Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Mushroom Strains
2.2. Selection of Phytase Producing Mushroom Strains and Phytase Production from Agricultural Residues under SSF
2.3. Extraction and Determination of Crude Phytase Atcivity
2.4. Effect of Carbon and Nitrogen Sources for Phytase Production
2.5. Optimization of Substrate Components and Conditions for Phytase Production Using Statistical Approaches
2.5.1. Optimization of Substrate Component
2.5.2. Respond Surface Methodology (RSM)
2.5.3. Determination of pH Value of Basal Liquid Medium, Temperature, and Fermentation Period for Phytase Production
2.6. Partial Characterization and Stability of Phytase from Selected Mushroom Strain
2.6.1. Preparation of Precipitated Phytase Extract
2.6.2. Determination of Optimal Temperature and pH on Phytase Activity
2.6.3. Effect of Cations and Potential Inhibitors on Phytase Activity
2.6.4. Determination of pH and Temperature Stability
2.7. Statistical Analysis
3. Results
3.1. Selection of Phytase Producing Mushroom Strains and Agricultural Residue for Phytase Production under SSF
3.2. Effect of Carbon and Nitrogen Sources in Basal Liquid Medium for Phytase Production
3.3. Optimization of Substrate Components and Conditions for Phytase Production by P. Adiposa Using Statistical Approaches
3.3.1. Optimization of Substrate Components
3.3.2. Respond Surface Methodology (RSM)
3.4. Determination of pH Value of Basal Liquid Medium, Temperature, and Fermentation Period for Phytase Production of P. adiposa
3.5. Partial Characterization and Stability of Phytase Obtained from P. adiposa
3.5.1. Determination of Optimal Temperature and pH on Phytase Activity
3.5.2. Effect of Cations and Potential Inhibitors on Phytase Activity
3.6. Determination of pH and Temperature Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Oliveira, D.M.D.S.; Feigl, B.J.; Pimentel, L.G.; Lisboa, I.P.; Gmach, M.R.; Varanda, L.L.; Morais, M.C.; Satiro, L.S.; Popin, G.V.; et al. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Sci. Agricola 2018, 75, 255–272. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, M. Agro-Industrial Waste Materials and their Recycled Value-Added Applications: Review. In Handbook of Ecomaterials; Springer Science and Business Media LLC: Berlin, Germany, 2017; pp. 1–11. [Google Scholar]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Soccol, C.R.; Nigam, P.; Soccol, V.T. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour. Technol. 2000, 74, 69–80. [Google Scholar] [CrossRef]
- Hamelinck, C.N.; Van Hooijdonk, G.; Faaij, A.P. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass Bioenerg. 2005, 28, 384–410. [Google Scholar] [CrossRef]
- Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef]
- Da Silva, L.L. Adding Value to Agro-Industrial Wastes. Ind. Chem. 2016, 2. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A Review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef] [Green Version]
- Dashtban, M.; Maki, M.; Leung, K.T.; Mao, C.; Qin, W. Cellulase activities in biomass conversion: Measurement methods and comparison. Crit. Rev. Biotechnol. 2010, 30, 302–309. [Google Scholar] [CrossRef]
- Brown, M.E.; Walker, M.C.; Nakashige, T.G.; Iavarone, A.T.; Chang, M.C.Y. Discovery and characterization of heme enzymes from unsequenced bacteria: Application to microbial lignin degradation. J. Am. Chem. Soc. 2011, 133, 18006–18009. [Google Scholar] [CrossRef]
- Wang, F.; Xu, L.; Zhao, L.; Ding, Z.; Ma, H.; Terry, N. Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: A review. Microorganisms 2019, 7, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, B.K.; Wani, M.A. Enhanced phytase production from Nocardia sp. MB 36 using agro-residues as substrates: Potential application for animal feed production. Eng. Life Sci. 2011, 11, 620–628. [Google Scholar] [CrossRef]
- Bharathiraja, S.; Suriya, J.; Krishnan, M.; Manivasagan, P.; Kim, S.-K. Production of Enzymes from Agricultural Wastes and Their Potential Industrial Applications. In Advances in Food and Nutrition Research; Elsevier BV: Amsterdam, The Netherlands, 2017; Volume 80, pp. 125–148. [Google Scholar]
- Rosentrater, K.A.; Evers, A.D. Chemical Components and Nutrition. In Kent’s Technology of Cereals: An Introduction for Students of food Science and Agriculture, 5th ed.; Rosentrater, K.A., Evers, A.D., Eds.; Woodhead Publishing: Duxford, UK, 2018; pp. 267–368. [Google Scholar]
- Kim, T.; Mullaney, E.J.; Porres, J.M.; Roneker, K.R.; Crowe, S.; Rice, S.; Ko, T.; Ullah, A.H.J.; Daly, C.B.; Welch, R.; et al. Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Appl. Environ. Microbiol. 2006, 72, 4397–4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Sinha, A.K. General Aspects of Phytases in Enzymes. In Human and Animal Nutrition; Num, C.S., Kumar, V., Eds.; Academic Press: New York, NY, USA, 2018; pp. 53–72. [Google Scholar]
- Salmon, D.N.X.; Piva, L.C.; Binati, R.L.; Rodrigues, C.; Vandenberghe, L.P.D.S.; Soccol, C.R.; Spier, M.R. A bioprocess for the production of phytase from Schizophyllum commune: Studies of its optimization, profile of fermentation parameters, characterization and stability. Bioprocess. Biosyst. Eng. 2012, 35, 1067–1079. [Google Scholar] [CrossRef]
- Spier, M.R.; Salmon, D.N.; Binati, R.L.; Piva, L.C.; Medeiros, A.B.; Soccol, C.R. Stability of new macromycetes phytases under room, cooling and freezing temperatures of storage. Int. J. Agr. Biol. Eng. 2012, 6, 420–424. [Google Scholar]
- Berikten, D.; Kivanc, M. Optimization of solid-state fermentation for phytase production by Thermomyces lanuginosus using response surface methodology. Prep. Biochem. Biotechnol. 2014, 44, 834–848. [Google Scholar] [CrossRef]
- Shivanna, G.B.; Venkateswaran, G. Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-State fermentation. Sci. World J. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bujna, E. Production and some properties of extracellular phytase from Thermomyces lanuginosus IMI 096218 on rice flour as substrate. Mycosphere 2016, 7, 1576–1587. [Google Scholar] [CrossRef]
- Karthik, N.; Binod, P.; Pandey, A. SSF production, purification and characterization of chitin deacetylase from Aspergillus flavus. Biocatal. Biotransform. 2017, 36, 296–306. [Google Scholar] [CrossRef]
- Shahryari, Z.; Fazaelipoor, M.H.; Setoodeh, P.; Nair, R.B.; Taherzadeh, M.J.; Ghasemi, Y. Utilization of wheat straw for fungal phytase production. Int. J. Recycl. Org. Waste Agric. 2018, 7, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Demirkan, E.; Baygin, E.; Usta, A. Screening of phytate hydrolysis Bacillus sp. isolated from soil and optimization of the certain nutritional and physical parameters on the production of phytase. Turk. J. Biochem. 2014, 39, 206–214. [Google Scholar] [CrossRef]
- Ajith, S.; Ghosh, J.; Shet, D.; ShreeVidhya, S.; Punith, B.D.; Elangovan, A.V. Partial purification and characterization of phytase from Aspergillus foetidus MTCC 11682. AMB Express 2019, 9, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harland, B.F.; Harland, J. Fermentative reduction of phytate in rye, white and whole wheat breads. Cereal. Chem. 1980, 57, 226–229. [Google Scholar]
- Tian, M.; Yuan, Q. Optimization of phytase production from potato waste using Aspergillus ficuum. 3 Biotech. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocky-Salimi, K.; Hashemi, M.; Safari, M.; Mousivand, M. A novel phytase characterized by thermostability and high pH tolerance from rice phyllosphere isolated Bacillus subtilis B.S.46. J. Adv. Res. 2016, 7, 381–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmavathi, T.; Dikshit, R.; Jadhav, A.; Sarah, U. Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus. J. Genet. Eng. Biotechnol. 2017, 15, 95–101. [Google Scholar] [CrossRef]
- Akatin, M.Y. Characterization of a β-glucosidase from an edible mushroom, Lycoperdon pyriforme. Int. J. Food Prop. 2013, 16, 1565–1577. [Google Scholar] [CrossRef]
- Kanti, A.; Sudiana, I.M. Production of phytase, amylase and cellulase by Aspergillus, Rhizophus and Neurospora on mixed rice straw powder and soybean curd residue. In Proceedings of the IOP Conference Series, Earth and Environmental Science, Bogor, Indonesia, 1–7 November 2017; IOP Publishing: Bristol, UK, 2018; Volume 166, p. 012010. [Google Scholar]
- Saithi, S.; Tongta, A. Phytase production of Aspergillus niger on soybean meal by solid-state fermentation using a rotating drum bioreactor. Agric. Agric. Sci. Procedia 2016, 11, 25–30. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, U. Optimization of process parameters by response surface methodology in fungal phytase production utilizing rice straw. Indian J. Biochem. Biophys. 2016, 53, 144–150. [Google Scholar]
- Neira-Vielma, A.A.; Aguilar, C.N.; Ilyina, A.; Contreras-Esquivel, J.C.; das Graça Carneiro-da-Cunha, M.; Michelena-Álvarez, G.; Martínez-Hernández, J.L. Purification and biochemical characterization of an Aspergillus niger phytase produced by solid-state fermentation using triticale residues as substrate. Biotechnol. Rep. 2018, 17, 49–54. [Google Scholar] [CrossRef]
- Roopesh, K.; Ramachandran, S.; Nampoothiri, K.M.; Szakacs, G.; Pandey, A. Comparison of phytase production on wheat bran and oil cakes in solid-state fermentation by Mucor racemosus. Bioresour. Technol. 2006, 97, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Awad, G.E.A.; Helal, M.M.; Danial, E.N.; Esawy, M.A. Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box–Behnken design. Saudi J. Biol. Sci. 2014, 21, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-J.; Chen, C.-H.; Tsai, S.-Y. Phytase production by Grifola frondosa and its application in inositol-enriched solid-state fermentation brown rice. ETP Int. J. Food Eng. 2018, 4, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Salmon, D.N.X.; Fendrich, R.C.; Cruz, M.A.; Montibeller, V.W.; Vandenberghe, L.P.D.S.; Soccol, C.R.; Spier, M.R. Bioprocess for phytase production by Ganoderma sp. MR-56 in different types of bioreactors through submerged cultivation. Biochem. Eng. J. 2016, 114, 288–297. [Google Scholar] [CrossRef]
- Salmon, D.N.; Piva, L.C.; Binati, R.L.; Vandenberghe, L.P.D.S.; Soccol, V.T.; Soccol, C.R.; Spier, M.R. Formulated products containing a new phytase from Schyzophyllum sp. phytase for application in feed and food processing. Braz. Arch. Biol. Technol. 2011, 54, 1069–1074. [Google Scholar] [CrossRef]
- Collopy, P.D.; Royse, D.J. Characterization of phytase activity from cultivated edible mushrooms and their production substrates. J. Agric. Food Chem. 2004, 52, 7518–7524. [Google Scholar] [CrossRef]
- Bala, A.; Sapna; Jain, J.; Kumari, A.; Singh, B. Production of an extracellular phytase from a thermophilic mould Humicola nigrescens in solid state fermentation and its application in dephytinization. Biocatal. Agric. Biotechnol. 2014, 3, 259–264. [Google Scholar] [CrossRef]
- Qasim, S.S.; Shakir, K.; Al-Shaibani, A.B.; Walsh, M.K. Optimization of culture conditions to produce phytase from Aspergillus tubingensis SKA. Food Nutr. Sci. 2017, 8, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Sano, K.; Fukuhara, H.; Nakamura, Y. Phytase of the yeast Arxula adeninivorans. Biotechnol. Lett. 1999, 21, 33–38. [Google Scholar] [CrossRef]
- Quan, C.S.; Zhang, l.; Wang, Y.; Ohta, Y. Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J. Biosci. Bioeng. 2001, 92, 154–160. [Google Scholar] [CrossRef]
- Soni, S.K.; Khire, J. Production and partial characterization of two types of phytase from Aspergillus niger NCIM 563 under submerged fermentation conditions. World J. Microbiol. Biotechnol. 2007, 23, 1585–1593. [Google Scholar] [CrossRef]
- Gunashree, B.S.; Venkateswaran, G. Effect of different cultural conditions for phytase production by Aspergillus niger CFR 335 in submerged and solid-state fermentations. J. Ind. Microbiol. Biotechnol. 2008, 35, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Satyanarayana, T. Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Appl. Biochem. Biotechnol. 2006, 133, 239–250. [Google Scholar] [CrossRef]
- Xiong, H.; Nyyssölä, A.; Jänis, J.; Pastinen, O.; Von Weymarn, N.; Leisola, M.; Turunen, O. Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635. Enzym. Microb. Technol. 2004, 35, 93–99. [Google Scholar] [CrossRef]
- Webb, C. Design aspects of solid state fermentation as applied to microbial bioprocessing. J. Appl. Biotechnol. Bioeng. 2017, 4, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Benabda, O.; M’Hir, S.; Kasmi, M.; Mnif, W.; Hamdi, M. Optimization of protease and amylase production by Rhizopus oryzae cultivated on bread waste using solid-state fermentation. J. Chem. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Marraiki, N.; Vijayaraghavan, P.; Elgorban, A.M.; Dhas, D.D.; Al-Rashed, S.; Yassin, M.T. Low cost feedstock for the production of endoglucanase in solid state fermentation by Trichoderma hamatum NGL1 using response surface methodology and saccharification efficacy. J. King Saud Univ. Sci. 2020, 32, 1718–1724. [Google Scholar] [CrossRef]
- Vanaja, K.; Rani, R.S. Design of experiments: Concept and applications of Plackett Burman design. Clin. Res. Regul. Aff. 2007, 24, 1–23. [Google Scholar] [CrossRef]
- Maan, P.; Bharti, A.K.; Gautam, S.; Dutt, D. Screening of important factors for xylanase and cellulase production from the fungus C. cinerea RM-1 NFCCI-3086 through Plackett-Burman experimental design. Bioresources 2016, 11, 8269–8276. [Google Scholar] [CrossRef] [Green Version]
- Yahya, S.; Jahangir, S.; Shaukat, S.S.; Sohail, M.; Khan, S.A. Production optimization by using Plackett-Burman design and partial characterization of amylase from Aspergillus tubingensis SY 1. Pak. J. Bot. 2016, 48, 2557–2561. [Google Scholar]
- Jafari-Tapeh, H.; Hamidi-Esfahani, Z.; Azizi, M.H. Culture condition improvement for phytase production in solid state fermentation by Aspergillus ficuum using statistical method. ISRN Chem. Eng. 2012, 2012, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-H.; Dong, X.-F.; Zhang, X.; Tong, J.-M.; Zhang, Q.; Xu, S.-Z. Waste vinegar residue as substrate for phytase production. Waste Manag. Res. 2011, 29, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Spier, M.R.; Scheidt, G.N.; Portella, A.C.; Rodriguez-León, J.A.; Woiciechowski, A.L.; Greiner, R.; Soccol, C.R. Increase in phytase synthesis during citric pulp fermentation. Chem. Eng. Commun. 2010, 198, 286–297. [Google Scholar] [CrossRef]
- Kumari, A.; Satyanarayana, T.; Singh, B. Mixed substrate fermentation for enhanced phytase production by thermophilic mould Sporotrichum thermophile and its application in beneficiation of poultry feed. Appl. Biochem. Biotechnol. 2015, 178, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Buddhiwant, P.; Bhavsar, K.; Kumar, V.R.; Khire, J.M. Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications. Prep. Biochem. Biotechnol. 2016, 46, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Maller, A.; Vici, A.C.; Facchini, F.D.A.; da Silva, T.M.; Kamimura, E.S.; Rodrigues, M.I.; Jorge, J.A.; Terenzi, H.F.; de Lourdes Teixeira de Moraes Polizeli, M. Increase of the phytase production by Aspergillus japonicus and its biocatalyst potential on chicken feed treatment. J. Basic Microbiol. 2014, 54, S152–S160. [Google Scholar] [CrossRef] [PubMed]
- Bogar, B.; Szakacs, G.; Pandey, A.; AbdulHameed, S.; Linden, J.C.; Tengerdy, R.P. Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnol. Prog. 2003, 19, 312–319. [Google Scholar] [CrossRef]
- Bogar, B.; Szakacs, G.; Linden, J.C.; Pandey, A.; Tengerdy, R.P. Optimization of phytase production by solid substrate fermentation. J. Ind. Microbiol. Biotechnol. 2003, 30, 183–189. [Google Scholar] [CrossRef]
- Adeleke, O.A.; Latiff, A.A.A.; Saphira, M.R.; Daud, Z.; Ismail, N.; Ahsan, A.; Ab Aziz, N.A.; Ndah, M.; Kumar, V.; Al-Gheethi, A.; et al. Locally Derived Activated Carbon from Domestic, Agricultural and Industrial Wastes for the Treatment of Palm Oil Mill Effluent. In Nanotechnology in Water and Wastewater Treatment; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 35–62. [Google Scholar]
- Ries, E.F.; Macedo, G.A. Improvement of phytase activity by a new Saccharomyces cerevisiae strain using statistical optimization. Enzym. Res. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Keila, A.M.; Polyanna, N.H.; Marlia, D.H.C.M.; Tatiana, S.P.; Michele, R.S.; Cristina, M.S.-M.; Ana, L.F.P.; Carlos, R.S. Optimization of phytase production by Aspergillus japonicus Saito URM 5633 using cassava bast as substrate in solid state fermentation. Afr. J. Microbiol. Res. 2014, 8, 929–938. [Google Scholar] [CrossRef]
- Haritha, K.; Sambasivarao, K.R.S. Phytase production by Rhizopus oligosporus MTCC556 under submerged fermentation conditions. Asian J. Biol. Sci. 2009, 4, 270–273. [Google Scholar]
- Shah, P.C.; Bhavsar, K.; Soni, S.K.; Khire, J. Strain improvement and up scaling of phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. J. Ind. Microbiol. Biotechnol. 2008, 36, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Vohra, A.; Satyanarayana, T. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol. 2003, 23, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Sanni, D.M.; Lawal, O.T.; Enujiugha, V.N. Purification and characterization of phytase from Aspergillus fumigatus isolated from African giant snail (Achatina fulica). Biocatal. Agric. Biotechnol. 2019, 17, 225–232. [Google Scholar] [CrossRef]
- Gaind, S.; Singh, S. Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. Int. Biodeterior. Biodegrad. 2015, 99, 15–22. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, G.; Ng, T.B.; Ng, T.B. Purification and characterization of phytase with a wide pH adaptation from common edible mushroom Volvariella volvacea (Straw mushroom). Indian J. Biochem. Biophys. 2012, 49, 49–54. [Google Scholar] [PubMed]
- Vats, P.; Banerjee, U.C. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van teighem. J. Ind. Microbiol. Biotechnol. 2005, 32, 141–147. [Google Scholar] [CrossRef]
- Lassen, S.F.; Breinholt, J.; Østergaard, P.R.; Brugger, R.; Bischoff, A.; Wyss, M.; Fuglsang, C.C. Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Appl. Environ. Microbiol. 2001, 67, 4701–4707. [Google Scholar] [CrossRef] [Green Version]
- Boyce, A.; Walsh, G. Purification and characterisation of an acid phosphatase with phytase activity from Mucor hiemalis Wehmer. J. Biotechnol. 2007, 132, 82–87. [Google Scholar] [CrossRef]
- Tseng, Y.-H.; Fang, T.J.; Tseng, S.-M. Isolation and characterization of a novel phytase from Penicillium simplicissimum. Folia Microbiol. 2000, 45, 121–127. [Google Scholar] [CrossRef]
- Casey, A.; Walsh, G. Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresour. Technol. 2003, 86, 183–188. [Google Scholar] [CrossRef]
- Zhang, G.; Dong, X.; Wang, Z.; Zhang, Q.; Ng, T.B.; Tong, J. Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour. Technol. 2010, 101, 4125–4131. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Ornela, P.H.; Guimaraes, L.H.S. Purification and characterization of an alkali stable phytase produced by Rhizopus microsporus var. microsporus in submerged fermentation. Process Biochem. 2019, 81, 70–76. [Google Scholar] [CrossRef]
- Chadha, B.; Harmeet, G.; Mandeep, M.; Saini, H.; Singh, N. Phytase production by the thermophilic fungus Rhizomucor pusillus. World J. Microbiol. Biotechnol. 2004, 20, 105–109. [Google Scholar] [CrossRef]
- Demir, Y.; Kotan, M.Ş.; Dikbas, N.; Beydemir, S. Phytase from Weissella halotolerans: Purification, partial characterisation and the effect of some metals. Int. J. Food Prop. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- El-Gindy, A.A.; Ibrahim, Z.M.; Ali, U.F.; El-Mahdy, O.M. Extracellular phytase production by solid-state cultures of Malbranchea sulfurea and Aspergillus niveus on cost-effective medium. Res. J. Agric. Biol. Sci. 2009, 5, 42–62. [Google Scholar]
- Soni, S.K.; Magdum, A.; Khire, J. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563. World J. Microbiol. Biotechnol. 2010, 26, 2009–2018. [Google Scholar] [CrossRef] [Green Version]
- Roopashri, A.N.; Varadaraj, M.C. Functionality of phytase of Saccharomyces cerevisiae MTCC 5421 to lower inherent phytate in selected cereal flours and wheat/pearl millet-based fermented foods with selected probiotic attribute. Food Biotechnol. 2015, 29, 131–155. [Google Scholar] [CrossRef]
- Promdonkoy, P.; Tang, K.; Sornlake, W.; Harnpicharnchai, P.; Kobayashi, R.S.; Ruanglek, V.; Upathanpreecha, T.; Vesaratchavest, M.; Eurwilaichitr, L.; Tanapongpipat, S. Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiol. Lett. 2009, 290, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Thakur, N.; Kumar, P.; Chand, D. Enhanced production of phytase from thermotolerant Aspergillus fumigatus isolated from rhizospheric zone of maize fields. J. Innov. Pharm. Biol. Sci. 2017, 4, 114–120. [Google Scholar]
- Azeke, M.A.; Greiner, R.; JANY, K.D. Purification and characterization of two intracellular phytases from the tempeh fungus Rhizopus oligosporus. J. Food Biochem. 2011, 35, 213–227. [Google Scholar] [CrossRef]
- Karaman, M.; Gurbuz, Y.; Ozkose, E.; Ekinci, M.S. Study on stability of fungal phytase as poultry feed additive. J. Anim. Feed Sci. 2004, 13, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Pires, E.B.E.; de Freitas, A.J.; Souza, F.F.E.; Salgado, R.L.; Guimarães, V.M.; Pereira, F.A.; Eller, M.R. Production of fungal phytases from agroindustrial byproducts for pig diets. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bhavsar, K.; Khire, J.M. Current research and future perspectives of phytase bioprocessing. RSC Adv. 2014, 4, 26677–26691. [Google Scholar] [CrossRef]
Expt. No. | Independent Variables | Response Phytase Activity (U/gds) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | Experimental | Predicted | |
1 | 25(+1) | 6(+1) | 0.01(−1) | 0.01(−1) | 0.1(+1) | 0.1(+1) | 2(+1) | 5(+1) | 5(−1) | 12(+1) | 0.92 | 1.38 |
2 | 2(−1) | 6(+1) | 0.1(+1) | 0.01(−1) | 0.01(−1) | 0.1(+1) | 2(+1) | 5(+1) | 25(+1) | 8(−1) | 17.24 | 14.42 |
3 | 25(+1) | 0.1(−1) | 0.1(+1) | 0.1(+1) | 0.01(−1) | 0.01(−1) | 2(+1) | 5(+1) | 25(+1) | 12(+1) | 7.90 | 8.10 |
4 | 25(+1) | 6(+1) | 0.01(−1) | 0.1(+1) | 0.1(+1) | 0.01(−1) | 0.1(−1) | 5(+1) | 25(+1) | 12(+1) | 10.06 | 6.47 |
5 | 2(−1) | 6(+1) | 0.1(+1) | 0.01(−1) | 0.1(+1) | 0.1(+1) | 0.1(−1) | 0(−1) | 25(+1) | 12(+1) | 0.000 | 4.79 |
6 | 2(−1) | 0.1(−1) | 0.1(+1) | 0.1(+1) | 0.01(−1) | 0.1(+1) | 2(+1) | 0(−1) | 5(−1) | 12(+1) | 0.000 | −5.60 |
7 | 2(−1) | 0.1(−1) | 0.01(−1) | 0.1(+1) | 0.1(+1) | 0.01(−1) | 2(+1) | 5(+1) | 5(−1) | 8(−1) | 0.55 | 3.31 |
8 | 2(−1) | 0.1(−1) | 0.01(−1) | 0.01(−1) | 0.1(+1) | 0.1(+1) | 0.1(−1) | 5(+1) | 25(+1) | 8(−1) | 22.56 | 17.62 |
9 | 25(+1) | 0.1(−1) | 0.01(−1) | 0.01(−1) | 0.01(−1) | 0.1(+1) | 2(+1) | 0(−1) | 25(+1) | 12(+1) | 0.84 | 3.63 |
10 | 2(−1) | 6(+1) | 0.01(−1) | 0.01(−1) | 0.01(−1) | 0.01(−1) | 2(+1) | 5(+1) | 5(−1) | 12(+1) | 0.56 | 1.97 |
11 | 25(+1) | 0.1(−1) | 0.1(+1) | 0.01(−1) | 0.01(−1) | 0.01(−1) | 0.1(−1) | 5(+1) | 25(+1) | 8(−1) | 17.89 | 17.98 |
12 | 2(−1) | 6(+1) | 0.01(−1) | 0.1(+1) | 0.01(−1) | 0.01(−1) | 0.1(−1) | 0(−1) | 25(+1) | 12(+1) | 0.000 | −0.17 |
13 | 25(+1) | 0.1(−1) | 0.1(+1) | 0.01(−1) | 0.1(+1) | 0.01(−1) | 0.1(−1) | 0(−1) | 5(−1) | 12(+1) | 0.000 | −1.34 |
14 | 25(+1) | 6(+1) | 0.01(−1) | 0.1(+1) | 0.01(−1) | 0.1(+1) | 0.1(−1) | 0(−1) | 5(−1) | 8(−1) | 0.000 | −3.69 |
15 | 25(+1) | 6(+1) | 0.1(+1) | 0.01(−1) | 0.1(+1) | 0.01(−1) | 2(+1) | 0(−1) | 5(−1) | 8(−1) | 0.000 | −2.85 |
16 | 25(+1) | 6(+1) | 0.1(+1) | 0.1(+1) | 0.01(−1) | 0.1(+1) | 0.1(−1) | 5(+1) | 5(−1) | 8(−1) | 0.000 | 5.38 |
17 | 2(−1) | 6(+1) | 0.1(+1) | 0.1(+1) | 0.1(+1) | 0.01(−1) | 2(+1) | 0(−1) | 25(+1) | 8(−1) | 0.000 | 1.09 |
18 | 2(−1) | 0.1(−1) | 0.1(+1) | 0.1(+1) | 0.1(+1) | 0.1(+1) | 0.1(−1) | 5(+1) | 5(−1) | 12(+1) | 3.20 | 4.26 |
19 | 25(+1) | 0.1(−1) | 0.01(−1) | 0.1(+1) | 0.1(+1) | 0.1(+1) | 2(+1) | 0(−1) | 25(+1) | 8(−1) | 0.000 | 2.56 |
20 | 2(−1) | 0.1(−1) | 0.01(−1) | 0.01(−1) | 0.01(−1) | 0.01(−1) | 0.1(−1) | 0(−1) | 5(−1) | 8(−1) | 0.000 | 2.42 |
21 | 13.5(0) | 3.05(0) | 0.06(0) | 0.06(0) | 0.06(0) | 0.06(0) | 1.05(0) | 2.5(0) | 15(0) | 10(0) | 24.95 | 23.07 |
22 | 13.5(0) | 3.05(0) | 0.06(0) | 0.06(0) | 0.06(0) | 0.06(0) | 1.05(0) | 2.5(0) | 15(0) | 10(0) | 23.52 | 23.07 |
23 | 13.5(0) | 3.05(0) | 0.06(0) | 0.06(0) | 0.06(0) | 0.06(0) | 1.05(0) | 2.5(0) | 15(0) | 10(0) | 20.73 | 23.07 |
Run | Independent Variables (g/mL) | Phytase Activity (U/gds) | ||
---|---|---|---|---|
Water Hyacinth (g) | Moisture (mL) | Experimental | Predicted | |
1 | 1 | 1 | 2.98 | 5.67 |
2 | 3 | 1 | 16.60 | 19.58 |
3 | 1 | 19 | 8.60 | 9.98 |
4 | 3 | 19 | 20.40 | 22.07 |
5 | 0.59 | 10 | 7.60 | 5.63 |
6 | 3.14 | 0 | 26.39 | 24.01 |
7 | 2 | 22.37 | 14.53 | 11.42 |
8 | 2 | 10 | 17.48 | 16.23 |
9 | 2 | 10 | 43.82 | 40.45 |
10 | 2 | 10 | 37.92 | 40.45 |
11 | 2 | 10 | 41.94 | 40.45 |
12 | 2 | 10 | 37.16 | 40.45 |
13 | 2 | 10 | 41.40 | 40.45 |
Mushroom Species | Strains SDBR-CMU | ITS GenBank Number | Phytase Activity |
---|---|---|---|
Amauroderma rugosum | A83 | MW266980 | + |
Auricularia cornea | A86 | MW266993 | − |
Ceriporia sp. | 4G | MW281788 | − |
Coprinopsis sp. | NK0217 | MW267044 | − |
Coprinopsis cinerea | NS48674−1 | MW281768 | − |
Cryptomarasmius crescentiae | R1 | MW284415 | − |
Cryptomarasmius crescentiae | R11 | MW284413 | − |
Cryptomarasmius crescentiae | R12 | MW284414 | − |
Daldinia sp. | D276 | MW284416 | − |
Ganoderma mastoporum | NK0244 | MW266995 | + |
Gloeoporus sp. | R10 | MW281791 | − |
Hyphodermella corrugata | R17 | MW281767 | − |
Hypoxylon haematostroma | H145 | MW281766 | − |
Marasmius sp.1 | NK0215 | MW267220 | + |
Marasmius sp.2 | NK0218 | MW267273 | − |
Marasmius sutepensis | NK0240 | MW267298 | − |
Pholiota adiposa | R32 | MW281763 | + |
Piptoporellustriqueter | P234 | MW267951 | + |
Pleurotus giganteus | NK0228 | MW267794 | − |
Pleurotus pulmonarius | NK0530 | MW266959 | − |
Pleurotus sirindhorniae | NK0130 | MT349509 | − |
Polyporus sp. | P235 | MW267633 | − |
Pycnoporus sanguineus | NK0189 | MW267631 | − |
Pycnoporus sanguineus | P14 | MW267632 | − |
Resinicium sp. | R27 | MW281793 | − |
Trametes cubensis | An-L1−5 | MW267646 | − |
Xylaria sp. | NK0216 | MW267256 | − |
Source | Coefficient | Sum of Squares | df | Mean Square | F Value | p-Value (Prob > F) |
---|---|---|---|---|---|---|
Model | - | 783.66 | 10 | 78.37 | 4.45 | 0.011 |
A-Glucose | −0.33 | 2.11 | 1 | 2.11 | 0.12 | 0.736 |
B-NH4NO3 | −1.21 | 28.18 | 1 | 28.18 | 1.66 | 0.225 |
C-MgSO4 | 0.54 | 5.77 | 1 | 5.77 | 0.33 | 0.579 |
D-KCI | −1.91 | 73.31 | 1 | 73.31 | 4.16 | 0.066 |
E-MnSO4 | −0.36 | 2.56 | 1 | 2.56 | 0.15 | 0.710 |
F-FeSO4 | 0.36 | 3.03 | 1 | 3.03 | 0.17 | 0.686 |
G-CaCl2 | −1.28 | 32.99 | 1 | 32.99 | 1.87 | 0.199 |
H-Water hyacinth | 4.00 | 320.38 | 1 | 320.38 | 18.18 | 0.001 |
I-Moisture | 3.56 | 253.92 | 1 | 253.92 | 14.41 | 0.003 |
J-Inoculum | −1.74 | 60.40 | 1 | 60.40 | 3.43 | 0.091 |
Curvature | - | 939.69 | 1 | 939.69 | 53.32 | ˂0.0001 |
Residual | - | 193.86 | 11 | 17.62 | - | - |
Lack of fit | - | 184.65 | 9 | 20.52 | 4.45 | 0.1968 |
Pure error | - | 9.22 | 2 | 4.61 | - | - |
Co total | - | 1917.21 | 22 | - | - | - |
Source | Coefficient | Sum of Squares | df | Mean Square | F Value | p-Value (Prob > F) |
---|---|---|---|---|---|---|
Model | 2462.80 | 5 | 4.92.56 | 47.05 | ˂0.0001 | |
A-Water hyacinth | 6.50 | 337.91 | 1 | 337.91 | 32.28 | 0.0007 |
B-Moisture | 1.70 | 23.09 | 1 | 23.09 | 2.21 | 0.1811 |
AB | −0.45 | 0.83 | 1 | 0.83 | 0.079 | 0.7867 |
A2 | −12.81 | 1142.40 | 1 | 1142.40 | 109.12 | ˂0.0001 |
B2 | −13.31 | 1232.36 | 1 | 1232.36 | 117.71 | ˂0.0001 |
Residual | 73.29 | 7 | 10.47 | |||
Lack of fit | 41.54 | 3 | 13.85 | 1.74 | 0.2960 | |
Pure error | 31.75 | 4 | 7.94 | |||
Cor total | 2536.06 | 12 |
Treatment | Compound | Relative Activity (%) | |
---|---|---|---|
1 mM | 5 mM | ||
Control | Deionized water | 100 | 100 |
Cations | Mn2+ | 94.0 ± 2.3 | 41.2 ± 1.5 |
K+ | 92.6 ± 2.3 | 40.7 ± 0.9 | |
Ca2+ | 90.5 ± 2.3 | 44.7 ± 2.3 | |
Mg2+ | 97.6 ± 1.5 | 55.8 ± 2.4 | |
Fe2+ | 106.7 ± 1.5 | 112.3 ± 2.3 | |
Cu2+ | 36.6 ± 3.1 | 13.2 ± 0.9 | |
Zn2+ | 18.8 ± 0.9 | 8.1 ± 0.9 | |
Co3+ | 92.5 ± 2.3 | 40.1 ± 3.2 | |
Na+ | 93.5 ± 2.3 | 47.7 ± 3.9 | |
Inhibitors | EDTA | 87.9 ± 0.9 | 44.2 ± 1.5 |
Tartrate | 97.1 ± 2.3 | 47.2 ± 1.5 | |
Citrate | 94.5 ± 1.5 | 45.7 ± 1.5 | |
Molybdate | 17.8 ± 2.3 | 7.1 ± 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jatuwong, K.; Kumla, J.; Suwannarach, N.; Matsui, K.; Lumyong, S. Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation. J. Fungi 2020, 6, 384. https://doi.org/10.3390/jof6040384
Jatuwong K, Kumla J, Suwannarach N, Matsui K, Lumyong S. Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation. Journal of Fungi. 2020; 6(4):384. https://doi.org/10.3390/jof6040384
Chicago/Turabian StyleJatuwong, Kritsana, Jaturong Kumla, Nakarin Suwannarach, Kenji Matsui, and Saisamorn Lumyong. 2020. "Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation" Journal of Fungi 6, no. 4: 384. https://doi.org/10.3390/jof6040384
APA StyleJatuwong, K., Kumla, J., Suwannarach, N., Matsui, K., & Lumyong, S. (2020). Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation. Journal of Fungi, 6(4), 384. https://doi.org/10.3390/jof6040384