Screening and Virulence of the Entomopathogenic Fungi Associated with Chilo suppressalis Walker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Morphological Identification
2.2. Genomic DNA Extraction and PCR
2.3. Insect Rearing
2.4. Bioassay
2.5. Hydrophobin Protein Extraction and Estimation
2.6. Liquid Culture for Enzyme Production of the Isolates
2.7. Sample Preparations for Enzymatic Assays
2.7.1. Assay of Proteases
2.7.2. Lipase Assay
2.7.3. Endochitinase Assay
2.7.4. Exochitinase Assay
2.8. Protein Assay
2.9. Effects of Thermotolerance and Cold Activity on Conidial Germination
2.10. Statistical Analysis
3. Results and Discussion
3.1. Screening and Identification of Fungi
3.2. Bioassay
3.3. Hydrophobin
3.4. Extracellular Enzymes
3.5. Effects of Thermotolerance and Cold Activity on Conidial Germination
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, Z.; Zhu, P.; Gurr, G.M.; Zheng, X.; Chen, G.; Heong, K.L. Rice pest management by ecological engineering: A pioneering attempt in China. In Rice Planthoppers; Springer: Dordrecht, The Netherlands, 2015; pp. 161–178. [Google Scholar]
- Mirhaghparast, S.K.; Zibaee, A.; Hoda, H.; Sendi, J.J. Changes in cellular immune responses of Chilo suppressalis Walker (Lepidoptera: Crambidae) due to pyriproxyfen treatment. J. Plant Prot. Res. 2015, 55, 287–293. [Google Scholar] [CrossRef]
- Zibaee, A.; Sendi, J.; Alinia, F.; Ghadamyari, M.; Etebari, K. Diazinon resistance in different selected strains of Chilo suppressalis Walker (Lepidoptera: Pyralidae), rice striped stem borer, in the north of Iran. J. Econ. Entomol. 2009, 102, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Chang, C.; Dai, S.M. Responses of striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), from Taiwan to a range of insecticides. Pest Manag. Sci. 2010, 66, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Pedrini, N. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol. 2018, 122, 538–545. [Google Scholar] [CrossRef]
- Uma Maheswara Rao, C.; Uma Devi, K.; Akbar, A.; Khan, P. Effect of combination treatment with entomopathogenic fungi Beauveria bassiana and Nomuraea rileyi (Hypocreales) on Spodoptera litura (Lepidoptera: Noctuidaeae). Biocontrol Sci. Technol. 2006, 16, 221–232. [Google Scholar] [CrossRef]
- Anand, R.; Tiwary, B.N. Pathogenicity of entomopathogenic fungi to eggs and larvae of Spodoptera litura, the common cutworm. Biocontrol Sci. Technol. 2009, 19, 919–929. [Google Scholar] [CrossRef]
- Godonou, I.; James, B.; Atcha-Ahowé, C.; Vodouhe, S.; Kooyman, C.; Ahanchédé, A.; Korie, S. Potential of Beauveria bassiana and Metarhizium anisopliae isolates from Benin to control Plutella xylostella L. (Lepidoptera: Plutellidae). Crop Prot. 2009, 28, 220–224. [Google Scholar] [CrossRef]
- Hussain, A.; Tian, M.Y.; He, Y.R.; Ahmed, S. Entomopathogenic fungi disturbed the larval growth and feeding performance of Ocinara varians (Lepidoptera: Bombycidae) larvae. Insect Sci. 2009, 16, 511–517. [Google Scholar] [CrossRef]
- Wraight, S.P.; Ramos, M.E.; Avery, P.B.; Jaronski, S.T.; Vandenberg, J.D. Comparative virulence of Beauveria bassiana isolates against lepidopteran pests of vegetable crops. J. Invertebr. Pathol. 2010, 103, 186–199. [Google Scholar] [CrossRef]
- Ramzi, S.; Zibaee, A. Biochemical properties of different entomopathogenic fungi and their virulence against Chilo suppressalis (Lepidoptera: Crambidae) larvae. Biocontrol Sci. Technol. 2014, 24, 597–610. [Google Scholar] [CrossRef]
- Baydar, R.; Güven, Ö.; Karaca, I. Occurrence of entomopathogenic fungi in agricultural soils from Isparta province in Turkey and their pathogenicity to Galleria mellonella (L.) (Lepidoptera: Pyralidae) larvae. Egypt. J. Biol. Pest Control. 2016, 26, 323. [Google Scholar]
- Duarte, R.T.; Gonçalves, K.C.; Espinosa, D.J.L.; Moreira, L.F.; De Bortoli, S.A.; Humber, R.A.; Polanczyk, R.A. Potential of entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae) and compatibility with chemical insecticides. J. Econ. Entomol. 2016, 109, 594–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amatuzzi, R.F.; Cardoso, N.; Poltronieri, A.S.; Poitevin, C.G.; Dalzoto, P.; Zawadeneak, M.A.; Pimentel, I.C. Potential of endophytic fungi as biocontrol agents of Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae). Braz. J. Biol. 2018, 78, 429–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karthi, S.; Vaideki, K.; Shivakumar, M.S.; Ponsankar, A.; Thanigaivel, A.; Chellappandian, M.; Vasantha-Srinivasan, P.; Muthu-Pandian, C.K.; Hunter, W.B.; Senthil-Nathan, S. Effect of Aspergillus flavus on the mortality and activity of antioxidant enzymes of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae. Pestic. Biochem. Physiol. 2018, 149, 54–60. [Google Scholar] [CrossRef]
- Li, M.; Bai, Q.; Zang, L.; Ruan, C. Pathogenic fungi identified from the striped stem borer, Chilo suppressalis and their pathogenicity. Chin. J. Biol. Control. 2019, 35, 63–69. [Google Scholar]
- Fite, T.; Tefera, T.; Negeri, M.; Damte, T.; Sori, W. Evaluation of Beauveria bassiana, Metarhizium anisopliae, and Bacillus thuringiensis for the management of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under laboratory and field conditions. Biocontrol Sci. Technol. 2020, 30, 278–295. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Pettas, I.; Lagogiannis, I. Stored product pests as models for trapping entomopathogenic fungi from olive tree orchards in Western Greece. J. Stored Prod. Res. 2020, 87, 101584. [Google Scholar] [CrossRef]
- Ekesi, S.; Maniania, N.K.; Ampong-Nyarko, K. Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci. Technol. 1999, 9, 177–185. [Google Scholar] [CrossRef]
- Fernandes, E.K.K.; Rangel, D.E.N.; Moraes, A.M.L.; Bittencourt, V.R.E.P.; Roberts, D.W. Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J. Invertebr. Pathol. 2008, 98, 69–78. [Google Scholar] [CrossRef]
- Imoulan, A.; Alaoui, A.; El Meziane, A. Natural occurrence of soil-borne entomopathogenic fungi in the Moroccan Endemic forest of Argania spinosa and their pathogenicity to Ceratitis capitata. World J. Microbiol. Biotechnol. 2011, 27, 2619–2628. [Google Scholar] [CrossRef]
- Lu, L.; Cheng, B.; Du, D.; Hu, X.; Peng, A.; Pu, Z.; Zhang, X.; Huang, Z.; Chen, G. Morphological, molecular and virulence characterization of three Lencanicillium species infecting Asian citrus psyllids in Huangyan citrus groves. J. Invertebr. Pathol. 2015, 125, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Sevim, A.; Demir, I.; Demirbağ, Z. Molecular characterization and virulence of Beauveria spp. from the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae). Mycopathologia 2010, 170, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Abdo, C.; Nemer, N.; Nemer, G.; Abou Jawdah, Y.; Atamian, H.; Kawar, N.S. Isolation of Beauveria species from Lebanon and evaluation of its efficacy against the cedar web-spinning sawfly, Cephalcia tannourinensis. BioControl 2008, 53, 341–352. [Google Scholar] [CrossRef]
- Goettel, M.S.; Eilenberg, J.; Glare, T. Entomopathogenic Fungi and their Role in Regulation of Insect Populations. In Insect Control; Academic Press: Beijing, China, 2010; pp. 387–431. [Google Scholar]
- Lee, W.W.; Shin, T.Y.; Bae, S.M.; Woo, S.D. Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzus persicae, using multiple tools. J. Asia Pac. Entomol. 2015, 18, 607–615. [Google Scholar] [CrossRef]
- Kepler, R.M.; Luangsa-Ard, J.J.; Hywel-Jones, N.L.; Quandt, C.A.; Sung, G.H.; Rehner, S.A.; Aime, M.C.; Henkel, T.W.; Sanjuan, T.; Zare, R.; et al. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 2017, 8, 335–353. [Google Scholar] [CrossRef]
- Nussenbaum, A.L.; Lecuona, R.E. Selection of Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato isolates as microbial control agents against the boll weevil (Anthonomus grandis) in Argentina. J. Invertebr. Pathol. 2012, 110, 1–7. [Google Scholar] [CrossRef]
- Amatuzzi, R.F.; Poitevin, C.G.; Poltronieri, A.S.; Zawadneak, M.A.; Pimentel, I.C. Susceptibility of Duponchelia fovealis Zeller (Lepidoptera: Crambidae) to Soil-Borne Entomopathogenic Fungi. Insects 2018, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Zahiri, R.; Sarafrazi, A.; Salehi, L.; Kunkel, J.G. A geometric morphometric study on populations of the Rice Stem Borer, Chilo suppressalis Walker (Lepidoptera: Crambidae) in northern Iran. Zool. Middle East 2006, 38, 73–84. [Google Scholar] [CrossRef]
- Fang, Z.D. Research Method of Plant Disease, 3rd ed.; China Agriculture Press: Beijing, China, 1998. [Google Scholar]
- Zare, R.; Gams, W.J.N.H. A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. N. Hedwig. 2001, 73, 1–50. [Google Scholar]
- Humber, R.A. Entomophthoromycota: A new phylum and reclassification for entomophthoroid fungi. Mycotaxon 2012, 120, 477–492. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Mains, E.B. Entomogenous species of Hirsutella, Tilachlidium and Synnematium. Mycologia. 1951, 43, 691–718. [Google Scholar] [CrossRef]
- Yoon, C.S.; Kim, J.J.; Lee, M.H.; Yun, T.Y.; Yoo, J.K. First Report on Hirsutella subulata, a Pathogen of Rice Stem Borer, Chilo suppressalis in Korea. Korean J. Mycol. 1999, 27, 206–207. [Google Scholar]
- Pérez-González, O.; Rodríguez-Villarreal, R.A.; López-Arroyo, J.I.; Maldonado-Blanco, M.G.; Rodríguez-Guerra, R. Mexican strains of Hirsutella isolated from Diaphorina citri (Hemiptera: Liviidae): Morphologic and molecular characterization. Fla. Entomol. 2015, 290–297. [Google Scholar] [CrossRef]
- Bischoff, J.F.; Rehner, S.A.; Humber, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 2009, 101, 512–530. [Google Scholar] [CrossRef] [Green Version]
- Montero-Pau, J.; Gómez, A.; Muñoz, J. Application of an inexpensive and high through put genomic DNA extraction method forthe molecular ecology of zooplanktonic diapausing eggs. Limnol. Oceanogra. Meth. 2008, 6, 218–222. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Shamakhi, L.; Zibaee, A.; Karimi-Malati, A.; Hoda, H. Effect of thermal stress on the immune responses of Chilo suppressalis walker (Lepidoptera: Crambidae) to Beauveria bassiana. J. Therm. Boil. 2019, 84, 136–145. [Google Scholar] [CrossRef]
- Ying, S.-H.; Feng, M.-G. Relationship between thermotolerance and hydrophobin like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus and fungal biocontrol agents. J. Appl. Microbiol. 2004, 97, 323–331. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, L.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Tsujita, T.; Ninomiya, H.; Okuda, H. p-nitrophenyl butyrate hydrolyzing activity of hormone sensitive lipase from bovine adipose tissue. J. Lipid Res. 1989, 30, 997–1004. [Google Scholar] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Tarasco, E.; De Bievre, C.; Papierok, B.; Poliseno, M.; Triggiani, O. Occurrence of entomopathogenic fungi in southern Italy. Entomology 1997, 31, 157–166. [Google Scholar]
- Keller, S.; Kessler, P.; Schweizer, C. Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metarhizium anisopliae. Biocontrol 2003, 48, 307–319. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Navas-Corte’s, J.A.; Maranhao, E.A.A.; Ortiz-Urquiza, A.; Santiago-Alvarez, C. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol. Res. 2007, 111, 947–966. [Google Scholar] [CrossRef]
- Sun, B.D.; Liu, X.Z. Occurrence and diversity of insect-associated fungi in natural soils in China. Appl. Soil Ecol. 2008, 39, 100–108. [Google Scholar] [CrossRef]
- Feng, M.G.; Poprawski, T.J.; Khachatourians, G.G. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Sci. Technol. 1994, 4, 3–34. [Google Scholar] [CrossRef]
- Thomas, K.C.; Khachatourians, G.G.; Ingledew, W.M. Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Can. J. Microbiol. 1987, 33, 12–20. [Google Scholar] [CrossRef]
- Jandricic, S.E.; Filotas, M.; Sanderson, J.P.; Wraight, S.P. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae). J. Invertebr. Pathol. 2014, 118, 34–46. [Google Scholar] [CrossRef]
- Kulkarni, R.; Kadam, J.R.; Mote, U.N. Efficiency of Verticilium lecanii against mealy bugs on pomegranate. J. App. Zool. Res. 2003, 14, 59–60. [Google Scholar]
- Zhang, S.; Xia, Y.X.; Kim, B.; Keyhani, N.O. Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol. Microbiol. 2011, 80, 811–826. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Y.; Ligoxygakis, P.; Xia, Y.X. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust. Int. J. Biol. Macromol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, M.J.; Wakley, G.; Talbot, N.J. Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J. 1998, 17, 3838–3849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevim, A.; Donzelli, B.G.; Wu, D.; Demirbaq, Z.; Gibson, D.M.; Turqueon, B.G. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr. Genet. 2012, 58, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, N.; Ortiz-Urquiza, A.; Zhang, S.; Keyhani, N.O. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: Hydrocarbon oxidation within the context of a host-pathogen interaction. Front. Microbiol. 2013, 4, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zibaee, A.; Sadeghi-Sefidmazgi, A.; Fazeli-Dinan, M. Properties of a lipase produced by Beauveria bassiana: Purification and biochemical studies. Biocontrol Sci. Technol. 2011, 21, 317–331. [Google Scholar] [CrossRef]
- St Leger, R.J.; Charnley, A.K.; Cooper, R.M. Kinetics of the digestion of insect cuticles by a protease (Pr1) from Metarhizium anisopliae. J. Invertebr. Pathol. 1991, 57, 146–147. [Google Scholar] [CrossRef]
- Maqsoudi, P.; Ramzi, S.; Zibaee, A.; Khodaparast, S.A. Virulence comparison of two Iranian isolates of Beauveria bassiana Vuillemin against Pseudococcus viburni Signoret (Hemiptera: Pseudococcidae). Trends Entomol. 2019, 14, 63–70. [Google Scholar]
- Sosa-Gómez, D.R.; Batista, S.; Tigano, M. Characterization and phenetic analysis of geographical isolates of Beauveria spp. Pesq. Agropec. Bras. 1994, 29, 401–409. [Google Scholar]
- Varela, A.; Morales, E. Characterization of some Beauveria bassiana isolates and their virulence toward the coffee berry borer Hypothenemus hampei. J. Invertebr. Pathol. 1996, 67, 147–152. [Google Scholar] [CrossRef]
- Rangel, D.E.N.; Butler, M.J.; Torabinejad, J.; Anderson, A.J.; Braga, G.U.L.; Day, A.W.; Roberts, D.W. Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. J. Invertebr. Pathol. 2006, 93, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Rivas, F.; Nuñez, P.; Jackson, T.; Altier, N. Effect of temperature and water activity on mycelia radial growth, conidial production and germination of Lecanicillium spp. isolates and their virulence against Trialeurodes vaporariorum on tomato plants. BioControl 2014, 59, 99–109. [Google Scholar] [CrossRef]
- Liu, H.; Skinner, M.; Brownbridge, M.; Parker, B.L. Characterization of Beauveria bassiana and Metarhizium anisopliae isolates for management of tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). J. Invertebr. Pathol. 2003, 82, 139–147. [Google Scholar] [CrossRef]
- Santos, M.P.; Dias, L.P.; Ferreira, P.C.; Pasin, L.A.; Rangel, D.E. Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. J. Invertebr. Pathol. 2011, 108, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Shin, T.Y.; Bae, S.M.; Kim, D.J.; Yun, H.G.; Woo, S.D. Evaluation of virulence, tolerance to environmental factors and antimicrobial activities of entomopathogenic fungi against two-spotted spider mite, Tetranychus urticae. Mycoscience 2017, 58, 204–212. [Google Scholar] [CrossRef]
Identification | Isolates | Conidia Size (um) | Shape of Conidia | Color of Conidia or Colony | Gene Bank Accession No. | Ident (%) |
---|---|---|---|---|---|---|
Akanthomyces lecanii | ALRR | 4.3 ± 0.07 × 1.9 ± 0.04 | Ellipsoidal-Cylindrical | White | MW143527 | 99.44 |
ALFN | 4.9 ± 0.1 × 1.7 ± 0.04 | Ellipsoidal-Cylindrical | White | MW143528 | 99.08 | |
ALAL | 4.5 ± 0.06 × 1.8 ± 0.04 | Ellipsoidal-Cylindrical | White | MW143529 | 99.08 | |
ALRT | 4.8 ± 0.06 × 1.6 ± 0.05 | Ellipsoidal-Cylindrical | White | MW143531 | 99.44 | |
ALLN | 4.5 ± 0.07 × 1.5 ± 0.03 | Ellipsoidal-Cylindrical | White | MW143530 | 99.44 | |
Akanthomyces muscarius | AMRT | 8 ± 0.09 × 1.7 ± 0.04 | Cylindrical | White | MW143523 | 99.82 |
AMAI | 7.8 ± 0.08 × 1.8 ± 0.03 | Cylindrical | White | MW143524 | 98.40 | |
AMAL | 8.2 ± 0.04 × 1.8 ± 0.05 | Cylindrical | White | MW143525 | 99.80 | |
AMBL | 7.5 ± 0.02 × 1.9 ± 0.06 | Cylindrical | White | MW143526 | 99.61 | |
Aspergillus sp. | ASAI | 2 ± 0.05 × 2 ± 0.04 | Globose | Dark green | MW143532 | 99.82 |
Beauveria bassiana | BBAL1 | 2.7 ± 0.07 × 2.5 ± 0.07 | Globose | White | MW143537 | 99.81 |
BBAL2 | 2.8 ± 0.07 × 2.5 ± 0.05 | Globose | White | MW143538 | 100 | |
BBAL3 | 3 ± 0.05 × 2.8 ± 0.09 | Globose | White | MW143539 | 99.81 | |
BBAL4 | 2.9 ± 0.04 × 2.8 ± 0.08 | Globose | White | MW143540 | 100 | |
BBBL1 | 2.9 ± 0.06 × 2.6 ± 0.06 | Globose | White | MW143541 | 99.61 | |
BBBL2 | 3.3 ± 0.05 × 2.9 ± 0.09 | Globose | White | MW143542 | 99.61 | |
BBLN1 | 2.8 ± 0.08 × 2.6 ± 0.08 | Globose | White | MW143546 | 99.63 | |
BBLN2 | 2.9 ± 0.05 × 2.8 ± 0.07 | Globose | White | MW143547 | 99.81 | |
BBLN3 | 2.5 ± 0.06 × 2.4 ± 0.04 | Globose | White | MW143548 | 99.63 | |
BBLD1 | 2.8 ± 0.05 × 2.6 ± 0.05 | Globose | White | MW143549 | 99.43 | |
BBLD2 | 2.9 ± 0.04 × 2.7 ± 0.07 | Globose | White | MW143550 | 99.44 | |
BBLD3 | 2.6 ± 0.08 × 2.4 ± 0.05 | Globose | White | MW143551 | 99.26 | |
BBLD4 | 2.9 ± 0.04 × 2.5 ± 0.06 | Globose | White | MW143552 | 99.26 | |
BBLD5 | 2.8 ± 0.05 × 2.6 ± 0.09 | Globose | White | MW143553 | 99.81 | |
BBRT1 | 2.9 ± 0.05 × 2.7 ± 0.09 | Globose | White | MW143533 | 100 | |
BBRT2 | 2.8 ± 0.04 × 2.7 ± 0.04 | Globose | White | MW143534 | 100 | |
BBRR1 | 2.7 ± 0.08 × 2.4 ± 0.06 | Globose | White | MW143535 | 100 | |
BBRR2 | 2.9 ± 0.08 × 2.7 ± 0.07 | Globose | White | MW143536 | 100 | |
BBSI | 2.9 ± 0.06 × 2.7 ± 0.07 | Globose | White | MW143544 | 98.90 | |
BBFN | 2.9 ± 0.04 × 2.7 ± 0.08 | Globose | White | MW143543 | 100 | |
BBAI | 3 ± 0.06 × 2.9 ± 0.08 | Globose | White | MW143545 | 100 | |
Hirutella subulata | HSAL | 5.9 ± 0.1 × 4.5 ± 0.06 | Ovoid | White-cream | MW143559 | 99.61 |
HSBL | 6 ± 0.2 × 4.7 ± 0.08 | Ovoid | White-cream | MW143560 | 99.61 | |
Metarhizium anisopliae complex | MASA | 7.6 ± 0.1 × 3.2 ± 0.07 | Oblong oval | Brown-green | MW143556 | 100 |
MAAI | 7.4 ± 0.8 × 3.3 ± 0.05 | Oblong oval | Brown-green | MW143557 | 99.81 | |
MAAL | 7.7 ± 0.4 × 3.6 ± 0.05 | Oblong oval | Brown-green | MW143558 | 99.81 | |
Trichoderma sp | TSRT | 2.7 ± 0.08 × 2.7 ± 0.09 | Globose | Dark green | MW143555 | 100 |
TSAH | 2.5 ± 0.05 × 2.3 ± 0.06 | Globose | Dark green | MW143554 | 100 |
Isolates | N | LC50 (Cl 95%) Conidia/mL | X2 (df) | Slope ± SE |
---|---|---|---|---|
BBAL1 | 150 | 2.1 × 104 (1.1 × 103 − 1.9 × 105) | 3.253 (3) | 0.420 ± 0.068 |
BBAL2 | 150 | 2.3 × 105 (4.7 × 104 − 1.4 × 106) | 0.377 (3) | 0.313 ± 0.059 |
BBAL3 | 150 | 5.6 × 104 (1.1 × 104 − 2.4 × 105) | 0.689 (3) | 0.353 ± 0.062 |
BBAL4 | 150 | 9.6 × 104 (1.9 × 104 − 4.8 × 105) | 0.820 (3) | 0.331 ± 0.060 |
BBBL1 | 150 | 1.5 × 105 (3.1 × 104 − 7.9 × 105) | 0.453 (3) | 0.321 ± 0.059 |
BBBL2 | 150 | 3.9 × 105 (7.2 × 104 − 3.2 × 106) | 0.327 (3) | 0.292 ± 0.058 |
BBLN1 | 150 | 1 × 104 (2.9 × 103 − 9.9 × 104) | 3.084 (3) | 0.380 ± 0.065 |
BBNL2 | 150 | 5.4 × 104 (1.1 × 104 − 2.4 × 105) | 2.285 (3) | 0.345 ± 0.061 |
BBLN3 | 150 | 1.5 × 105 (4 × 104 − 6.7 × 105) | 2.455 (3) | 0.385 ± 0.064 |
BBLD1 | 150 | 1.1 × 105 (2.3 × 104 − 5.5 × 105) | 1.280 (3) | 0.336 ± 0.060 |
BBLD2 | 150 | 1 × 105 (2.6 × 104 − 4.5 × 105) | 1.126 (3) | 0.379 ± 0.063 |
BBLD3 | 150 | 9.5 × 104 (2.3 × 104 − 3.9 × 105) | 1.156 (3) | 0.386 ± 0.064 |
BBLD4 | 150 | 1.2 × 105 (2.7 × 104 − 5.8 × 105) | 2.365 (3) | 0.351 ± 0.061 |
BBLD5 | 150 | 4.4 × 105 (9.9 × 104 − 2.7 × 106) | 1.126 (3) | 0.336 ± 0.061 |
BBRT1 | 150 | 4.9 × 105 (6.8 × 104 − 6.8 × 106) | 1.320 (3) | 0.247 ± 0.056 |
BBRT2 | 150 | 3.4 × 105 (7.8 × 104 − 1.9 × 106) | 0.534 (3) | 0.342 ± 0.061 |
BBRR1 | 150 | 2.2 × 104 (4.6 × 103 − 8.8 × 104) | 1.477 (3) | 0.337 ± 0.064 |
BBRR2 | 150 | 2.4 × 105 (6.1 × 104 − 1.1 × 106) | 0.776 (3) | 0.375 ± 0.063 |
BBSI | 150 | 1.4 × 105 (3.2 × 104 − 7.6 × 105) | 0.513 (3) | 0.337 ± 0.060 |
BBFN | 150 | 2.3 × 105 (4.5 × 104 − 1.5 × 106) | 1.470 (3) | 0.307 ± 0.059 |
BBAI | 150 | 1.9 × 105 (4.2 × 104– 1 × 106) | 0.539 (3) | 0.332 ± 0.060 |
HSAL | 150 | 7.9 × 105 (1.5×105 − 7.3 × 106) | 1.985 (3) | 0.309 ± 0.052 |
HSBL | 150 | 1.6 × 106 (2.4 × 105 − 1.5 × 107) | 0.449 (3) | 0.297 ± 0.059 |
MASA | 150 | 7.1 × 104 (1.6 × 104 − 2.9 × 105) | 2.325 (3) | 0.374 ± 0.062 |
MAAI | 150 | 1.6 × 105 (3.4 × 104 − 9.4 × 105) | 1.743 (3) | 0.325 ± 0.060 |
MAAL | 150 | 3.6 × 105 (7.4 × 104 − 2.4 × 106) | 0.820 (3) | 0.315 ± 0.059 |
Isolates | LT50 (Cl 95%) Days | X2 (df) | Slope ± SE |
---|---|---|---|
BBAL1 | 3.45 (2.55–4.43) | 11.948 (5) | 4.007 ± 0.496 |
BBAL2 | 4.16 (3.16–5.21) | 20.914 (8) | 3.270 ± 0.347 |
BBAL3 | 3.87 (3.28–4.45) | 9.303 (7) | 4.354 ± 0.465 |
BBAL4 | 4.03 (3.47–4.55) | 7.305 (8) | 4.12 ± 0.447 |
BBBL1 | 4.18 (3.50–4.86) | 12.719 (8) | 3.983 ± 0.410 |
BBBL2 | 4.63 (4.13–5.13) | 0.883 (8) | 3.803 ± 0.419 |
BBLN1 | 3.15 (2.36–4) | 13.895 (5) | 3.302 ± 0.423 |
BBNL2 | 3.70 (2.96–4.45) | 12.155 (7) | 3.545 ± 0.392 |
BBLN3 | 3.75 (2.96–4.54) | 14.866 (7) | 3.899 ± 0.416 |
BBLD1 | 4.05 (3.25–4.84) | 15.98 (8) | 3.654 ± 0.376 |
BBLD2 | 4.28 (3.30–5.23) | 27.697 (8) | 3.654 ± 0.376 |
BBLD3 | 3.81 (3.38–4.21) | 6.745 (7) | 4.248 ± 0.456 |
BBLD4 | 3.66 (3.24–4.05) | 5.112 (8) | 4.166 ± 0.420 |
BBLD5 | 4.23 (3.74–2.4.71) | 3.729 (8) | 3.648 ± 0.386 |
BBRT1 | 4.91 (4.03–5.78) | 15.756 (8) | 3.623 ± 0.396 |
BBRT2 | 4.77 (4.29–5.24) | 3.858 (8) | 4.141 ± 0.445 |
BBRR1 | 2.71 (2.29–3.10) | 5.961 (6) | 3.260 ± 0.383 |
BBRR2 | 4.16 (3.52–4.78) | 12.398 (8) | 4.373 ± 0.441 |
BBSI | 4.33 (3.77–4.87) | 8.335 (8) | 4.084 ± 0.419 |
BBFN | 4.48 (3.88–5.08) | 9.194 (8) | 3.99 ± 0.414 |
BBAI | 4.41 (3.67–5.14) | 14.25 (8) | 4.085 ± 0.419 |
HSAL | 4.65 (3.83–5.54) | 13.498 (7) | 4.070 ± 0.457 |
HSBL | 5.21 (4.72–5.74) | 2.075 (7) | 4.434 ± 0.526 |
MASA | 3.69 (3.01–4.38) | 9.280 (6) | 4.021 ± 0.470 |
MAAI | 4.91 (4.03–5.87) | 17.220 (7) | 3.723 ± 0.410 |
MAAL | 4.14 (3.64–4.64) | 1.887 (8) | 3.386 ± 0.366 |
Isolates | Amount of Hydrophobin (mg/mL) |
---|---|
ALRR | 0.0603 ± 0.007 fghi |
ALFN | 0.0628 ± 006 efghi |
ALAL | 0.0535 ± 0.005 hi |
ALRT | 0.0586 ± 0.002 ghi |
ALLN | 0.0627 ± 0.003 efghi |
AMRT | 0.0687 ± 0.003 cdefgh |
AMAI | 0.0663 ± 0.005 cdefgh |
AMAL | 0.0656 ± 0.001 defgh |
AMBL | 0.0679 ± 0.002 cdefgh |
ASAI | 0.038 ± 0.005 j |
BBAL1 | 0.0953 ± 0.001 a |
BBAL2 | 0.0745 ± 0.004 bcdefgh |
BBAL3 | 0.0765 ± 0.002 abcdefg |
BBAL4 | 0.0749 ± 0.002 bcdefgh |
BBBL1 | 0.0846 ± 0.002 abcd |
BBBL2 | 0.0780 ± 0.001 abcdefgh |
BBLN1 | 0.822 ± 0.003 abcde |
BBLN2 | 0.0803 ± 0.003 abcde |
BBLN3 | 0.0756 ± 0.003 abcdefgh |
BBLD1 | 0.0854 ± 0.004 abc |
BBLD2 | 0.0796 ± 0.006 abcdefg |
BBLD3 | 0.0704 ± 0.003 bcdefgh |
BBLD4 | 0.0782 ± 0.002 abcdefg |
BBLD5 | 0.0897 ± 0.002 ab |
BBRT1 | 0.0704 ± 0.004 bcdefgh |
BBRT2 | 0.0774 ± 0.002 abcdefg |
BBRR1 | 0.0767 ± 0.002 abcdefg |
BBRR2 | 0.0677 ± 0.003 cdefgh |
BBSI | 0.0762 ± 0.001 abcdefg |
BBFN | 0.0729 ± 0.001 bcdefgh |
BBAI | 0.0832 ± 0.002 abcd |
HSAL | 0.0816 ± 0.001 abcde |
HSBL | 0.0684 ± 0.003 cdefgh |
MASA | 0.0805 ± 0.002 abcde |
MAAI | 0.0631 ± 0.002 ifghi |
MAAL | 0.0714 ± 0.001 bcdefgh |
TSRT | 0.0036 ± 0.002 j |
TSAH | 0.043 ± 0.002 ij |
Isolates | Conidial Germination (%) | |||
---|---|---|---|---|
Exposure to 45 °C | Incubating at 4 °C | |||
1 h | 2 h | 7 Day | 14 Day | |
ALRR | 29.86 ± 1.2 mnopq | 10.90 ± 0.6 op | 84.36 ± 1.6 ghijk | 90.53 ± 1.5 abcdef |
ALFN | 27.78 ± 1 nopq | 12.21 ± 0.3 mnop | 94.20 ± 0.9 abcde | 95.85 ± 0.9 abcd |
ALAL | 37.75 ± 2.1 jklmn | 16.39 ± 0.5 ijklmno | 88.58 ± 1. abcdefghij | 93.98 ± 0.9 abcde |
ALRT | 29.54 ± 1.5 mnopq | 11.98 ± 0.9 nop | 95.66 ± 1.6 abc | 96.28 ± 0.8 abc |
ALLN | 35.46 ± 1.3 klmnop | 12.98 ± 0.9 klmnop | 86.39 ± 1.7 efghij | 90.72 ± 0.9 abcdef |
AMRT | 22.67 ± 1.6 pq | 9.07 ± 0.6 op | 91.14 ± 1.4 abcdefgh | 96.49 ± 1.3 abc |
AMAI | 27.13 ± 1.8 pq | 10.64 ± 0.6 pq | 94.98 ± 0.7 abcd | 97.07 ± 0.9 ab |
AMAL | 29.95 ± 1.9 mnopq | 12.76 ± 0.7 klmnop | 87.13 ± 1.6 defghij | 94.30 ± 0.9 abcde |
AMBL | 21.91 ± 1.7 pq | 8.93 ± 0.5 pq | 95.95 ± 1.3 a | 98.08 ± 0.6 a |
ASAI | 97.33 ± 0.8 a | 92.41 ± 0.8 a | 0 l | 0 g |
BBAL1 | 75.25 ± 1.6 bc | 38.55 ± 1.6 bcd | 93.19 ± 0.7 abcdef | 97.52 ± 0.7 ab |
BBAL2 | 57.24 ± 1.4 fg | 23.55 ± 1.1 gh | 92.14 ± 0.8 abcdefg | 94.42 ± 0.5 abcde |
BBAL3 | 38.14 ± 1.6 klm | 14.43 ± 0.9 klmnop | 88.45 ± 1.6 abcdefghij | 93.40 ± 0.9 abcde |
BBAL4 | 36.36 ± 1.9 jklmno | 12.60 ± 1.0 lmnop | 87.80 ± 1.0 cdefghij | 91.94 ± 0.7 abcdef |
BBBL1 | 50.41 ± 1.3 ghi | 18.93 ± 1.1 hijkl | 89.30 ± 1.1 abcdefghij | 94.65 ± 0.7 abcd |
BBBL2 | 51.03 ± 1.8 ghi | 20.95 ± 1.0 ghij | 87.96 ± 1.4 bcdefghij | 91.07 ± 1 abcdef |
BBLN1 | 76.29 ± 1.9 b | 41.58 ± 1.3 bc | 95.84 ± 0.7 ab | 97.29 ± 0.9 ab |
BBLN2 | 69.56 ± 1.2 bcd | 35.83 ± 1.8 cde | 86.54 ± 0.9 efghij | 92.33 ± 0.8 abcde |
BBLN3 | 42.47 ± 1.7 ijkl | 21.85 ± 1.2 ghi | 88.24 ± 1.6 abcdefghij | 93.19 ± 0.9 abcde |
BBLD1 | 43.06 ± 1.5 hijk | 26.70 ± 1.1 fg | 93.78 ± 0.9 abcdef | 91.51 ± 6.1 abcde |
BBLD2 | 57.79 ± 1.3 efg | 30.97 ± 1.1 ef | 86.48 ± 1.1 efghij | 91.68 ± 0.8 abcde |
BBLD3 | 26.51 ± 1.4 pq | 11.27 ± 0.7 op | 94.98 ± 0.9 abcd | 96.86 ± 0.7 ab |
BBLD4 | 37.00 ± 1.1 jklmno | 14.55 ± 1.1jkl mnop | 85.03 ± 1.1 fghijk | 90.64 ± 0.9 abcdef |
BBLD5 | 33.88 ± 2.3 lmnop | 12.19 ± 1.1 mnop | 85.95 ± 1.2 fghijk | 91.11 ± 1 abcdef |
BBRT1 | 51.95 ± 1.4 gh | 19.08 ± 1.1 hijk | 93.83 ± 0.9 abcdef | 96.50 ± 0.7 abc |
BBRT2 | 35.18 ± 1.7 klmnop | 18.59 ± 0.8 hijklm | 90.53 ± 0.8 abcdefghi | 95.47 ± 0.8 abcd |
BBRR1 | 72.63 ± 1.2 bc | 33.95 ± 1.6 de | 94.23 ± 0.9 abcde | 98.14 ± 0.5 a |
BBRR2 | 28.27 ± 1.2 opq | 12.29 ± 1.6 mnop | 84.83 ± 1.2 fghijk | 93.03 ± 0.9 abcde |
BBSI | 42.16 ± 1.7 ijkl | 18.04 ± 1.1 hijklmn | 82.78 ± 1.3 ijk | 90.66 ± 1.2 abcdef |
BBFN | 44.60 ± 2.1 hij | 19.08 ± 1.1 hijk | 87.55 ± 1.2 defghij | 91.90 ± 1.2 abcde |
BBAI | 42.76 ± 2.3 ijkl | 18.59 ± 0.8 hijklm | 87.60 ± 1.4 defghij | 93.38 ± 1.1 abcde |
HSAL | 11.38 ± 0.9 r | 2.90 ± 0.7 q | 83.48 ± 1.6 hijk | 88.83 ± 1.5 cdef |
HSBL | 9.77 ± 0.6 r | 1.59 ± 0.5 q | 82.95 ± 3.3 ijk | 86.87 ± 1.4 ef |
MASA | 73.41 ± 1.2 bc | 36.91 ± 2.1 bcde | 89.87 ± 2.1 abcdefgij | 94.93 ± 1.7 abcd |
MAAI | 67.65 ± 1.6 bcd | 33.82 ± 1.5 de | 83.93 ± 1.4 hijk | 89.85 ± 1.3 bcdef |
MAAL | 63.04 ± 1.4 def | 31.31 ± 1.2 ef | 82.04 ± 1.5 jk | 88.30 ± 0.7 def |
TSRT | 69.8 ± 1.7 bcd | 40.57 ± 1.7 bc | 88.11 ± 1.2 abcdefghij | 93.64 ± 0.8 abcde |
TSAH | 75.05 ± 1.7 bc | 43.29 ± 1.2 b | 84.74 ± 2.3 ghijk | 89.89 ± 0.8 bcdef |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahriari, M.; Zibaee, A.; Khodaparast, S.A.; Fazeli-Dinan, M. Screening and Virulence of the Entomopathogenic Fungi Associated with Chilo suppressalis Walker. J. Fungi 2021, 7, 34. https://doi.org/10.3390/jof7010034
Shahriari M, Zibaee A, Khodaparast SA, Fazeli-Dinan M. Screening and Virulence of the Entomopathogenic Fungi Associated with Chilo suppressalis Walker. Journal of Fungi. 2021; 7(1):34. https://doi.org/10.3390/jof7010034
Chicago/Turabian StyleShahriari, Morteza, Arash Zibaee, Seyyed Akbar Khodaparast, and Mahmoud Fazeli-Dinan. 2021. "Screening and Virulence of the Entomopathogenic Fungi Associated with Chilo suppressalis Walker" Journal of Fungi 7, no. 1: 34. https://doi.org/10.3390/jof7010034
APA StyleShahriari, M., Zibaee, A., Khodaparast, S. A., & Fazeli-Dinan, M. (2021). Screening and Virulence of the Entomopathogenic Fungi Associated with Chilo suppressalis Walker. Journal of Fungi, 7(1), 34. https://doi.org/10.3390/jof7010034