Sharkey-Mathis, P.K.; Fierer, J.; Stevens, D.A.; Chapman, S.W.; Cloud, G. Fluconazole in the treatment of chronic pulmonary and nonmeningeal disseminated coccidioidomycosis: NIAID Mycoses Study Group. Am. J. Med. 1995, 98, 249–256. [Google Scholar] [CrossRef]
- Galgiani, J.N.; Catanzaro, A.; Cloud, G.A.; Johnson, R.H.; Williams, P.L.; Mirels, L.F.; Nassar, F.; Lutz, J.E.; Stevens, D.A.; Sharkey, P.K.; et al. Comparison of Oral Fluconazole and Itraconazole for Progressive, Nonmeningeal Coccidioidomycosis. Ann. Intern. Med. 2000, 133, 676–686. [Google Scholar] [CrossRef]
- Kim, M.M.; Vikram, H.R.; Kusne, S.; Seville, M.T.; Blair, J. Treatment of Refractory Coccidioidomycosis With Voriconazole or Posaconazole. Clin. Infect. Dis. 2011, 53, 1060–1066. [Google Scholar] [CrossRef] [Green Version]
- Ramani, R.; Chaturvedi, V. Antifungal susceptibility profiles of Coccidioides immitis and Coccidioides posadasii from endemic and non-endemic areas. Mycopathologia 2007, 163, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R.; Barker, B.M.; Wiederhold, N.P. Large-Scale Evaluation of In Vitro Amphotericin B, Triazole, and Echinocandin Activity against Coccidioides Species from U.S. Institutions. Antimicrob. Agents Chemother. 2017, 61, e02634-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, G.R., 3rd; Lewis, J.S., 2nd; Nix, D.E.; Patterson, T.F. Current Concepts and Future Directions in the Pharmacology and Treatment of Coccidioidomycosis. Med. Mycol. 2019, 57 (Suppl. 1), S76–S84. [Google Scholar] [CrossRef]
- Strushkevich, N.; Usanov, S.A.; Park, H.-W. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles. J. Mol. Biol. 2010, 397, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Andes, D.R.; Azie, N.; Yang, H.; Harrington, R.; Kelley, C.; Tan, R.-D.; Wu, E.Q.; Franks, B.; Kristy, R.; Lee, E.; et al. Drug-Drug Interaction Associated with Mold-Active Triazoles among Hospitalized Patients. Antimicrob. Agents Chemother. 2016, 60, 3398–3406. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.R.; Nguyen, M.-V.H.; Donnelley, M.; Iii, G.R.T. Tolerability of long-term fluconazole therapy. J. Antimicrob. Chemother. 2018, 74, 768–771. [Google Scholar] [CrossRef]
- Bercovitch, R.S.; Catanzaro, A.; Schwartz, B.S.; Pappagianis, D.; Watts, D.; Ampel, N.M. Coccidioidomycosis During Pregnancy: A Review and Recommendations for Management. Clin. Infect. Dis. 2011, 53, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.R., 3rd; Bays, D.; Cohen, S.H.; Pappagianis, D. Fluoride excess in coccidioidomycosis patients receiving long-term antifungal therapy: An assessment of currently available triazoles. Antimicrob. Agents Chemother. 2012, 56, 563–564. [Google Scholar] [CrossRef] [Green Version]
- Hedrick, J.; Droz, N. Voriconazole-Induced Periostitis. N. Engl. J. Med. 2019, 381, e30. [Google Scholar] [CrossRef]
- Boughton, C.; Taylor, D.; Ghataore, L.; Taylor, N.; Whitelaw, B.C. Mineralocorticoid hypertension and hypokalaemia induced by posaconazole. Endocrinol. Diabetes Metab. Case Rep. 2018, 2018. [Google Scholar] [CrossRef]
- Thompson, G.R., 3rd; Beck, K.R.; Patt, M.; Kratschmar, D.V.; Odermatt, A. Posaconazole-Induced Hypertension Due to Inhibition of 11beta-Hydroxylase and 11beta-Hydroxysteroid Dehydrogenase 2. J. Endocr. Soc. 2019, 3, 1361–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauseo, A.M.; Coler-Reilly, A.; Larson, L.; Spec, A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect. Dis. 2020, 7, ofaa016. [Google Scholar] [CrossRef] [Green Version]
- Hector, R.F.; Zimmer, B.L.; Pappagianis, D. Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob. Agents Chemother. 1990, 34, 587–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.K.; Rinaldi, M.G. In Vitro Antifungal Activity of Nikkomycin Z in Combination with Fluconazole or Itraconazole. Antimicrob. Agents Chemother. 1999, 43, 1401–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nix, D.E.; Swezey, R.R.; Hector, R.; Galgiani, J.N. Pharmacokinetics of Nikkomycin Z after Single Rising Oral Doses. Antimicrob. Agents Chemother. 2009, 53, 2517–2521. [Google Scholar] [CrossRef] [Green Version]
- Shubitz, L.F.; Roy, M.E.; Nix, D.E.; Galgiani, J.N. Efficacy of Nikkomycin Z for respiratory coccidioidomycosis in naturally infected dogs. Med. Mycol. 2013, 51, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Shubitz, L.F.; Trinh, H.T.; Perrill, R.H.; Thompson, C.M.; Hanan, N.J.; Galgiani, J.N.; Nix, D.E. Modeling Nikkomycin Z Dosing and Pharmacology in Murine Pulmonary Coccidioidomycosis Preparatory to Phase 2 Clinical Trials. J. Infect. Dis. 2014, 209, 1949–1954. [Google Scholar] [CrossRef] [Green Version]
- Wiederhold, N.P.; Patterson, H.P.; Tran, B.H.; Yates, C.M.; Schotzinger, R.J.; Garvey, E.P. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against Candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus arrhizus. J. Antimicrob. Chemother. 2017, 73, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Wiederhold, N.P.; Shubitz, L.F.; Najvar, L.K.; Jaramillo, R.; Olivo, M.; Catano, G.; Trinh, H.T.; Yates, C.M.; Schotzinger, R.J.; Garvey, E.P.; et al. The Novel Fungal Cyp51 Inhibitor VT-1598 Is Efficacious in Experimental Models of Central Nervous System Coccidioidomycosis Caused by Coccidioides posadasii and Coccidioides immitis. Antimicrob. Agents Chemother. 2018, 62, 02258–17. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.D.; Sibley, G.E.M.; Beckmann, N.; Dobb, K.S.; Slater, M.J.; McEntee, L.; Du Pré, S.; Livermore, J.; Bromley, M.J.; Wiederhold, N.P.; et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc. Natl. Acad. Sci. USA 2016, 113, 12809–12814. [Google Scholar] [CrossRef] [Green Version]
- Wiederhold, N.P. Review of the Novel Investigational Antifungal Olorofim. J. Fungi 2020, 6, 122. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, N.P.; Najvar, L.K.; Jaramillo, R.; Olivo, M.; Birch, M.; Law, D.; Rex, J.H.; Catano, G.; Patterson, T.F. The Orotomide Olorofim Is Efficacious in an Experimental Model of Central Nervous System Coccidioidomycosis. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkland, T.N. The Quest for a Vaccine Against Coccidioidomycosis: A Neglected Disease of the Americas. J. Fungi 2016, 2, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnato, A.E.; Sanders, G.D.; Owens, D.K. Cost-effectiveness of a potential vaccine for Coccidioides immitis. Emerg. Infect. Dis. 2001, 7, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Pappagianis, D. Evaluation of the protective efficacy of the killed Coccidioides immitis spherule vaccine in human: The Valley Fever Vaccine Study Group. Am. Rev. Respir. Dis. 1993, 148, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.B.R.; Taborda, C.P.; Nosanchuk, J.D. Advances in Fungal Peptide Vaccines. J. Fungi 2020, 6, 119. [Google Scholar] [CrossRef]
- Narra, H.P.; Shubitz, L.F.; Mandel, M.A.; Trinh, H.T.; Griffin, K.; Buntzman, A.S.; Frelinger, J.A.; Galgiani, J.N.; Orbach, M.J. A Coccidioides posadasii CPS1 Deletion Mutant Is Avirulent and Protects Mice from Lethal Infection. Infect. Immun. 2016, 84, 3007–3016. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.-Y.; Castro-Lopez, N.; Cole, G.T. Vaccinated C57BL/6 Mice Develop Protective and Memory T Cell Responses to Coccidioides posadasii Infection in the Absence of Interleukin-10. Infect. Immun. 2013, 82, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.Y.; Zhang, H.; Castro-Lopez, N.; Ostroff, G.R.; Khoshlenar, P.; Abraham, A.; Cole, G.T.; Negron, A.; Forsthuber, T.; Peng, T.; et al. Glucan-Chitin Particles Enhance Th17 Response and Improve Protective Efficacy of a Multivalent Antigen (rCpa1) against PulmonaryCoccidioides posadasiiInfection. Infect. Immun. 2018, 86, 00070-18. [Google Scholar] [CrossRef] [Green Version]
- Campuzano, A.; Zhang, H.; Ostroff, G.; Dias, L.S.; Wüthrich, M.; Klein, B.S.; Yu, J.; Lara, H.H.; Lopez-Ribot, J.L.; Hung, C.Y. CARD9-Associated Dectin-1 and Dectin-2 Are Required for Protective Immunity of a Multivalent Vaccine against Coccidioides posadasii Infection. J. Immunol. 2020, 204, 3296–3306. [Google Scholar] [CrossRef]
Parameter | Fluconazole (n = 581) | Itraconazole (n = 486) | Voriconazole (n = 499) | Posaconazole (n = 377) |
---|---|---|---|---|
MIC50 | 8 | 0.250 | 0.125 | 0.125 |
MIC90 | 16 | 0.500 | 0.250 | 0.250 |
GM MIC | 7.71 | 0.245 | 0.107 | 0.141 |
Agent | Mechanism of Action | Half-Life | Route of Delivery |
---|---|---|---|
Nikkomycin Z | competitive inhibition of chitin synthase | 1–2 h | IV and oral |
VT-1598 | inhibition of 14-α-demethylase (CYP51) | 24 h | oral |
Olorofim | reversible inhibition pyrimidine biosynthesis | 20–30 h | IV (with vehicle) and oral |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampel, N.M. Coccidioidomycosis: Changing Concepts and Knowledge Gaps. J. Fungi 2020, 6, 354. https://doi.org/10.3390/jof6040354
Ampel NM. Coccidioidomycosis: Changing Concepts and Knowledge Gaps. Journal of Fungi. 2020; 6(4):354. https://doi.org/10.3390/jof6040354
Chicago/Turabian StyleAmpel, Neil M. 2020. "Coccidioidomycosis: Changing Concepts and Knowledge Gaps" Journal of Fungi 6, no. 4: 354. https://doi.org/10.3390/jof6040354
APA StyleAmpel, N. M. (2020). Coccidioidomycosis: Changing Concepts and Knowledge Gaps. Journal of Fungi, 6(4), 354. https://doi.org/10.3390/jof6040354