Candida auris Whole-Genome Sequence Benchmark Dataset for Phylogenomic Pipelines
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Rhodes, J.; Fisher, M.C. Global epidemiology of emerging Candida auris. Curr. Opin. Microbiol. 2019, 52, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Chow, N.A.; Muñoz, J.F.; Gade, L.; Berkow, E.L.; Li, X.; Welsh, R.M.; Forsberg, K.; Lockhart, S.R.; Adam, R.; Alanio, A.; et al. Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses. mBio 2020, 11, e03364-19. [Google Scholar] [CrossRef] [PubMed]
- Saris, K.; Meis, J.F.; Voss, A. Candida auris. Curr. Opin. Infect. Dis. 2018, 31, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Welsh, R.M.; Bentz, M.L.; Shams, A.; Houston, H.; Lyons, A.; Rose, L.J.; Litvintseva, A.P. Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast Candida auris on a Plastic Health Care Surface. J. Clin. Microbiol. 2017, 55, 2996–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Schalkwyk, E.; Mpembe, R.S.; Thomas, J.; Shuping, L.; Ismail, H.; Lowman, W.; Karstaedt, A.S.; Chibabhai, V.; Wadula, J.; Avenant, T.; et al. Epidemiologic Shift in Candidemia Driven by Candida auris, South Africa, 2016-2017(1). Emerg. Infect. Dis. 2019, 25, 1698–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, N.A.; Gade, L.; Tsay, S.V.; Forsberg, K.; Greenko, J.A.; Southwick, K.L.; Barrett, P.M.; Kerins, J.L.; Lockhart, S.R.; Chiller, T.M.; et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: A molecular epidemiological survey. Lancet Infect. Dis. 2018, 18, 1377–1384. [Google Scholar] [CrossRef]
- Rhodes, J.; Abdolrasouli, A.; Farrer, R.A.; Cuomo, C.A.; Aanensen, D.M.; Armstrong-James, D.; Fisher, M.C.; Schelenz, S. Author Correction: Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg. Microbes Infect. 2018, 7, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.F.; Gade, L.; Chow, N.A.; Loparev, V.N.; Juieng, P.; Berkow, E.L.; Farrer, R.A.; Litvintseva, A.P.; Cuomo, C.A. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat. Commun. 2018, 9, 5346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, N.A.; De Groot, T.; Badali, H.; Abastabar, M.; Chiller, T.M.; Meis, J.F. Potential Fifth Clade of Candida auris, Iran, 2018. Emerg. Infect. Dis. 2019, 25, 1780–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timme, R.E.; Strain, E.; Baugher, J.D.; Davis, S.; Gonzalez-Escalona, N.; Leon, M.S.; Allard, M.W.; Brown, E.W.; Tallent, S.; Rand, H. Phylogenomic Pipeline Validation for Foodborne Pathogen Disease Surveillance. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timme, R.E.; Crandall, K.; Shumway, M.; Trees, E.K.; Simmons, M.; Agarwala, R.; Davis, S.; Tillman, G.E.; Defibaugh-Chavez, S.; Carleton, H.A.; et al. Benchmark datasets for phylogenomic pipeline validation, applications for foodborne pathogen surveillance. PeerJ 2017, 5, e3893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, T.; Puts, Y.; Berrio, I.; Chowdhary, A.; Meis, J.F. Development of Candida auris Short Tandem Repeat Typing and Its Application to a Global Collection of Isolates. mBio 2020, 11, e02971-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, Y.J.; Shin, J.H.; Byun, S.A.; Choi, M.J.; Won, E.J.; Lee, D.; Lee, S.Y.; Chun, S.; Lee, J.H.; Choi, H.J.; et al. Candida auris Clinical Isolates from South Korea: Identification, Antifungal Susceptibility, and Genotyping. J. Clin. Microbiol. 2019, 57, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsin, J.; Hagen, F.; Al-Balushi, Z.A.M.; De Hoog, G.S.; Chowdhary, A.; Meis, J.F.; Al-Hatmi, A.M.S. The first cases of Candida auris candidaemia in Oman. Mycoses 2017, 60, 569–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCBI Pathogen Detection System. 2017. Available online: https://www.ncbi.nlm.nih.gov/pathogens/ (accessed on 18 February 2021).
- Ldquo; FastQC. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 18 February 2021).
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Argimón, S.; AbuDahab, K.; Goater, R.J.E.; Fedosejev, A.; Bhai, J.; Glasner, C.; Feil, E.J.; Holden, M.T.G.; Yeats, C.A.; Grundmann, H.; et al. Microreact: Visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2016, 2, e000093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergeron, G.; Bloch, D.; Murray, K.; Kratz, M.; Parton, H.; Ackelsberg, J.; Antwi, M.; Del Rosso, P.; Dorsinville, M.; Kubinson, H.; et al. Candida auris Colonization After Discharge to a Community Setting: New York City, 2017–2019. Open Forum Infect. Dis. 2021, 8, ofaa620. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.L.; Volkening, J.D.; DeJesus, E.; Simmons, M.; Dimitrov, K.M.; Tillman, G.E.; Suarez, D.L.; Afonso, C.L. Rapid, multiplexed, whole genome and plasmid sequencing of foodborne pathogens using long-read nanopore technology. Sci. Rep. 2019, 9, 16350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McTavish, E.J.; Pettengill, J.; Davis, S.; Rand, H.; Strain, E.; Allard, M.; Timme, R.E. TreeToReads—A pipeline for simulating raw reads from phylogenies. BMC Bioinform. 2017, 18, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
BioSample | Isolate ID | SRA Run | Outbreak ID | Facility ID | Subclade | Date Collected | Study * |
---|---|---|---|---|---|---|---|
SAMN10139509 | B12352 | SRR7909282 | 1 | B | Ic | 2016 | 30293877 |
SAMN10139317 | B12681 | SRR7909214 | 1 | B | Ic | 2017 | 30293877 |
SAMN10139320 | B12677 | SRR7909135 | 1 | B | Ic | 2017 | 30293877 |
SAMN10139376 | B12490 | SRR7909210 | 1 | B | Ic | 2016 | 30293877 |
SAMN10139493 | B12427 | SRR7909184 | 1 | B | Ic | 2016 | 30293877 |
SAMN10139490 | B12430 | SRR7909233 | 1 | B | Ic | 2016 | 30293877 |
SAMN10139465 | B12461 | SRR7909234 | 1 | A | Ic | 2016 | 30293877 |
SAMN10139461 | B12467 | SRR7909297 | 1 | A | Ic | 2016 | 30293877 |
SAMN10139268 | B12824 | SRR7909313 | 1 | C | Ic | 2017 | 30293877 |
SAMN10139267 | B12825 | SRR7909385 | 1 | C | Ic | 2017 | 30293877 |
SAMN10139529 | B12044 | SRR7909147 | 1 | C | Ic | 2016 | 30293877 |
SAMN10139470 | B12456 | SRR7909156 | 1 | C | Ic | 2016 | 30293877 |
SAMN10139462 | B12466 | SRR7909413 | 1 | C | Ic | 2016 | 30293877 |
SAMN10139189 | B13613 | SRR7909284 | 3 | F | Ic | 2017 | 30293877 |
SAMN10139194 | B13520 | SRR7909394 | 3 | F | Ic | 2017 | 30293877 |
SAMN10139195 | B13519 | SRR7909408 | 3 | F | Ic | 2017 | 30293877 |
SAMN10139295 | B12749 | SRR7909166 | 2 | E | Ic | 2017 | 30293877 |
SAMN10139364 | B12552 | SRR7909192 | 2 | E | Ic | 2017 | 30293877 |
SAMN10139361 | B12555 | SRR7909183 | 2 | E | Ic | 2017 | 30293877 |
SAMN10139289 | B12776 | SRR7909308 | 2 | D | Ic | 2017 | 30293877 |
SAMN10139190 | B13558 | SRR7909246 | 2 | D | Ic | 2017 | 30293877 |
SAMN10142006 | B13343 | SRR7909249 | NA | G | Ib | 2017 | 30293877 |
BioSample | Isolate ID | SRA Run | Total Reads (Millions) | Avg. GC Content (%) | Assembly Length | Contigs | N50 |
---|---|---|---|---|---|---|---|
SAMN10139509 | B12352 | SRR7909282 | 3.4 | 45% | 12,219,463 | 997 | 20,257 |
SAMN10139317 | B12681 | SRR7909214 | 6.2 | 47% | 11,914,250 | 1030 | 19,891 |
SAMN10139320 | B12677 | SRR7909135 | 6.2 | 46% | 12,125,777 | 1006 | 20,610 |
SAMN10139376 | B12490 | SRR7909210 | 3.6 | 43% | 12,215,651 | 989 | 21,267 |
SAMN10139493 | B12427 | SRR7909184 | 2.8 | 42% | 12,209,708 | 1030 | 20,335 |
SAMN10139490 | B12430 | SRR7909233 | 3.2 | 43% | 12,212,626 | 990 | 20,510 |
SAMN10139465 | B12461 | SRR7909234 | 5.2 | 43% | 12,223,488 | 1033 | 20,401 |
SAMN10139461 | B12467 | SRR7909297 | 5.4 | 44% | 12,227,902 | 1049 | 20,090 |
SAMN10139268 | B12824 | SRR7909313 | 5 | 43% | 12,217,316 | 1073 | 19,453 |
SAMN10139267 | B12825 | SRR7909385 | 6.4 | 44% | 12,235,136 | 1011 | 21,091 |
SAMN10139529 | B12044 | SRR7909147 | 3.2 | 43% | 12,219,487 | 979 | 21,004 |
SAMN10139470 | B12456 | SRR7909156 | 4.4 | 43% | 12,218,763 | 1049 | 19,233 |
SAMN10139462 | B12466 | SRR7909413 | 5 | 43% | 12,223,757 | 1038 | 19,885 |
SAMN10139189 | B13613 | SRR7909284 | 4.8 | 43% | 12,225,913 | 976 | 21,224 |
SAMN10139194 | B13520 | SRR7909394 | 4.2 | 43% | 12,215,973 | 1016 | 20,348 |
SAMN10139195 | B13519 | SRR7909408 | 2.8 | 44% | 12,161,014 | 1039 | 20,040 |
SAMN10139295 | B12749 | SRR7909166 | 7.6 | 44% | 12,234,239 | 993 | 21,085 |
SAMN10139364 | B12552 | SRR7909192 | 4.6 | 43% | 12,217,679 | 983 | 21,519 |
SAMN10139361 | B12555 | SRR7909183 | 3.6 | 43% | 12,215,609 | 982 | 21,427 |
SAMN10139289 | B12776 | SRR7909308 | 6.8 | 42% | 12,228,293 | 989 | 21,510 |
SAMN10139190 | B13558 | SRR7909246 | 5.2 | 44% | 12,222,520 | 982 | 21,174 |
SAMN10142006 | B13343 | SRR7909249 | 4.2 | 41% | 12,213,890 | 997 | 21,547 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welsh, R.M.; Misas, E.; Forsberg, K.; Lyman, M.; Chow, N.A. Candida auris Whole-Genome Sequence Benchmark Dataset for Phylogenomic Pipelines. J. Fungi 2021, 7, 214. https://doi.org/10.3390/jof7030214
Welsh RM, Misas E, Forsberg K, Lyman M, Chow NA. Candida auris Whole-Genome Sequence Benchmark Dataset for Phylogenomic Pipelines. Journal of Fungi. 2021; 7(3):214. https://doi.org/10.3390/jof7030214
Chicago/Turabian StyleWelsh, Rory M., Elizabeth Misas, Kaitlin Forsberg, Meghan Lyman, and Nancy A. Chow. 2021. "Candida auris Whole-Genome Sequence Benchmark Dataset for Phylogenomic Pipelines" Journal of Fungi 7, no. 3: 214. https://doi.org/10.3390/jof7030214
APA StyleWelsh, R. M., Misas, E., Forsberg, K., Lyman, M., & Chow, N. A. (2021). Candida auris Whole-Genome Sequence Benchmark Dataset for Phylogenomic Pipelines. Journal of Fungi, 7(3), 214. https://doi.org/10.3390/jof7030214