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Abstract: Using 126 endogenous lichen fungus (ELF) extracts, inhibitory activities against monoamine
oxidases (MAOs) and cholinesterases (ChEs) were evaluated. Among them, extract ELF29 of the
endogenous fungus Diaporthe mahothocarpus of the lichen Cladonia symphycarpia showed the highest
inhibitory activity against hMAO-A. Compounds alternariol (AT), 5′-hydroxy-alternariol (HAT), and
mycoepoxydiene (MED), isolated from the extract, had potent inhibitory activities against hMAO-
A with IC50 values of 0.020, 0.31, and 8.68 µM, respectively. AT, HAT, and MED are reversible
competitive inhibitors of hMAO-A with Ki values of 0.0075, 0.116, and 3.76 µM, respectively. The
molecular docking studies suggested that AT, HAT, and MED had higher binding affinities for hMAO-
A (−9.1, −6.9, and −5.6 kcal/mol, respectively) than for hMAO-B (−6.3, −5.2, and −3.7 kcal/mol,
respectively). The relative tight binding might result from a hydrogen bond interaction of the
three compounds with a Tyr444 residue in hMAO-A, whereas no hydrogen bond interaction was
proposed in hMAO-B. In silico pharmacokinetics, the three compounds showed high gastrointestinal
absorption without violating Lipinski’s five rules, but only MED showed high probability to cross
the blood–brain barrier. These results suggest that AT, HAT, and MED are candidates for treating
neuropsychiatric disorders, such as depression and cardiovascular disease.

Keywords: endogenous lichen fungus; Diaporthe mahothocarpus; alternariol; 5-hydroxy-alternariol;
mycoepoxydiene; selective monoamine oxidase A inhibitor; docking simulation

1. Introduction

Lichens, called the clothes of the earth, are complex organisms in which green or
blue-green algae have a symbiotic relationship with fungi. Lichens have been used as
a folk remedy for centuries but have been less studied than single microorganisms [1].
Lichens are found in various environments, from temperate regions and tropical rainforests
to extremely cold regions, such as deserts, tundra, and volcanoes; it is predicted that
the materials they produce help them adapt to the environment [2]. Their primary and
secondary metabolites exhibit diverse biological activities, such as antibiotic, antifungal,
antiviral, anti-inflammatory, analgesic, antipyretic, antiproliferative, cytotoxic, and antioxi-
dant effects [3,4]. Additionally, various studies have been conducted to develop new drugs
rules, but only MED had blood–brain barrier permeability [5,6].

Depression is a phenomenon that causes sadness, despair, and discouragement due
to a depressed mood or decreased interest and pleasure, and suicidal ideation when the
symptoms occur severely [7]. Hundreds of millions of people have the disease, and the
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number is increasing yearly. It is known that the decrease of monoamines, which are
neurotransmitters, such as norepinephrine, serotonin, and melatonin, within the nerve
synapse, causes depression [8]. Alzheimer disease (AD), which can cause 60–70% of
dementia, is a neurodegenerative disease that progresses slowly and gets worse. It was
named after the German psychiatrist and pathologist Alois Alzheimer in 1906 [9]. As
AD advances, it presents with a variety of symptoms, including language problems,
disorientation, mood swings, and loss of motivation [10]. It is known that among the
causes of AD is the excessive accumulation of a small peptide called β-amyloid (Aβ).
Furthermore, excessive activity of monoamine oxidase (MAO) and cholinesterase (ChE)
has been shown to be associated with AD.

MAO is an enzyme that oxidatively deaminates monoamines, which are neurotrans-
mitters, and is classified into two isoforms, A and B [11]. Deamination of monoamine
by MAO causes various diseases, depending on the isoforms type. While MAO-A is
associated with neuropsychiatric disorders, such as depression and cardiovascular disease,
MAO-B is associated with neurodegenerative diseases, such as AD and Parkinson disease
(PD) [12]. Therefore, MAO inhibitors are used as therapeutic agents for neuropsychiatric
and neurodegenerative diseases, respectively. ChEs, distinguished into acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE), are characterized by the degradation of choline;
AChE degrades acetylcholine (ACh) into acetate and choline [13], and BChE degrades
butyrylcholine (BCh) into butyrate and choline [14]. ACh is among the neurotransmitters,
and ACh is most distributed in the cerebral cortex. AD patients have low ACh levels and
high concentrations of ChE in the brain. This indicates that ChEs are one of the main
causes of Alzheimer disease and that ChEs’ inhibitors are used as therapeutic agents for
AD patients [15]. Additionally, BChE levels in the brains of AD patients appear to be
significantly increased [16]. On the other hand, an enzyme called β-secretase (BACE-1)
cleaves the β-site of amyloid precursor protein (APP) to produce and aggregate Aβ to
induce accumulation in the brain, thereby affecting the progression of AD [17].

In a previous study, we reported that 5-hydroxy-2-methyl-chroman-4-one was isolated
from an endogenous lichen fungus (ELF) extract, and it had selective inhibition of hMAO-
B [6]. Here, the inhibitory activities of MAOs and ChEs against a library of 126 endogenous
lichen extracts (ELFs) were evaluated. Among them, the ELF29 extract of the endogenous
fungus Diaporthe mahothocarpus of the lichen Cladonia symphycarpia showed the highest
hMAO-A inhibitory activity. Through activity-guided screening, alternariol (AT, 1), 5′-
hydroxy-alternariol (HAT, 2), and mycoepoxydiene (MED, 3) were isolated and identified
from ELF29. Additionally, ChEs’ and BACE-1 inhibitory activities were measured for the
compounds.

AT is a mycotoxin produced by Alternaria fungi and has been reported to have estro-
genic and immunomodulatory effects [18,19] and can form reactive oxygen species (ROS)
and interact with topoisomerase II relating to toxicity at >10 µM [20]. Additionally, it was
known to have inhibitory activity on MAO-A and AChE [21]. However, the work was
performed using rat brain extracts, unpurified enzymes. HAT is a known compound [22],
but little information is available about HAT, except for applications in patents as antioxi-
dants and cosmetics [23]. MED has various biological effects, including antimicrobial [24],
osteoporosis relief [25], anticancer [26–28], and anti-inflammatory [29]. However, inhibitory
activities of HAT and MED against hMAO-A have not been reported. In this study, the
inhibitory abilities of AT, HAT, and MED against hMAO-A, hMAO-B, AChE, BChE, and
BACE1 were investigated using purified enzymes; also, performed kinetics, reversibility
experiments, and docking simulations were conducted for hMAO-A and hMAO-B, and in
silico pharmacokinetic analyses were performed.

2. Materials and Methods
2.1. Evaluation of Enzyme Inhibitory Activities of ELF Extracts

A library of 126 extracts with ethyl acetate or butanol from ELF from Korea, China, and
Antarctica was obtained from the Korea Lichen Research Institute (KOLRI) at Suncheon
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National University, Republic of Korea, for evaluation of the inhibitory activities of MAOs’
and ChEs’ enzymes. The extract was dissolved in DMSO at a concentration of 10 mg/mL
and used for analysis. Final concentration of DMSO in the assay mixture was 0.2%, in
which it did not inhibit the enzymes. All other chemicals and enzymes were purchased
from Sigma-Aldrich (St. Louis, MO, USA).

2.2. MAO Activity Assay

Human recombinant MAO-A and MAO-B were assayed in a reaction mixture of
0.5 mL containing 50 mM sodium phosphate buffer (pH 7.2) and the substrates (0.06 mM
kynuramine for hMAO-A and 0.3 mM benzylamine for hMAO-B). The hMAO-A and
hMAO-B activities were continuously assayed by UV absorbance analysis at 316 nm and
250 nm, respectively, in kinetic mode for 30 min at room temperature. [30,31]. The reactions
were started with the addition of substrates without preincubation of the enzyme and
inhibitor.

2.3. ChE Activity Assay

AChE from electric eel and BChE from horse serum were used for cholinesterases
and assayed with a slight modification of the Ellman method [32,33]. Shortly, after pre-
incubating the enzyme and inhibitor for 15 min in 100 mM of sodium phosphate buffer
(pH 7.5), 0.5 mM acetylthiocholine iodide (ATCI) or butyrylthiocholine iodide (BTCI) was
added as a substrate for AChE or BChE assay, respectively. Then, 0.5 mM 5,5-dithiobis
(2-nitrobenzoic acid) (DTNB) was added for color development for a final volume of 0.5 mL.
Enzyme activity was measured for 15 min at room temperature in a kinetic mode at 412 nm.

2.4. BACE1 Activity Assay

BACE1 activity was analyzed using a BACE1 activity detection kit with fluorescence
(Sigma-Aldrich, St Louis, MO, USA) and a spectrofluorometer (FS-2, Scinco, Seoul, Korea),
measured under the conditions of excitation 320 nm and emission 405 nm at 37 ◦C for
2 h [6,34].

2.5. Culture and Extraction of ELF29

The fungus strain ELF29 was cultured in 80 2.8-L Fernbach flasks, each containing
1 L of potato dextrose broth (PDB) medium at 27 ◦C for 7 days with shaking at 120 rpm.
The culture broth was extracted with the same volume, i.e., 80 L of ethyl acetate, and the
solvent was evaporated in vacuo to yield 10.0 g of ELF29 crude extract.

2.6. Isolation of Compounds from ELF29 Crude Extract

The crude extract of ELF29 was fractionated by reversed-phase, open-column chro-
matography on C-18 resin with a step gradient of water and methanol to afford nine
fractions. The fourth fraction was purified by HPLC (Waters 996 PDA Detector, Waters
Corp, Milford, MA, USA) equipped with a reversed-phase column (Phenomenex Luna
C-18 (2), 250 × 100 mm, 5 µm, 100 Å, 2.0 mL/min, UV = 254 nm; Torrance, CA, USA)
using an isocratic solvent system from 40% CH3CN in water to yield alternariol (AT, 1,
4.2 mg, tR = 26.2 min, purity = 99.3%), 5′-hydroxy-alternariol (HAT, 2, 2.0 mg, tR = 18.6 min,
purity = 99.3%), and mycoepoxydiene (MED, 3, 30.2 mg, tR = 22.9 min, purity = 99.2%).
The purities of the compounds were calculated by HPLC chromatograms (Supplementary
Figures S1–S3).

2.7. Structure Analysis of the Compounds through NMR and LC/MS

Low-resolution LC/MS measurements were performed using the Agilent Technolo-
gies’ 1260 quadrupole (Agilent Technologies, Santa Clara, CA, USA) and Waters Micromass-
ZQ 2000 MS system (Waters Corp) using a reversed-phase column (Phenomenex Luna C18
(2), 50 mm × 4.6 mm, 5 µm, 100 Å) at a flow rate of 1.0 mL/min at the National Research
Facilities and Equipment Center (NanoBioEnergy Materials Center) at Ewha Womans
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University. The 1H and 2D NMR spectra were recorded at 500 MHz in DMSO-d6 and
CD3OD, using solvent signal as internal standard on Varian Inova spectrometers (Bruker,
Billerica, MA, USA). The 13C NMR spectra were acquired at 125 MHz on the Varian Inova
spectrometer. The data were provided in Supplementary (Figures S4–S18).

2.8. Analysis of Inhibitory Activities and Kinetics of the Compounds

Assays for inhibitory activities of compounds against hMAO-A, hMAO-B, AChE,
BChE, and BACE1 were performed at 10-µM concentration of inhibitor. IC50 values of the
compounds were determined using several concentrations of inhibitors, and Ki values
were determined using a Lineweaver–Burk plot and its secondary plots of the slope vs.
inhibitor concentration at three concentrations of inhibitors, i.e., ~1/2 × IC50, ~IC50, and
~2 × IC50 [35].

2.9. Analysis of Inhibitor Reversibility

The reversibility analyses of the compounds were performed at ~2 × IC50 concentra-
tion of the inhibitor, and a recovery experiment was subjected through dialysis in 50 mM
sodium phosphate buffer (pH 7.2). Toloxatone as a reversible inhibitor and clorgyline as an
irreversible inhibitor were used as references for hMAO-A [36].

2.10. Docking Simulations of the Compounds with hMAO-A and hMAO-B

AutoDock Vina [37], which has an automated docking facility, was used for docking
simulations of the compounds to hMAO-A (PDB ID: 2Z5X) and hMAO-B (PDB ID: 3PO7).
The PDB files were retrieved from Protein Data Bank (PDB) (www.rcsb.org, accessed on 16
July 2021) and prepared for docking simulation by removing the heteroatoms and water
molecules. To locate the ligand-binding pocket for each enzyme, we used a set of the prede-
fined active sites obtained from a complex of hMAO-A with 7-methoxy-1-methyl-9H-beta-
carboline (HRM) and a complex of hMAO-B 1-(1,2-benzoxazol-3-yl)methanesulfonamide
(ZON). For the docking simulation, we performed the following steps: creation of 2D
structures of the compounds [37], conversion of the 2D structures into 3D structures [38],
and energy minimization using the ChemOffice program (http://www.cambridgesoft.com,
accessed on 16 July 2021) [39]. Docking simulations of hMAO-A and hMAO-B with the
compounds were performed using AutoDock Vina [38]. From the docking results, we
checked for possible hydrogen bonding using relaxation constraints of 0.4 Å and 20.0◦ us-
ing FindHBond program in UCSF Chimera [39]. To determine the predicted binding poses
of AT for hMAO-A or hMAO-B, we performed molecular dynamics based on nanoscale
molecular dynamics (NAMD) [40] and visual molecular dynamics (VMD) [41] software.
The compound was simulated under the condition of the complex with hMAO-A or hMAO-
B, using CHARMM parameters [42]. The water solvent model was used for the solvation
box plug-in provided by VMD. To consider stable water molecules located in the close
surface of protein, the size of water box was the protein size plus 5 Å. The time step and
number of minimizations were 1.0 fs and 100,000 step, respectively, and the total running
time was 1 ns. The molecular dynamics were examined on the basis of Root Mean Square
Deviation (RMSD) during the time. The structure variation was calculated by RMSD values
of protein–ligand complexes from 0 to 1 ns.

2.11. Analysis of Pharmacokinetic and Physicochemical Parameters of the Compounds Using in
Silico Method

Analysis of the pharmacokinetic and physicochemical parameters of the compounds
was performed using the SwissADME web tool (http://www.swissadme.ch/, accessed
on 30 July 2021). Gastrointestinal absorption, blood–brain barrier (BBB) permeability, p-
glycoprotein substrate, cytochrome p inhibitory ability, physicochemical parameters, and
Lipinski violation were analyzed [43].

www.rcsb.org
http://www.cambridgesoft.com
http://www.swissadme.ch/
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3. Results
3.1. Inhibitory Activities of ELF Extracts against hMAO-A, hMAO-B, AChE, and BChE

Inhibitory activities against hMAO-A, hMAO-B, AChE, and BChE were evaluated
with 126 extracts of ELF from Korea, China, and Antarctica at a concentration of 20 µg/mL.
Based on the cutoff values of residual activity, i.e., 20% and 30% for MAOs and ChEs,
respectively, eight extracts for hMAO-A, nine for hMAO-B, and four for BChE were
selected (Table 1). ELF21, ELF24, ELF29, ELF93, and ELF114 were potent against hMAO-A
and hMAO-B. In this study, ELF21, ELF24, ELF29, and ELF93 were selected as the highest
candidates for isolation of potent hMAO-A inhibitors. However, ELF24 was limited in
its storage at KOLRI. Three strains of ELF21, ELF29, and ELF93 were cultured to confirm
the reproducibility, and it was found that ELF29 showed reproducibly potent inhibitory
activity against hMAO-A (Table 2). That is, ELF29 showed 7.25% and 10.7% residual
activities against hMAO-A in the original and cultured extracts, whereas the cultured
extract showed much higher residual activity against hMAO-B (53.4%) than the original
extract (10.8%) (Table 2). The other two strains, ELF21 and ELF93, exhibited much lower
inhibitory activities than those of their original extracts. Therefore, ELF29 was selected
and used for further study. ELF29 was identified as an endogenous fungus Diaporthe
mahothocarpus of the lichen Cladonia symphycarpia.

Table 1. Inhibitory activities of ELF extracts against hMAO-A, hMAO-B, AChE, and BChE.

ELF No.
Residual Activity at 20 µg/mL (%)

hMAO-A hMAO-B AChE BChE

3 14.9 ± 1.91 25.2 ± 5.49 87.9 ± 4.29 95.2 ± 1.42
5 48.3 ± 0.48 68.9 ± 3.14 72.0 ± 9.02 14.5 ± 1.81

12 68.9 ± 0.96 13.5 ± 0.52 90.2 ± 1.24 72.8 ± 3.30
19 81.7 ± 4.84 10.9 ± 2.06 91.9 ± 0.84 93.5 ± 2.45
21 4.18 ± 2.69 −4.67 ± 1.32 63.3 ± 1.32 64.8 ± 1.20
23 80.1 ± 6.66 68.2 ± 6.61 86.6 ± 2.80 20.9 ± 1.84
24 7.25 ± 1.02 2.80 ± 0.42 56.6 ± 0.98 93.2 ± 6.70
28 35.1 ± 5.64 18.6 ± 0.001 95.7 ± 4.22 71.3 ± 0.24
29 7.25 ± 2.05 10.8 ± 1.39 94.3 ± 1.42 86.3 ± 2.92
45 14.8 ± 0.47 41.0 ± 2.26 91.1 ± 3.14 83.3 ± 0.00
49 15.0 ± 0.40 34.6 ± 5.27 97.1 ± 6.09 26.2 ± 1.59
50 50.0 ± 2.80 10.1 ± 2.26 94.4 ± 1.17 45.2 ± 2.96
54 71.4 ± 3.59 43.2 ± 5.41 86.8 ± 2.33 22.2 ± 0.50
93 9.83 ± 0.48 −1.70 ± 7.23 78.0 ± 4.09 56.1 ± 2.20
114 16.7 ± 0.55 15.5 ± 1.68 75.5 ± 6.43 97.2 ± 0.72

Results are expressed as mean and standard deviation from duplicate experiments.

Table 2. Inhibitory activities of the original and cultured extracts of ELF candidates against hMAO-A
and hMAO-B.

ELF No.

Residual Activity at 20 µg/mL (%)

Original Extract Cultured Extract

hMAO-A hMAO-B hMAO-A hMAO-B

21 4.18 ± 2.69 −4.67 ± 1.32 >50 45.6 ± 8.71
29 7.25 ± 2.05 10.8 ± 1.39 10.7 ± 4.38 53.4 ± 10.1
93 9.83 ± 0.48 −1.70 ± 7.23 >50 >50

Results are expressed as mean and standard deviation from duplicate experiments.

3.2. Isolation and Identification of the Compounds from the ELF29 Extract

Culture broth of ELF29 was extracted with EA, and its constituents were separated
into nine fractions through a C18 column, and the fourth fraction showed the highest
inhibitory activity against hMAO-A (Figure 1). The fraction was further separated into
12 single compounds. Among them, three compounds, 4, 7, and 8, were potent hMAO-A
inhibitors, and their structures were identified as AT (1), HAT (2), and MED (3) (Table 3,
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Figure 2). However, structures of the rest of the compounds could not be determined due
to the limited amount, and also some compounds were slowly decomposed.
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Figure 1. Residual activity of the ELF29 extract and nine fractions collected from the C18 column
chromatography. Residual activities of the extract and the fractions were measured at 20 and 2 µg/mL,
respectively.

Table 3. The hMAO-A inhibitory activity of isolated compounds from ELF29.

No. Sample Name
Residual Activity

at 2 µg/mL (%) Name MW
hMAO-A

1 LFF29-C18-40L-F4-1&2-T1 88.2 ± 3.07
2 LFF29-C18-40L-F4-1&2-T2 85.5 ± 4.17
3 LFF29-C18-40L-F4-1&2-T3 86.9 ± 0.47
4 LFF29-C18-40L-F4-3 3.39 ± 3.43 5′-hydroxy-alternariol 274.23
5 LFF29-C18-40L-F4-3-1 44.9 ± 5.90
6 LFF29-C18-40L-F4-3-2 82.0 ± 0.92
7 LFF29-C18-40L-F4-4-4 66.7 ± 1.84 Mycoepoxydiene 290.32
8 LFF29-C18-40L-F4-4-5 −5.41 ± 0.98 Alternariol 258.05
9 LFF29-C18-40L-F4-4-6 14.7 ± 1.85
10 LFF29-C18-40L-F4-4-7 46.6 ± 2.12
11 LFF29-C18-40L-F4-4-8 90.5 ± 1.30
12 LFF29-C18-40L-F4-4-9 80.8 ± 0.46

Results are expressed as mean and standard deviation from duplicate experiments.
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Compound 1 was isolated as a dark-yellow oil and revealed the m/z = 259.05 [M+H]+

in LRESIMS spectroscopic data. The 1H NMR spectrum of 1 displayed two sets of meta-
coupled aromatic protons [δH 7.26 (d, J = 2.0 Hz, H-6), 6.37 (d, J = 2.0 Hz, H-4), 6.70 (d,
J = 2.0 Hz, H-5′), 6.61 (d, J = 2.0 Hz, H-3′)], and one methyl singlet [δH 2.76 (s, 6′-CH3)].
The 13C NMR spectrum of 1 had 14 carbons and HSQC spectra illustrated one carbonyl
carbon [δC 166.8 (C-7)], eight fully substituted carbons [δC 166.9 (C-5), 166.2 (C-3), 159.8
(C-4′), 154.4 (C-2′), 140.0 (C-1), 139.8 (C-6′), 110.9 (C-1′), 99.1 (C-2)], four methine carbons
[δC 118.5 (C-5′), 105.4 (C-6), 102.7 (C-3′), 101.9 (C-4)], and one methyl singlet carbon [δC
25.8 (6′-CH3)]. Compound 1 was identified as alternariol based on the comparison of NMR
data in the literature [44].

Compound 2 was isolated as a dark-yellow oil and revealed the m/z = 275.23 [M+H]+

in LRESIMS spectroscopic data. The 1H NMR spectrum of 2 was almost identical to that of
1, except for the absence of one aromatic proton. The 16 amu difference in MS data and the
de-shield shift of C-5′ indicated the substitution of a hydroxy group at C-5 in the structure.
Thus, compound 2 was determined as 5′-hydroxy-alternariol [22].

Compound 3 was isolated as white, feather-like crystals and revealed the m/z = 291.32
[M+H]+ in LRESIMS spectroscopic data. The 1H NMR spectrum of 3 exhibited six olefinic
protons [δH 7.01 (dd, J = 6.1, 9.6 Hz, H-3), 6.18 (d, J = 9.6 Hz, H-2), 6.05 (m, H-11), 5.91
(m, H-8), 5.81 (m, H-10), 5.78 (m, H-9)], one methyl singlet [δH 1.93 (s, H-16)], and one
methyl doublet [δH 0.97 (d, J = 6.7 Hz, H-14)]. The 13C NMR and HSQC spectra displayed
two carbonyls [δC 170.1 and 162.7], six olefinic methine groups [δC 141.4, 138.3, 138.3,
126.0, 124.8, and 124.7], four oxygenated methine groups [δC 86.0, 77.4, 75.3, and 63.0],
two methine groups [δC 52.8 and 50.2], and two methyl groups [δC 20.9 and 14.3]. By
comparing the NMR data of 3 to those of previously reported ones, 3 was identified as
mycoepoxydiene [45].

AT (1): 1H (500 MHz, CD3OD); δH 11.90 (s, 3-OH), 7.26 (d, J = 2.0 Hz, H-6), 6.70 (d,
J = 2.0 Hz, H-5′), 6.61 (d, J = 2.0 Hz, H-3′), 6.37 (d, J = 2.0 Hz, H-4), 2.76 (s, 6′-CH3), 13C
NMR (125 MHz, CDOD3); δC 166.9 (C-5), 166.8 (C-7), 166.2 (C-3), 159.8 (C-4′), 154.4 (C-2′),
140.0 (C-1), 139.8 (C-6′), 118.5 (C-5′), 110.9 (C-1′), 105.4 (C-6), 102.7 (C-3′), 101.9 (C-4), 99.1
(C-2), 25.8 (6′-CH3), LR-ESI-MS m/z = 259.23 [M+H]+

HAT (2): 1H (500 MHz, DMSO-d6); δH 11.89 (s, 3-OH), 8.64 (s, 5′-OH), 7.29 (d,
J = 2.0 Hz, H-6), 6.71 (s, H-3′), 6.35 (d, J = 2.0 Hz, H-4), 2.59 (s, 6′-CH3), 13C NMR (125 MHz,
DMSO-d6); δC 164.9 (C-5), 165.2 (C-7), 164.0 (C-3), 147.5 (C-4′), 144.8 (C-2′), 141.5 (C-5′),
138.6 (C-1), 121.8 (C-6′), 109.0 (C-1′), 104.3 (C-6), 100.7 (C-3′), 100.7 (C-4), 97.7 (C-2), 25.8
(6′-CH3), LR-ESI-MS m/z = 275.23 [M+H]+

MED (3): 1H (500 MHz, DMSO-d6); δH 7.01 (dd, J = 6.1, 9.6 Hz, H-3), 6.18 (d, J = 9.6 Hz,
H-2), 6.05 (m, H-11), 5.91 (m, H-8), 5.81 (m, H-10), 5.78 (m, H-9), 5.18 (dd, J = 2.2, 6.1 Hz,
H-4), 4.60 (dd, J = 2.2, 11.4 Hz, H-5), 4.39 (t, J = 6.4 Hz, H-7), 4.19 (d, J = 4.5 Hz, H-12),
2.75 (m, H-13), 2.73 (m, H-6), 1.93 (s, H-16), 0.97 (d, J = 6.7 Hz, H-14), 13C NMR (125 MHz,
DMSO-d6); δC 170.1 (C-15), 162.7 (C-1), 141.4 (C-3), 138.3 (C-11), 138.3 (C-8), 126.0 (C-9),
124.8 (C-2), 124.7 (C-10), 86.0 (C-12), 77.4 (C-5), 75.3 (C-7), 63.0 (C-4), 52.8 (C-13), 50.2 (C-6),
20.9 (C-16), 14.3 (C-14), LR-ESI-MS m/z = 291.32 [M+H]+

3.3. Inhibitory Activities of the Isolated Compounds against MAOs, ChEs, and BACE1

The inhibitory activity of the three compounds against hMAO-A, hMAO-B, AChE, and
BChE was analyzed at a concentration of 10 µM. Additionally, BACE1 inhibitory activity
was evaluated. All three compounds had effective inhibitory activity against hMAO-
A with <50% residual activity, and AT and HAT strongly inhibited hMAO-A (Table 4).
AT strongly inhibited hMAO-A (IC50 = 0.020 µM) and moderately inhibited hMAO-B
(IC50 = 20.7 µM) with a selectivity index (SI) of 1035. HAT had an IC50 value of 0.31 µM for
hMAO-A and an SI of >129.0 for hMAO-A over hMAO-B. AT and HAT exhibited higher
potency for hMAO-A than a reference compound, toloxatone (IC50 = 1.1 µM). Additionally,
MED effectively inhibited hMAO-A (IC50 = 8.7 µM). In addition, all three compounds
showed some inhibitory activity on AChE (AT: IC50 = 10.0 µM; HAT: IC50 = 19.9 µM;
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MED: IC50 = 18.6 µM) but were ineffective in BChE inhibition (Table 4). Interestingly, HAT
showed slight inhibitory activity against BACE1 (IC50 = 24.7 µM) (Table 4). Conclusively,
the isolated compounds AT, HAT, and MED were confirmed to be effective and selective
inhibitors of hMAO-A.

Table 4. Analysis of enzyme inhibitory activities of the isolated compounds.

Residual Activity at 10 µM (%)

hMAO-A hMAO-B AChE BChE BACE1

AT a −3.1 ± 0.0 75.6 ± 2.3 58.7 ± 2.0 93.3 ± 4.1 80.9 ± 0.2
HAT a 17.7 ± 1.1 83.3 ± 4.0 65.6 ± 3.8 96.2 ± 2.3 71.3 ± 3.8
MED 42.7 ± 0.9 85.4 ± 6.9 65.2 ± 2.7 95.5 ± 5.5 80.5 ± 2.7

IC50 (µM)
SI b

hMAO-A hMAO-B AChE BACE1

AT a 0.020 ± 0.001 20.7 ± 2.2 10.0 ± 0.9 36.7 ± 3.3 1035
HAT a 0.31 ± 0.02 >40 19.9 ± 0.2 24.7 ± 1.7 >129
MED 8.7 ± 0.3 >40 18.6 ± 1.3 35.9 ± 0.3 >4.59

Toloxatone 1.1 ± 0.03
Clorgyline 0.007 ± 0.001

Lazabemide 0.063 ± 0.015
Pargyline 0.028 ± 0.004
Donepezil 0.009 ± 0.002

Tacrine 0.27 ± 0.02
Quercetin 20.5 ± 0.6

Results are expressed as mean and standard deviation from duplicate experiments. a Residual activity against
hMAO-A and hMAO-B is 1-µM concentration. b SI values were calculated by hMAO-B/hMAO-A using IC50
values.

3.4. Kinetic Studies

The inhibition mode of AT, HAT, and MED for hMAO-A was analyzed using the
Lineweaver–Burk plot. The hMAO-A inhibition plots of AT crossed at the y-axis (Figure 3A),
and the secondary plot obtained using the inhibitor concentrations vs. their slopes showed
a Ki value of AT to be 0.0075 ± 0.0007 µM for hMAO-A inhibition (Figure 3B). Similar to
AT, the inhibition plots of HAT crossed at the y-axis (Figure 3C), and a Ki value from the
secondary plot was 0.116 ± 0.016 µM (Figure 3D). MED also crossed at the y-axis, and a Ki
value was 3.76 ± 0.07 µM (Figure 3E,F). These results indicated that the three compounds
are competitive inhibitors of hMAO-A.

3.5. Reversibility Analysis of hMAO-A Inhibition by the Compounds

The reversibility test of hMAO-A inhibition by AT, HAT, and MED was conducted
through a recovery test after dialysis. Inhibition of hMAO-A by AT was restored from 33.5%
to 60.5% through dialysis, based on the residual activity (Figure 4). Inhibition by HAT
was also recovered from 42.1% to 79.4%, and that of MED recovered from 28.7% to 83.7%.
Toloxatone, known as a reversible inhibitor of hMAO-A, also showed almost complete
recovery (34.8% to 94.3%) (Figure 4). Contrarily, the irreversible inhibitor clorgyline showed
no recovery at all (19.7% to 14.9%). These results show that AT, HAT, and MED are
reversible inhibitors of hMAO-A.



J. Fungi 2021, 7, 876 9 of 18

J. Fungi 2021, 7, x FOR PEER REVIEW 9 of 17 
 

 

showed a Ki value of AT to be 0.0075 ± 0.0007 µM for hMAO-A inhibition (Figure 3B). 
Similar to AT, the inhibition plots of HAT crossed at the y-axis (Figure 3C), and a Ki value 
from the secondary plot was 0.116 ± 0.016 µM (Figure 3D). MED also crossed at the y-axis, 
and a Ki value was 3.76 ± 0.07 µM (Figure 3E,F). These results indicated that the three 
compounds are competitive inhibitors of hMAO-A. 

 
Figure 3. Lineweaver–Burk plots (A,C,E) for hMAO-A inhibition by AT, HAT, and MED, and their secondary plots (B,D,F) 
using their slopes following inhibitor concentrations. Five different substrate concentrations (0.006, 0.012, 0.03, 0.06, and 
0.12 µM) were used, and inhibitors were added to make three concentrations, i.e., ~1/2 × IC50, ~IC50, and ~2 × IC50. Triplicate 
experiments determined error bars. 

  

Figure 3. Lineweaver–Burk plots (A,C,E) for hMAO-A inhibition by AT, HAT, and MED, and their
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three concentrations, i.e., ~1/2 × IC50, ~IC50, and ~2 × IC50. Triplicate experiments determined
error bars.
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Figure 4. Recovery of hMAO-A inhibition by AT, HAT, and MED through dialysis. The concentrations of inhibitors used in
the experiment were ~ 2 × IC50 values. AT, 0.040 µM; HAT, 0.60 µM; MED, 18.0 µM; toloxatone 2.0 µM; clorgyline 0.014 µM.
Toloxatone and clorgyline were used as references for reversible and irreversible inhibitors of hMAO-A, respectively.

3.6. Molecular Docking Simulation

The docking simulation results showed that the compounds were properly located
within the binding site of HRM with hMAO-A (PDB: 2Z5X) or of ZON with hMAO-B (PDB
ID: 3PO7). The docking poses and the binding scores of the compounds AT, HAT, and
MED with hMAO-A or hMAO-B were presented in Figures 4–6, respectively. From the
simulation, it was confirmed that the binding energies of AT, HAT, and MED to hMAO-A
were −9.1, −6.9, and −5.6 kcal/mol, respectively, and exceeded those of hMAO-B (−6.3,
−5.2, and −3.7 kcal/mol, respectively). An intermolecular hydrogen bond interaction was
predicted on Tyr444 residue in hMAO-A at distances of 2.814, 2.764, and 2.820 Å for AT,
HAT, and MED, respectively, but not in hMAO-B (Figures 5–7). The binding energies of
all compounds sufficiently explain that AT was the most potent inhibitor of hMAO-A and
three compounds inhibited selectively hMAO-A, which corresponded to the IC50 values of
the inhibitory assay provided in Table 4.

In addition, the molecular dynamics for hMAO-A and hMAO-B complexes with
AT were performed to confirm whether the calculated binding poses were stable. The
RMSD values steadily increased from 0 to 200 ps and reached stable state throughout the
simulation (Figure S19). The average RMSD values of AT for hMAO-A and hMAO-B were
estimated to be 1.422 and 1.437 Å, respectively. The average RMSD of the hMAO-A and AT
complex was shorter than that of hMAO-B and AT complex. During 0~100 ps, the RMSD
values for hMAO-A and hMAO-B complexes with AT were 1.304 and 1.037 Å, respectively.
The RMSD values steadily increased from 100 to 200 ps to a local energy minimum. During
200~1000 ps, the average RMSD values for hMAO-A and hMAO-B complexes with AT
were 1.700 and 1.735 Å, respectively. As results, the differences in the RMSD values from
the initials were 0.396 and 0.698 Å, respectively. It means that the complex of hMAO-A with
AT was less movable than the complex of hMAO-B with AT. In addition, AT was located
in the binding site of hMAO-A or hMAO-B during all periods. Furthermore, the complex
for hMAO-A with AT showed two hydrogen-bonding interactions in the structure of the
last frame of MD simulation, and the distance between AT and Tyr444 residue in hMAO-A
was 1.984 Å, though a hydrogen-bond interaction (2.814 Å) was predicted in hMAO-A, not
in hMAO-B, in the molecular docking simulation. That is, the distance between AT and
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Tyr444 of hMAO-A got shorter from 2.814 to 1.984 Å. Therefore, AT was predicted to have
stronger bindings to hMAO-A than to hMAO-B, indicating that the molecular dynamics
well supported the stable binding of AT to hMAO-A in this study.
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determined by the UCSF Chimera. AT interacts through a hydrogen bond with Tyr444 residue of
hMAO-A at a distance of 2.814 Å.
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Figure 7. The docking simulation of MED with hMAO-A (2Z5X) (A) and hMAO-B (3PO7) (B) as
determined by the UCSF Chimera. MED interacts through a hydrogen bond with Tyr444 residue of
hMAO-A at a distance of 2.820 Å.

3.7. In Silico Pharmacokinetic Analysis of the Compounds

Due to the analysis of the compounds’ pharmacokinetics, using the SwissADME
web tool, all three compounds showed high gastrointestinal absorption, and MED was
permeable to BBB, but AT and HAT were not permeable (Table 5). AT was shown to inhibit
CYP1A2 and CYP2D6, and HAT was shown to inhibit cytochrome P450 CYP1A2. It was
also shown that MED inhibited no cytochrome P450 (Table 5). The results of the Lipinski
parameters of the compounds were predicted not to violate Lipinski’s rule of five in all
three compounds, AT, HAT, and MED (Table 6). These results may provide benefits when
the compounds are used as central nervous system (CNS) drugs.
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Table 5. Pharmacokinetic properties of the compounds predicted by in silico method.

Compound GI Absorption BBB Permeant P-gp Substrate CYP1A2
Inhibitor

CYP2C19
Inhibitor

CYP2C9
Inhibitor

CYP2D6
Inhibitor

CYP3A4
Inhibitor

Log Kp (Skin
Permeation)

AT High No No Yes No No Yes No −6.18 cm/s
HAT High No No Yes No No No No −5.82 cm/s
MED High Yes No No No No No No −6.67 cm/s

GI: gastrointestinal; BBB: blood–brain barrier; P-gp: P-glycoprotein; CYP: cytochrome P450.

Table 6. Physicochemical parameters and Lipinski violations of the compounds.

Compound Mw (g/mol) cLog P HBD HBA TPSA (Å2) RB Lipinski Violations

AT 274.23 1.83 4 6 111.13 0 0
HAT 258.23 2.17 3 5 90.9 0 0
MED 290.31 1.67 0 5 61.83 3 0

Mw: molecular weight; cLog P: consensus Log P ◦/w; HBD: H-bond donors; HBA: H-bond acceptors; TPSA: topological polar surface area; RB: rotatable bonds.
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4. Discussion

In this study, inhibitory activities of 126 ELF extracts against MAOs and ChEs were
evaluated. Among them, eight extracts for hMAO-A, nine extracts for hMAO-B, and four
extracts for BChE were selected as effective candidates, but no extracts for AChE was se-
lected. Based on reproducibility for large culture and novelty of strain, the extract of ELF29
was selected as a final source, and it was identified as an endogenous fungus Diaporthe
mahothocarpus, living in a symbiotic relationship with the lichen Cladonia symphycarpia.

The diverse species of the genus Cladonia have various biological activities. Birulo-
quinone from Cladonia macilenta inhibits AChE [46], and fumarprotocetraric acid from
Cladonia verticillaris has been confirmed to have expectorant and antioxidant properties [47].
Additionally, Cladonia rangiformis and Cladonia convolute extracts showed antiproliferative
and apoptosis against breast cancer cells [48]. However, no inhibitory ability analysis for
compounds from Cladonia against MAOs is currently available.

Diaporthe is a genus of endogenous filamentous fungal plant pathogens, in which
some species of Diaporthe produce secondary metabolites that cause animal toxicity, such
as sheep lupinosis [49]. Various species of Diaporthe have been reported, but Diaporthe
mahothocarpus was identified recently [50], and little has been reported about its secondary
metabolites and their biological activities, including MAO inhibitory activities.

Only a few MAO inhibitors have been isolated from lichens; an anthraquinone
solorinic acid from a lichen Solorina crocea had MAO inhibitory activity (IC50 = 14.3 µM) [51],
and hydroxy-2-methyl-chroman-4-one isolated from an ELF Daldinia fissa had MAO in-
hibitory activities (IC50 = 13.97 and 3.23 µM for hMAO-A and hMAO-B, respectively) [6].
Furthermore, 4-acylresorcinol, a synthetic derivative of the lichen compound, showed
MAO inhibitory activity (IC50 = 4.27 µM) [52].

AT is a toxic metabolite of the Alternaria fungus [53]. Inhibitory activity on MAO-
A and AChE using rat brain extracts was reported, and it was found that Ki values of
AT for AChE and MAO were similar, i.e., from 1.6 to 2.1 mM and from 2.4 to 3.8 mM,
respectively [21]. In this study, we used purified hMAO-A and AChE and found that
AT was a potent and selective hMAO-A inhibitor (IC50 = 0.020 µM; Ki = 0.0075 µM) and
showed moderate AChE inhibition (IC50 = 10.0 µM). These results differed significantly
from those of the previous study, probably due to the presence of diverse components in the
extracts, difference of enzyme sources, and difference of assay methods. Additionally, in
this study, HAT was isolated, and it was observed that HAT had potent inhibitory activity
against hMAO-A (IC50 = 0.31 µM; Ki = 0.116 µM). HAT is a rare compound, for which
very little information is available. HAT was 5.5 times effective against hMAO-A than
alternariol monomethyl ether (IC50 = 1.71 µM) [54]. Additionally, HAT effectively inhibited
BACE1 (IC50 = 24.71 µM), similar to that of quercetin (IC50 = 20.46 µM), which is known
as a BACE1 inhibitor. MED had effective hMAO-A inhibitory activity (IC50 = 8.68 µM),
although it showed a lower inhibitory activity compared to AT and HAT.

Regarding the potency for hMAO-A, AT and HAT had 54.0 and 3.5 times, respectively,
higher inhibitory activity than toloxatone (IC50 = 1.08 µM), a well-known reversible in-
hibitor of hMAO-A, although MED had 1.6 times lower inhibitory activity than toloxatone.
Therefore, it is suggested that the three compounds have effective inhibitory activity against
hMAO-A as natural compounds and have the potential to be used as lead compounds
for the development of more efficient derivatives. Additionally, following the docking
simulation, AT, HAT, and MED were predicted to form hydrogen bonds with Tyr444 of
hMAO-A, whereas no hydrogen bonding was predicted with hMAO-B. The hydrogen
bond is thought to contribute to the tighter interaction of the compounds with hMAO-A.
Thus, the docking results produced a good correlation with the experimental data of the
enzyme inhibition assays. Moreover, they do not violate Lipinski’s five rules and they
have high gastrointestinal absorption, indicating the pharmacological potentials of the
compounds.
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5. Conclusions

Among 129 ELF extracts, ELF29 showed the highest inhibitory activity against hMAO-
A. After a large culture, AT, HAT, and MED were isolated and identified from ELF29 extract,
and they showed strong inhibitory activity against hMAO-A with high SI values. HAT
also exhibited effective inhibitory activity against BACE1 (IC50 = 24.7 µM). Furthermore,
in silico pharmacokinetic analysis showed that they had high gastrointestinal absorption
and kept Lipinski’s five rules, and MED had BBB permeability. These results suggest
that AT, HAT, and MED are potent or moderate selective hMAO-A inhibitors and may be
considered as candidates of new pharmaceutical development with improvement of BBB
permeability.

Supplementary Materials: The followings are available online at https://www.mdpi.com/article/
10.3390/jof7100876/s1. Figure S1. Percentage purity of AT (1); Figure S2. Percentage purity of HAT
(2); Figure S3. Percentage purity of MED (3); Figure S4. 1H NMR spectrum of alternariol (AT) (1) in
CD3OD; Figure S5. 13C NMR Spectrum of alternariol (AT) (1) in CD3OD; Figure S6. COSY Spectrum
of alternariol (AT) (1) in CD3OD; Figure S7. HSQC Spectrum of alternariol (AT) (1) in CD3OD; Figure
S8. HMBC Spectrum of alternariol (AT) (1) in CD3OD; Figure S9. 1H NMR spectrum of 5′-hydroxy-
alternariol (HAT) (2) in DMSO-d6; Figure S10. 13C NMR Spectrum of 5′-hydroxy-alternariol (HAT)
(2) in DMSO-d6; Figure S11. COSY Spectrum of 5′-hydroxy-alternariol (HAT) (2) in DMSO-d6; Figure
S12. HSQC Spectrum of 5′-hydroxy-alternariol (HAT) (2) in DMSO-d6; Figure S13. HMBC Spectrum
of 5′-hydroxy-alternariol (HAT) (2) in DMSO-d6; Figure S14. 1H NMR Spectrum of mycoepoxydiene
(MED) (3) in DMSO-d6; Figure S15. 13C NMR Spectrum of mycoepoxydiene (MED) (3) in DMSO-d6;
Figure S16. COSY Spectrum of mycoepoxydiene (MED) (3) in DMSO-d6; Figure S17. HSQC Spectrum
of mycoepoxydiene (MED) (3) in DMSO-d6; Figure S18. HMBC Spectrum of mycoepoxydiene (MED)
(3) in DMSO-d6; Figure S19. Plots of root mean square deviation (RMSD) during 1 ns MD simulation
of the complex with (a) hMAO-A and AT, and (b) hMAO-B and AT.
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