Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Disease Index
2.3. DNA Extraction from Sticky Trips
2.4. Real-Time qPCR
2.5. ITS Amplicon Target Sequencing
2.6. Bioinformatics and Statistical Analysis
2.7. Oligotyping Analysis
2.8. Correlation between Oligotyping Analysis Results and Number of Cells Calculated by qPCR
3. Results
3.1. Disease Severity
3.2. qPCR Assays
3.3. Mycobiota Diversity and Core Mycobiota of Air Samples
3.4. Mycobiota Development
3.5. Oligotyping Analysis
3.6. Correlation between Oligotypes and Number of Cells Calculated by qPCR
4. Discussion
4.1. Rice Pathogen Monitoring
4.2. Mycobiota Present in the Rice Paddy
4.3. Oligotyping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prospero, J.M.; Blades, E.; Mathison, G.; Naidu, R. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 2005, 21, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Codina, R.; Fox, R.W.; Lockey, R.F.; DeMarco, P.; Bagg, A. Typical levels of airborne fungal spores in houses without obvious moisture problems during a rainy season in Florida, USA. J. Investig. Allergol. Clin. Immunol. 2008, 18, 156–162. [Google Scholar] [PubMed]
- Burrows, S.M.; Elbert, W.; Lawrence, M.G.; Pöschl, U. Bacteria in the global atmosphere, Part 1 Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 2009, 9, 9263–9280. [Google Scholar] [CrossRef] [Green Version]
- Daniel, R. The metagenomics of soil. Nat. Rev. Microbiol. 2005, 3, 470–478. [Google Scholar] [CrossRef]
- Pöschl, U. Atmospheric aerosols, Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- Delort, A.M.; Vaïtilingom, M.; Amato, P.; Sancelme, M.; Parazols, M.; Mailhot, G.; Laj, P.; Deguillaume, L. A short overview of the microbial population in clouds, potential roles in atmospheric chemistry and nucleation processes. Atmos. Res. 2010, 98, 249–260. [Google Scholar] [CrossRef]
- Morris, C.E.; Sands, D.C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P.A.; Psenner, R. Microbiology and atmospheric processes, Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences 2011, 8, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Amato, P.; Ménager, M.; Sancelme, M.; Laj, P.; Mailhot, G.; Delort, A.M. Microbial population in cloud water at the Puy de Dôme, Implications for the chemistry of clouds. Atmos. Environ. 2005, 39, 4143–4153. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.J.; Jaffe, D.A.; Birmele, M.N.; Griffin, D.W.; Schuerger, A.C.; Hee, J.; Roberts, M.S. Free Tropospheric Transport of Microorganisms from Asia to North America. Microb. Ecol. 2012, 64, 973–985. [Google Scholar] [CrossRef]
- Smith, D.J.; Timonen, H.J.; Jaffe, D.A.; Griffin, D.W.; Birmele, M.N.; Perry, K.D.; Ward, P.D.; Roberts, M.S. Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 2013, 79, 1134–1139. [Google Scholar] [CrossRef] [Green Version]
- Bowers, R.M.; McLetchie, S.; Knight, R.; Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 2011, 5, 601–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, R.M.; Sullivan, A.P.; Costello, E.K.; Collett, J.L.; Knight, R.; Fierer, N. Sources of bacteria in outdoor air across cities in the midwestern United States. Appl. Environ. Microbiol. 2011, 77, 6350–6356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.Y.; Fong, J.J.; Park, M.S.; Chang, L.; Lim, Y.W. Identifying airborne fungi in Seoul, Korea using metagenomics. J. Microbiol. 2014, 52, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Hospodsky, D.; Yamamoto, N.; Nazaroff, W.W.; Peccia, J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air. 2012, 22, 339–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Womiloju, T.O.; Miller, J.D.; Mayer, P.M.; Brook, J.R. Methods to determine the biological composition of particulate matter collected from outdoor air. Atmos. Environ. 2003, 37, 4335–4344. [Google Scholar] [CrossRef]
- Paroda, R.; Dasgupta, S.; Mal, B.; Singh, S.S.; Jat, M.L.; Singh, G. Proceedings of the Regional Consultation on Improving Wheat Productivity in Asia, Bangkok, Thailand, 26–27 April 2012.
- Delseny, M.; Salses, J.; Cooke, R.; Sallaud, C.; Regad, F.; Lagoda, P.; Guiderdoni, E.; Ventelon, M.; Brugidou, C.; Ghesquière, A. Rice genomics: Present and future. Plant. Physiol. Biochem. 2001, 39, 323–334. [Google Scholar] [CrossRef]
- FAO Rice Market Monitor (RMM). Available online: http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/ (accessed on 14 June 2020).
- Khush, G.S. What it will take to Feed 5.0 Billion Rice consumers in 2030. Plant. Mol. Biol. 2005, 59, 1–6. [Google Scholar] [CrossRef]
- Ou, S.H. Rice Diseases, 2nd ed.; Commonwealth Mycological Institute: Aberystwyth, UK, 1985. [Google Scholar]
- Savary, S.; Teng, P.S.; Willocquet, L.; Nutter, F.W. Quantification and modelling of crop losses, a review of purposes. Annu. Rev. Phytopathol. 2006, 44, 89–112. [Google Scholar] [CrossRef]
- Skamnioti, P.; Gurr, S.J. Against the grain, safeguarding rice from rice blast disease. Trends Biotechnol. 2009, 27, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Ortega, S.F.; Spadaro, D.; Gullino, M.L. Targeted and untargeted molecular methods for the diagnosis of important fungal rice pathogens. In Plant Diseases and Food Security in the 21st Century; Scott, P., Strange, R., Korsten, L., Gullino, M.L., Eds.; Springer: Dordrecht, The Netherlands, 2020; in press. [Google Scholar]
- TeBeest, D.O.; Guerber, C.; Ditmore, M. Rice blast. Plant. Health Instr. 2007. [Google Scholar] [CrossRef]
- Chandrashekar, A.; Satyanarayana, K.V. Disease and pest resistance in grains of sorghum and millets. J. Cereal Sci. 2006, 44, 287–304. [Google Scholar] [CrossRef]
- Drake, V.A.; Gatehouse, A.G.; Farrow, R.A. Insect migration: A holistic conceptual model. In Insect Migration: Tracking Resources Through Space and Time; Drake, V.A., Gatehouse, G.A., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 427–457. [Google Scholar]
- Fröhlich-Nowoisky, J.; Pickersgill, D.A.; Després, V.R.; Pöschl, U. High diversity of fungi in air particulate matter. Proc. Natl. Acad. Sci. USA 2009, 106, 12814–12819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahlgren, C.; Hagström, Å.; Nilsson, D.; Zweifel, U.L. Annual variations in the diversity, viability, and origin of airborne bacteria. Appl. Environ. Microbiol. 2010, 76, 3015–3025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, K. Principles, methods and organization of rice disease forecasting. In The Rice Disease; Zeigler, R.S., Leong, S.A., Teng, P.S., Eds.; The Johns Hopkins Press: Baltimore, MD, USA, 1965; pp. 173–194. [Google Scholar]
- Kingsolver, C.H.; Barksdale, T.H.; Marchetti, M.A. Rice blast epidemiology. Penn AES Bull. 1984, 853, 1–33. [Google Scholar]
- Katsantonis, D.; Kadoglidou, K.; Dramalis, C.; Puigdollers, P. Rice blast forecasting models and their practical value: A review. Phytopathol. Mediterr. 2017, 56, 187–216. [Google Scholar] [CrossRef]
- Matic, S.; Gullino, M.L.; Spadaro, D. The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice. Front. Biosc. 2017, 9, 333–344. [Google Scholar] [CrossRef]
- West, J.S.; Kimber, R.B.R. Innovations in air sampling to detect plant pathogens. Ann. Appl. Biol. 2015, 166, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1954, 39, 257–265. [Google Scholar] [CrossRef]
- Suzuki, H. Behaviour of rice blast fungus spore and application to outbreak forecast of rice blast disease. JARQ 1974, 8, 78–83. [Google Scholar]
- Comtois, P.; Alcazar, P.; Neron, D. Pollen counts statistics and its relevance to precision. Aerobiologia 1999, 15, 19–28. [Google Scholar] [CrossRef]
- Spadaro, D.; Agustí, N.; Franco Ortega, S.; Hurtado Ruiz, M.A. Diagnostics and identification of diseases, insects and mites. In Integrated Pest and Disease Management in Greenhouse Crops; Gullino, M.L., Albajes, R., Nicot, P., Eds.; Springer: Dordrecht, The Netherlands, 2020; pp. 231–258. [Google Scholar]
- Huang, C.M.; Liao, D.J.; Wu, H.S.; Shen, W.C.; Chung, C.L. Cyclone-based spore trapping, quantitative Real-time polymerase chain reaction and high-resolution melting analysis for monitoring airborne inoculum of Magnaporthe Oryzae. Ann. Appl. Biol. 2016, 169, 75–90. [Google Scholar] [CrossRef]
- Nicolaisen, M.; West, J.S.; Sapkota, R.; Canning, G.G.M.; Schoen, C.; Justesen, A.F. Fungal communities including plant pathogens in near surface air are similar across Northwestern Europe. Front. Microbiol. 2017, 8, 1729. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, J.; Fourrier-Jeandel, C.; Husson, C.; Ioos, R. Assessment of passive traps combined with high-throughput sequencing to study airborne fungal communities. Appl. Environ. Microbiol. 2018, 84, e02637-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, R.H.; Anslan, S.; Bahram, M.; Wurzbacher, C.; Baldrian, P.; Tedersoo, L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019, 17, 95–109. [Google Scholar] [CrossRef]
- Ovaskainen, O.; Abrego, N.; Somervuo, P.; Palorinne, I.; Hardwick, B.; Pitkänen, J.M.; Andrew, N.R.; Niklaus, P.A.; Schmidt, N.M.; Seibold, S.; et al. Monitoring fungal communities with the global spore sampling project. Front. Ecol. Environ. 2020, 7, 511. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Milgroom, M.G.; Taylor, J.W. A rapid, high yield mini-prep method for isolation of total genomic DNA from fungi. Fungal Genet. Rep. 1988, 35, 23. [Google Scholar] [CrossRef] [Green Version]
- Su’udi, M.; Kim, J.; Park, J.M.; Bae, S.C.; Kim, D.; Kim, Y.H.; Ahn, I.P. Quantification of rice blast disease progressions through TaqMan real-time PCR. Mol. Biotechnol. 2013, 55, 43–48. [Google Scholar] [CrossRef]
- Ortega, S.F.; Tomlinson, J.; Hodgetts, J.; Spadaro, D.; Gullino, M.L.; Boonham, N. Development of loop-mediated isothermal amplification assays for the detection of seedborne fungal pathogens, Fusarium fujikuroi and Magnaporthe oryzae, in rice seeds. Plant. Dis. 2018, 102, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Su’udi, M.; Park, J.M.; Kang, W.R.; Park, S.R.; Hwang, D.J.; Ahn, I.P. Quantification of rice brown leaf spot through Taqman real-time PCR specific to the unigene encoding Cochliobolus miyabeanus Scytalone dehydratase1 involved in fungal melanin biosynthesis. J. Microbiol. 2012, 50, 947–954. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH, Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Caporaso, G.; Kuczynski, J.; Stombaugh, J. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Eren, A.M.; Maignien, L.; Sul, W.J.; Murphy, L.G.; Grim, S.L.; Morrison, H.G.; Sogin, M.L. Oligotyping, differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 2013, 4, 1111. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.L.; Bayliss, K.L. Spore traps need improvement to fulfil plant biosecurity requirements. Plant Pathol. 2011, 60, 801–810. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Aylor, D.E. Relative collection efficiency of Rotorod and Burkard spore samplers for airborne Venturia inaequalis ascospores. Phytopathology 1993, 83, 1116–1119. [Google Scholar] [CrossRef]
- Dybwad, M.; Skogan, G.; Blatny, J.M. Comparative testing and evaluation of nine different air samplers: End-to-end sampling efficiencies as specific performance measurements for bioaerosol applications. Aerosol Sci. Technol. 2014, 48, 282–295. [Google Scholar] [CrossRef]
- Behzad, H.; Gojobori, T.; Mineta, K. Challenges and opportunities of airborne metagenomics. Genome Biol. Evol. 2015, 7, 1216–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Liang, P.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities. Nat. Protoc. 2015, 10, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Lacey, M.E.; West, J.S. The Air Spora; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Teng, P.S. Integrated pest management in rice. Exp. Agric. 1994, 30, 115–137. [Google Scholar] [CrossRef]
- Yeh, W.H.; Bonman, J.M. Assessment of partial resistance to Pyricularia oryzae in six rice cultivars. Plant Pathol. 1986, 35, 319–323. [Google Scholar] [CrossRef]
- Castaño, J.; MacKenzie, D.R.; Nelson, R.R. Components analysis of race non-specific resistance to blast disease of rice caused by Pyricularia oryzae. J. Phytopathol. 1989, 127, 89–99. [Google Scholar] [CrossRef]
- Roumen, E.C.; Bonman, J.M.; Parlevliet, J.E. Leaf age related partial resistance to Pyricularia oryzae in tropical lowland rice cultivars as measured by the number of sporulating lesions. Phytopathology 1992, 82, 1414–1417. [Google Scholar] [CrossRef]
- Suzuki, H. Effect of temperature on germination of conidia and appressorium formation of Pyricularia oryzae. Annu. Rep. Plant Prot. N. J. 1969, 17, 6–9. [Google Scholar]
- Suzuki, H. Meteorological factors in the epidemiology of rice blast. Annu. Rev. Phytopathol. 1975, 13, 239–256. [Google Scholar] [CrossRef]
- Calvero, S.B., Jr.; Coakley, S.M.; Teng, P.S. Development of empirical forecasting models for rice blast based on weather factors. Plant Pathol. 1996, 45, 667–678. [Google Scholar] [CrossRef]
- Esmailpoor, M.H. Study on the environmental factors affecting rice blast. Iran. Plant Dis. Pest. J. 1960, 48, 105–118. [Google Scholar]
- Mousanejad, S.; Alizadeh, A.; Safaie, N. Effect of weather factors on spore population dynamics of rice blast fungus in Guilan province. J. Plant. Prot. Res. 2009, 49, 319–329. [Google Scholar] [CrossRef]
- Nisikado, Y. Effect of temperature on the growth of Helminthosporium oryzae Br. De Haam. Ann. Phytopathol. Soc. Jpn. 1923, 1, 20–30. [Google Scholar] [CrossRef]
- Dasgupta, M.K.; Chattopadhyay, S.B. Effect of environmental factors on the development of brown spot of rice caused by Helminthosporium oryzae. J. Soc. Exp. Agric. 1977, 2, 24–27. [Google Scholar]
- Su, M.T. Report of the Mycologist, Burma, Mandalay, for the Year Ending 31st March 1938; Department of Agriculture: Rangoon, Burma, 1938; pp. 63–68.
- Sherf, A.F.; Page, R.M.; Tullis, E.C.; Morgan, T.L. Studies on factors affecting the infectivity of Helminthosporium oryzae. Phytopathology 1947, 37, 281–290. [Google Scholar]
- Padmanabhan, S.Y.; Ganguly, D. Relation between the age of rice plant and its susceptibility to Helminthosporium and blast diseases. Proc. Indian Acad. Sci. Sect. B 1954, 39, 44–50. [Google Scholar] [CrossRef]
- Sarkar, A.K.; Sen Gupta, P.K. Effect of temperature and humidity on disease development and sporulation of Helminthosporium oryzae on rice. Indian Phytopathol. 1977, 30, 258–259. [Google Scholar]
- Levy, Y.; Cohen, Y. Sporulation of Helminthosporium turcicumon sweet corn: Effects of temperature and dew period. Can. J. Plant Pathol. 1980, 2, 65–69. [Google Scholar] [CrossRef]
- Pinto, A.J.; Raskin, L. PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS ONE 2012, 7, e43093. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hafez, S.I.I. Phyllosphere and phylloplane fungi of wheat cultivated in Saudi Arabia. Mycopathologia 1981, 75, 33–38. [Google Scholar] [CrossRef]
- Hollomon, D.W. Observations on the phylloplane flora of potatoes. Eur. Potato J. 1967, 10, 53–61. [Google Scholar] [CrossRef]
- Bhadange, D. Study of Phylloplane Flora of College Premises of Wardha (M. S.). L. P. Dalal. Int. J. Sci. Eng. Res. 2014, 5, 672–684. [Google Scholar]
- Adhikari, A.; Sen, M.M.; Gupta-Bhattacharya, S.; Chanda, S. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India, A 2-year study at five outdoor sampling stations. Sci. Total Environ. 2004, 29, 123–141. [Google Scholar] [CrossRef]
- Chavan, V.S. Diversity of fungal spores in paddy fields (Oryza sativa L.). ISRJ 2012, 11, 1–4. [Google Scholar]
- Almaguer, M.; Rojas, T.I.; Rodriguez-Rajo, F.J.; Aira, M.J. Airborne fungal succession in a rice field of Cuba. Eur. J. Plant. Pathol. 2012, 133, 473–482. [Google Scholar] [CrossRef]
- Picco, A.M.; Rodolfi, M. Airborne fungi as biocontaminants at two Milan underground stations. Int. Biodeter. Biodegr. 2000, 45, 43–47. [Google Scholar] [CrossRef]
- Gregory, P.H.; Hirst, J.M. The Summer-Air Spora at Rothamsted in 1952. J. Gen. Microbiol. 1957, 17, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.; Mathur, S.B.; Neergaard, P. Seed-borne species of Myrothecium and their pathogenic potential. Trans. Br. Mycol. Soc. 1973, 61, 347–354. [Google Scholar] [CrossRef]
- Mew, T.W.; Gonzales, P. A Handbook of Rice Seedborne Fungi; IRRI, Science Publishers: Enfield, NH, USA, 2002; Available online: http://books.irri.org/9712201740_content.pdf (accessed on 15 December 2020).
- Garibaldi, A.; Gilardi, G.; Franco Ortega, S.; Gullino, M.L. First Report of Leaf Spot of Lamb’s Lettuce Valerianella olitoria Caused by Myrothecium roridum in Italy. Plant Dis. 2016, 100, 1237. [Google Scholar] [CrossRef]
- Garibaldi, A.; Gilardi, G.; Franco Ortega, S.; Gullino, M.L. First Report of Leaf Spot of Spinach Spinacia oleracea caused by Myrothecium verrucaria in Italy. Plant Dis. 2016, 100, 1786. [Google Scholar] [CrossRef]
- Garibaldi, A.; Gilardi, G.; Franco Ortega, S.; Gullino, M.L. First report of leaf spot of wild rocket Diplotaxis tenuifolia caused by Myrothecium verrucaria in Italy. J. Plant Pathol. 2016, 98, 690. [Google Scholar] [CrossRef]
- Bosio, P.; Siciliano, I.; Gilardi, G.; Gullino, M.L.; Garibaldi, A. Verrucarin A and Roridin E produced by Myrothecium roridum under different temperatures and CO2 levels. World Mycotoxin J. 2017, 10, 229–236. [Google Scholar] [CrossRef]
- Siciliano, I.; Bosio, P.; Gilardi, G.; Gullino, M.L.; Garibaldi, A. Verrucarin A and roridin E produced on spinach by Myrothecium verrucaria under different temperatures and CO2 levels. Mycotoxin Res. 2017, 33, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Kristiansson, E.; Ryberg, M.; Hallenberg, N.; Larsson, K.H. Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. 2008, 193–201. [Google Scholar] [CrossRef]
- Elder, J.F.; Turner, B.J. 1995. Concerted evolution of repetitive DNA sequences in eukaryotes. Q. Rev. Biol. 1995, 70, 297–320. [Google Scholar] [CrossRef]
- Ganley, A.R.D.; Kobayashi, T. Highly efficient concerted evolution in the ribosomal DNA repeats, Total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res. 2007, 17, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Rooney, A.P.; Ward, T.J. Evolution of a large ribosomal RNA multigene family in filamentous fungi, Birth and death of a concerted evolution paradigm. Proc. Natl. Acad. Sci. USA 2005, 102, 5084–5089. [Google Scholar] [CrossRef] [Green Version]
- Simon, U.K.; Weiss, M. Intragenomic Variation of fungal ribosomal genes is higher than previously thought. Mol. Biol. Evol. 2008, 25, 2251–2254. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco Ortega, S.; Ferrocino, I.; Adams, I.; Silvestri, S.; Spadaro, D.; Gullino, M.L.; Boonham, N. Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR. J. Fungi 2020, 6, 372. https://doi.org/10.3390/jof6040372
Franco Ortega S, Ferrocino I, Adams I, Silvestri S, Spadaro D, Gullino ML, Boonham N. Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR. Journal of Fungi. 2020; 6(4):372. https://doi.org/10.3390/jof6040372
Chicago/Turabian StyleFranco Ortega, Sara, Ilario Ferrocino, Ian Adams, Simone Silvestri, Davide Spadaro, Maria Lodovica Gullino, and Neil Boonham. 2020. "Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR" Journal of Fungi 6, no. 4: 372. https://doi.org/10.3390/jof6040372
APA StyleFranco Ortega, S., Ferrocino, I., Adams, I., Silvestri, S., Spadaro, D., Gullino, M. L., & Boonham, N. (2020). Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR. Journal of Fungi, 6(4), 372. https://doi.org/10.3390/jof6040372