

Figure S1. Chlorophyll content in olive leaves of plants treated with *Trichoderma* strains (M10, KV906, GV41, TH1, T22) or secondary metabolites (6PP, HA). Plants treated with water (CTRL) were used as controls. Different letters indicate statistically significant differences for p < 0.05, as analyzed by oneway ANOVA.

J. Fungi 2020, 6, 369 2 of 4

Modified from Alagna et al. J. Biol. Chem. 2016;291:5542-5554

Figure S2. Schematic and simplified representation of olive secoiridoid pathway. Iridoid synthase (IS) coding for a central enzyme catalyzing the production of a central oleuropein intermediate; glucosyl transferase 1 and 2 (GT1 and GT2, respectively), genes coding for enzymes acting downstream loganin production; hydroxylase (HI) which catalyses the final reaction of ligsostride conversion to oleuropein.

J. Fungi 2020, 6, 369 3 of 4

Table S1. Comparison of metabolites in different olive leaf metabolomes whose accumulation increased (UP) or decreased (DOWN) compared to control (CTRL) after 5 field applications with *Trichoderma* strains or metabolites. Only statistically significant compounds (p<0,05) that accumulated in the metabolome of treated plants vs. control (fold change \geq 2.0) have been reported. The phenolic compounds identified by metabolomic profiling have been reported as indicated in **Table 1** (in parenthesis), while unmatched compounds are indicated using the molecular formula proposed by Mass Profiler software (Agilent Technologies) including their mass and retention time (in parenthesis).

Both in 6PP and HA (tot 4)	Both in M10 and HA (tot 0)	Both in M10 and 6PP (tot 1)	Both in 6PP, M10 and HA (tot 3)	Only in 6PP (tot 7)	Only in M10 (tot 3)	Only in HA (tot 2)
Luteolin glucoside (448/15.2)	-	C ₁₅ H ₁₂ O ₆ (288/20.0)	Hydroxytyrosol- hexose (1)	Luteolin (20)	Chrysoeriol (21)	Luteolin rutinoside (594/15.8)
Oleuropein is. a (15)			Oleuropein is. b (17)	Luteolin rutinoside (9)	Dihydroquercetin (304/13.7)	C ₃₁ H ₂₈ N ₃ O ₈ (570/18.7)
Oleuropein diglucoside (14)			Secologanoside (3)	Rutin (8)	$C_{17}H_{30}N_7$ (332/24.6)	
C ₁₈ H ₁₆ N ₇ O ₃ (378/19.0)				C ₂₁ H ₃₂ O ₁₃ (490/9.5)		
				C ₂₂ H ₃₂ O ₁₄ (520/10.6)		
				C ₂₅ H ₃₄ O ₁₂ (526/19.9)		
				C ₂₁ H ₂₀ O ₁₂ (464/15.0)		
		_				
In common to 6PP & HA (tot 1)	In common to M10 & HA (tot 0)	In common to M10 & 6PP (tot 1)	In common to all (tot 0)	Only in 6PP (tot 0)	Only in M10 (tot 0)	Only in HA (tot 0)
$C_{29}H_{28}O_{14}$ (600/20.5)	-	C ₂₇ H ₄₂ O ₁₄ (590/17.1)	-	-	-	-

J. Fungi **2020**, 6, 369

 $\label{eq:Table S2.} \textbf{List of primers used in this study}.$

Primer sequence (5'-3')	Gene	Abbreviation	
ATCCAAACGCCAAAAATCAG	Inidaid synthaga	IS	
ATCCCACCATCTCCAAGTCA	Iridoid synthase		
AAAAACACAACGGCACCACT	Olive glucosyl transferase 1	GT1	
TTCTCTTCGGCAAAATCACC	Onve glucosyl transferase i		
CAGGCTTCCAGGCTATCAAA	Olive glucosyl transferase 2	GT2	
GGGTCCTTCCAAATCTTCAA	Onve glucosyl transferase 2	012	
TGGAAGGAAGTCTGGAATGAG	Hydroxilase	HI	
CACAAGCAAGGATGATGTCG	Hydroxilase		
CGGGTTGGACCAGTGAATGT	Lipoxigenase	LOX	
TTGACACACTGTTGGGAATTCC	Lipoxigenase	LOX	
CCCAGAAGATCAACGAAGTAGGTG	Pathogenesis-related protein 27	PR27	
GACCGCACGATTCTTGGATT	1 amogenesis-related protein 27	1 102 /	
TCATGTGCGTTGTTGATGGT	Ethylene-responsive Transcription Factor	ET	
TGTCTTTTAACATTCACACAGA	Emylene-responsive Transcription ractor		
TAGCACTGGCACTGAGGAGGATT	Tioredoxin	TD	
TCTCGAGTTGTGACATGCTT	Horedoxiii		
CCTCTTGGACGATTTGCTGT	Elongation factor 1-α	EF1α	
CCTGTTGGCTCCTTCTTGTC	Eloligation factor 1-u		

Table S3. Analytical parameters of the commercial standards used for the quantification of phenolic compounds in olive leaf extracts.

Standard	Calibration Range [µg/ml]	Calibration equations	r ²
Oleuropein	0,625-25	y = 3264818,79x + 8921367,34	0,99
Luteolin	0,5-25	y = 2750905,36x + 2774612,53	0,99
Apigenin	0,5-50	y = 1388397,18x + 7259647,69	0,96
Hydroxytyrosol	0,62-62,5	y = 858369x + 1000000	0,99