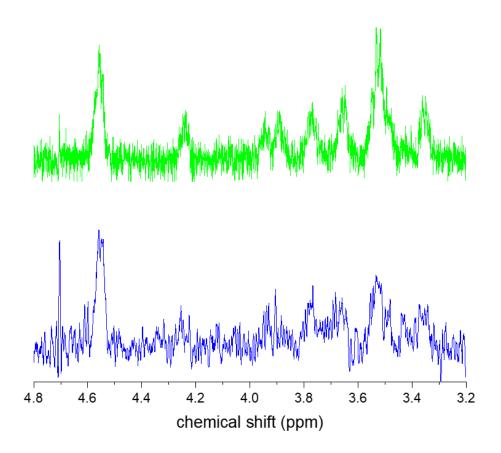

Comparison of polysaccharides extracted from cultivated mycelium of *Inonotus obliquus* with polysaccharide fractions obtained from sterile conk (Chaga) and birch heart rot

Gabriele Beltrame¹, Jani Trygg¹, Jarl Hemming², Zenghua Han³, Baoru Yang^{1,*}


- ¹ Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4, FI-20520 Turku, Finland
- ² Wood and Paper Chemistry, Åbo Akademi University, Porthaninkatu 3, FI-20500 Turku, Finland
- ³ Institute of Microbiology, Heilongjiang Academy of Sciences, Zhaolin Street 68, CN-150020 Harbin, China
- * Correspondence: B. Yang: baoru.yang@utu.fi. Postal address: Itäinen Pitkäkatu 4 C, 20520 Turku, Finland.

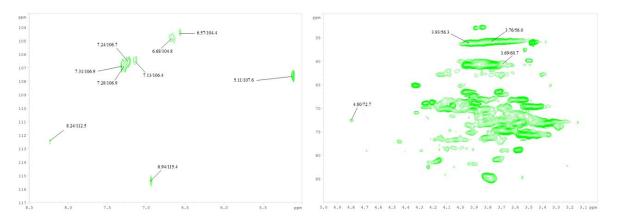

Figure S1. HSQC spectra of F-Chaga HW (green), F-Chaga 2% (dark green), Heart Rot HW (blue), and Heart Rot 2% (light blue). NMR spectra were recorded in D₂O at 308 K. See **Table 2** and **Table 3** for signal assignments.

Figure S2. Anomeric region of the HSQC spectra of IPSsb0-2.5 HW (red), Heart Rot HW (blue), and galactoglucomannan standard (olive). NMR spectra were recorded in D₂O at 308 K. See **Table 2** and **Table 3** for signal assignments.

Figure S3. 1D-TOCSY spectra of F-Chaga HW (green), and Heart Rot HW (blue). NMR spectra were recorded in D₂O at 308 K, with an irradiation frequency of 4.55 ppm. See **Table 2** for signal assignments.

Figure S4. HSQC spectrum of F-Chaga HW, with zoom on the aromatic region (left). NMR spectrum were recorded in D₂O at 308 K.

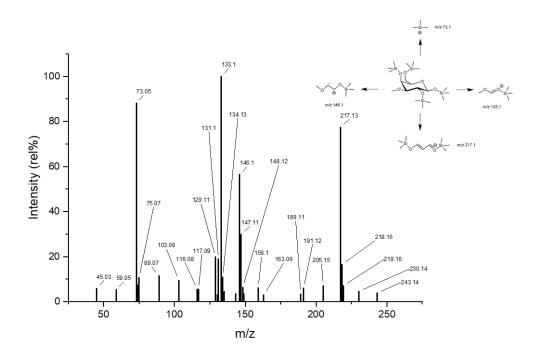


Figure S5. GC-MS fragmentation pattern of persilylated 3-O-Me-Galactose.

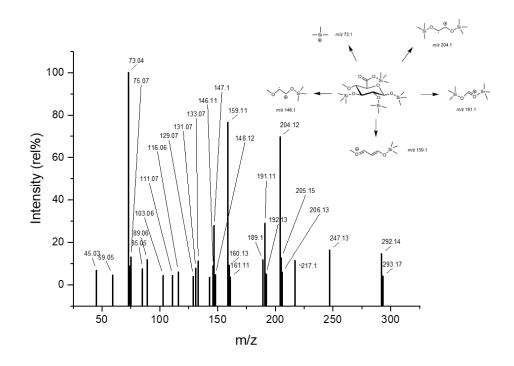


Figure S6. GC-MS fragmentation pattern of persilylated 4-O-Me-Glucuronic acid.

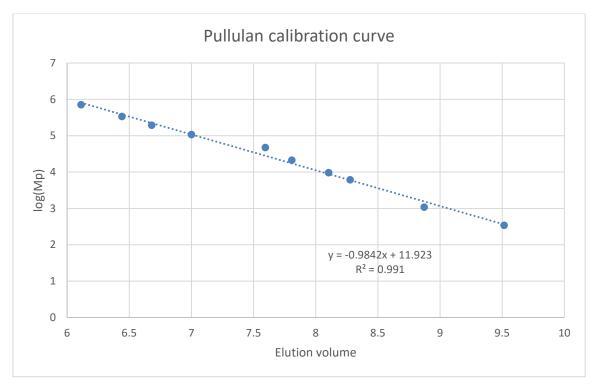


Figure S7. HPSEC calibration curve with pullulan standard set.

$^{1}\mathrm{H}$	¹³ C	Assignment
3.76	56.0	OMe
3.93	56.3	OMe condensed aromatic units
3.69	60.7	$H\gamma/C\gamma$ of β -O-4 substituted units
4.8	72.7	H α /C α of β -O-4 substituted units
6.57	104.4	H2/C2 of free 4-OH syringyl units
6.68	104.8	H2/C2 of syringyl units
7.31	106.9	H2/C2 of α oxidized syringyl units
5.11	107.6	H/C aryl enol ether
7.67	113.7	H2/C2 of α oxidized guaiacyl units
6.94	115.4	H2/C2 of guaiacyl units

Table 1. Tentative assignments of the lignin-correlated signals found in the HSQC spectrum of F-Chaga HW.