Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products
Abstract
:1. Introduction
2. Mycotoxinogenic Fungi and Affected Grains
2.1. Fusarium Spp.
2.1.1. Species Description
2.1.2. Disease and Mycotoxin Producton
2.1.3. Gibberella Ear Rot
2.1.4. Fusarium Ear Rot
2.2. Aspergillus Spp.
2.2.1. Species Description
2.2.2. Disease and Mycotoxin Production
2.3. Alternaria Spp.
2.3.1. Species Description
2.3.2. Disease and Mycotoxin Production
- dibenzo-α-pyrone derivatives: alternariol (AOH), alternariol monomethyl ether (AME), altenuen (ALT), altenuisol (AS);
- tetramic acid derivates: tenuazoic acid (TEA);
- perylene derivatives: altertoxins I, II, III (ATX-I,-II,-III).
2.4. Penicillium Spp.
2.4.1. Species Description
2.4.2. Disease and Mycotoxin Production
3. Bio-Acceptable Solutions for Fungal Control and Detoxification of Mycotoxins
3.1. Microbiological Approach
- Bacteria—some bacteria are known to bind and detoxify mycotoxins from different foods and beverages [162]. Flavobacterium aurantiacum B-184 was successfully investigated for the degradation of AFs capable of irreversibly removing aflatoxin from solutions. AFB1 can be detoxified via Enterococcus faecium by binding to the peptidoglycans and polysaccharides in the cell wall of the bacterium [163]. Aerobic oxidation and partitioning of DON into C3 carbon carried out by Devosia species reduces contamination with this mycotoxin [164]. Lactobacillus (L.) casei and Lactobacillus reuteri are known to bind AFs in aqueous solutions and Lactobacillus amylovorus and Lactobacillus rhamnosus display a binding efficiency of 60% AFB1 [165]. Lactobacillus fermentum was shown to be a satisfactory binder (98%) of FB1 and of T-2 (84%) [166]. Bacillus velezensis RC 218 and Streptomyces albidoflavus RC 87B successfully reduced FHB up to 30%, its severity up to 25%, and DON accumulation up to 51% on durum wheat under field conditions [167]. Zeidan et al. investigated the use of Burkholderia cepacia in the biocontrol of mycotoxigenic fungi and the reduction of ochratoxin A biosynthesis by Aspergillus carbonarius. The results indicated that QBC03 culture supernatant acted inhibitory to the growth of Aspergillus carbonarius, Fusarium culmorum, and P. verrucosum. Synthesis of ochratoxin A by A. carbonarius was also reduced [168]. De Melo Nazareth et al. reported that Lactobacillus plantarum CECT 749 CFS showed a high antifungal effect against A. flavus and F. verticillioides on corn kernels and corn ears, and FB1 and AFB1 levels were significantly reduced [169]. Clonostachys rosea (IK726) was used as biological seed treatment of cereals against Fusarium culmorum [170] and the results showed that this could be applied as an alternative to chemical fungicides for the control of seedborne infections caused by F. culmorum. Clonostachys rosea strain ACM941 was also tested as an anti-Fusarium agent and the results indicated that strain ACM941 of C. rosea is a promising biocontrol agent against F. graminearum and may be used as a control measure in an integrated FHB management program [171].
- Yeast—yeasts reproduce with great speed and produce antimicrobial compounds which act beneficially in humans and animals. The most popular yeast, Saccharomyces cerevisiae, can significantly degrade DON and reduce the rate of lactate dehydrogenase (LDH) release in DON-stimulated cells [172], but it can also reduce the levels of AFB1 and OTA [173]. PAT can be reduced by S. cerevisiae via physical adsorption where the O-N/N-H protein and polysaccharide bonds of cell walls interact with PAT [174]. Kluyveromyces marxianus can be useful in binding AFB1, OTA, and ZEN (zearalenone). Candida utilis can be applied in mycotoxins binding as well [175]. Yarrowia lipolytica, too, is very effective in reducing OTA concentrations (cca 50%) [176]. Another yeast, Rhodotorula mucilaginosa, is known to degrade PAT to dexipitulic acid [177]. The application of Lachancea thermotolerans in the control of Aspergillus parasiticus, P. verrucosum, and F. graminearum and their mycotoxins was assessed by Zeidan et al. [178]. They reported that yeast colonies reduced Fusarium growth and the synthesis of DON. Inactivated yeast cells were able to reduce almost 82% of OTA [178].
- Fungi—according to a source [163], fungi capable of producing aflatoxins can also break them down. Fungi such as Aspergillus, Rhizopus, Trichoderma, Clonostachys, and Penicillium spp. are proven to be successful in the detoxification of mycotoxins [179]. Non-toxic strains of A. flavus and A. parasiticus were shown to be very effective in reducing aflatoxin contamination in maize, cotton, pistachio, and peanuts, when released into the soil around the crops in large amounts. They compete with native soil toxic strains and prevail [180]. An extensive book chapter by [1] provides a more detailed insight in this topic.
- A commercially available combination of yeast, bacteria, and oomycete (Trichoderma asperellum, Streptomyces griseoviridis, Pythium oligandrum) was tested against F. graminearum and F. verticillioides. The results showed that against F. graminearum, T. asperellum was efficient in reducing the growth and mycotoxin concentration by 48% and 72%. 78% and 72% was the efficiency against F. verticillioides. P. oligandrum reduced the growth of F. graminearum and mycotoxin concentration by 79% and 93%. F. verticillioides growth and mycotoxin concentration was too reduced (49% and 56%). The application of S. griseoviridis resulted in a growth inhibition zone where the pathogen mycelium structure appeared to be altered, suggesting the diffusion of antimicrobial compounds [181].
3.2. Preharvest Agronomical Strategies
- Crop rotation—crop residues are an excellent habitat for fungi due to containing many nutritious residues. Without crop rotation, fungi reside on residues of previous crops and can transfer to the next commodity sown in the field. Crop rotation can help in the reduction of Fusarium spp. development and subsequently reduce the mycotoxins levels in grains [59,182]. Planting cereals year after year on the same field, especially after wheat and maize, facilitates the development and proliferation of Fusarium spp. [14,183,184,185]. In fields where wheat was sown after maize, DON levels in grain were elevated [186], but ZEA was detected in 45% of the samples [185]. Forecrops that act limiting to Fusarium spp. are root crops and legume plants [184,187]. According to [186,188], soybean as a forecrop reduces the Fusarium head blight and DON levels in wheat. The lack of crop rotation in conventional cereal cultivation presumably leads to a higher infection rate than in organic farming [24]. Another way of reducing Fusarium spp. infections is the use of catch crops. A catch crop is a fast-growing crop grown between successive plantings of the main crop. The cultivation of white mustard reduced the occurrence of Fusarium spp. and acted positively on the health of the main plant [189]. The removal of previous crop residues can also act favorably to Fusarium spp. suppression.
- Tillage—one of the most important methods for FHB reduction. Soil cultivation by tillage means that the topsoil up to 30 cm would reverse, or shallow up to 20 cm. This affects the reduction of mycotoxins in grains as well [24]. Inverting the soil with a plow and covering the plant residues from the previous crop proved to be a very efficient method for DON reduction [190]. According to [191], deeper tillage shows better results in the fungal count.
- Fertilization—interestingly, the application of mineral fertilizers in the field could induce a higher infection rate of Fusarium spp. [192]. Namely, due to the excess nitrogen content in the soil, the frequency of grain infection with Fusarium fungi becomes higher. However, even though the type of fertilizer (urea, ammonium nitrate, or calcium nitrate) can affect the rate of grain infected with Fusarium spp., DON levels are not as affected [193]. A study reported different mycotoxins in winter wheat fertilized with a higher nitrogen dose, 200 kg N ha−1, in comparison to the wheat treated with 120 kg N ha−1. A significant statistical relationship between the concentration of mycotoxins and the amount of nitrogen fertilizer and wheat cultivar was confirmed as well [194].
- Seed and sowing—sowing high-quality seed is an important factor in the prevention of pathogenic fungi. Healthy, undamaged seeds with adequate viability and appropriate moisture are desirable seed material [40]. The sowing date can significantly affect crop yield. During the flowering period, the risk of Fusarium infection is higher, therefore winter cereals are less susceptible to Fusarium infection [195,196]. An early sowing date of maize, in a moderate climate, can act protectively against fungal infections [197]. According to [198], high maize grain contamination with mycotoxins occurred while high precipitation and lower temperatures prevailed during the flowering to the maize maturation period. Maize infection and the accumulation of mycotoxins (fumonisins) is especially expressed during drought periods [34] which could be easily resolved by implementing an irrigation system. This helps the plant to relieve the stress caused by the drought which subsequently reduces the infection rate of F. verticillioides and mycotoxin contamination. For small cereal, irrigation can actually contribute to the occurrence of FHB [199,200].
- Breeding and selection—various genetic pools of breeding programs in individual countries, and agronomic and environmental cultivation conditions provide different genetic material [201]. So far, genetic modification has resulted in varieties resistant, or showing partial resistance, to Fusarium spp. This has proven to be the most suitable method for the suppression of Fusarium infections [21,202,203,204]. Mechanisms developed by cereals to defend from Fusarium spp. involve five types: type I is the resistance to infection and type II is resistance to the spread of the pathogen in the head [205,206]. Type III is the so-called resistance to DON (or the ability to degrade it). Type IV describes the plants’ tolerance to infection and the presence of DON and other similar secondary metabolites [207], and type V refers to resistance to the accumulation and degradation of mycotoxins in grain by transforming them into non-toxic derivatives or by blocking the biosynthesis of toxic metabolites [208,209]. To achieve successful breeding and transgenesis, it is important to understand the fundamental molecular relations between the host-pathogen and plant defense systems [204]. Overexpression of the HvNEP-1 gene (an antifungal gene) in the endosperm causes barley to be less susceptible to FHB infection. This leads to lower mycotoxin levels in the grain [210]. Silencing of targeted genes is an important tool for Fusarium spp. control in cereals. RNA interference (RNAi) is a natural mechanism that regulates gene expression, but host-induced gene silencing (HIGS) is a transgenic technology used to silence fungal genes on plants during attempted infection with successful reduction of infection [211]. This method relies on the ability of the host plant to produce mobile, small interfering RNA molecules generated from long double-stranded RNA that are complementary to targeted fungal genes and act as effectors and regulators of plant response to pathogens. To achieve and induce gene silencing, these molecules are to be transferred from the plant to fungi [212]. Mycotoxins levels in cereals can be lowered by choosing a resistant cultivar, and by reduction of mycotoxin accumulation and biosynthesis. Phenolic compounds, peptides or carotenoids, and pro-oxidative molecules such as hydrogen peroxide can have a regulatory effect on mycotoxins synthesis [208].
3.3. Post-Harvest
- Microbiological agents—as an alternative to chemicals, and natural in origin, this firstly refers to antagonistic microorganisms. Interactions between cereal plants and microorganisms have been detected and defined as potentially beneficial, for they can enhance defense mechanisms in plants [213]. However, fungi have the ability to synthesize different secondary metabolites (antibiotics) that act antifungal, antibacterial, and have insecticidal characteristics, thus interfering with the growth and proliferation of other microorganisms [214]. Treating maize seeds with Trichoderma harzianum T22 [215] could suppress the growth of F. verticillioides and subsequent fumonisin accumulation.
- Physical methods—the most popular and relatively simple method is grain moisture adjustment. Namely, grain moisture should be adjusted shortly after harvest to ensure minimal microbial activity. Microbial activity, especially by field and storage fungi, can be expressed through damaged grains which can be a result of husking [216,217]. This can lead to increased mycotoxin concentrations in grains. Unit operations such as sorting, washing, and milling can be included in reducing the mycotoxins concentration in cereals and cereal-based products [220]. Non-invasive methods involving UV light illumination or opto-electronic sorting can be used for sorting. Some of the mycotoxins accumulated in the surface tissues of grains can be removed by cleaning, husking, and removing residues [219]. Therefore, high concentrations of mycotoxins can be found in damaged grains, fine material, and dust [218,241]. Cleaning the grains’ surface prevents colonization by Fusarium fungi and accumulation of their mycotoxins. As mentioned before, adequate humidity and seed storage temperature plays an important role in mycotoxin levels and fungal proliferation [221]. Different adsorbents (activated carbon, aluminosilicates, or polymers) have proven to be very effective in toxin absorption in vitro and in vivo studies [222]. A somewhat expensive but efficient method that controls the fungal growth and the production of mycotoxins is antioxidants and essential oils applied alongside the utilization of a controlled atmosphere in the storage room [241]. Ozone application to disinfect cereals, vegetables, and fruits, or to detoxify mycotoxins [223], is increasingly used due to its simple application, the fact that it leaves no undesirable residues [224], and it is successful in preventing the development of pathogenic fungi during storage [225]. Ozonation can efficiently reduce DON content in wheat grain [226]. The exposure time to ozone is an important factor that determines the rate of mycotoxin degradation in grains [223]. The use of ozone (O3) in the degradation of mycotoxins was reported in several papers [223,227,228,229,230,231]. It is successful in the degradation of AFB1 and AFG1. Ozonification conducted under optimum conditions can significantly contribute to DON (29–32%), and its modified form DON-3-glucoside (DON-3-Glc) (44%), reduction [227].
- Radiation—commonly described as ionizing radiation or non-ionizing radiation [232] that can reduce or eliminate pathogenic microorganisms. Radiation can be utilized in industrial conditions, which makes it rather applicable for larger and bulk commodities. It changes the molecular structure of food ingredients with a series of reactions [219]. A very important discovery was noted in irradiated distilled water and fruit juices of orange, pineapple, and tomato contaminated with ZEN. Namely, ZEN toxicity was reduced. However, a higher dose of radiation (>10 kGy) affected the quality of the fruit juices [233]. Irradiation of 50 kGy with an electron beam caused degradation of ZEN and OTA by 71.1% and 67.9%, respectively, in naturally infected corn [234]. Gamma irradiation can also be applied and a reduction of AFB1 (>95%) at 6 kGy was recorded in rice processing [235]. PAT concentrations in apple juice were reduced by 83% after a 5 min irradiation [236]. However, the broader application of radiation methods in the food industry is still a questionable approach since it can cause physical, chemical, and biological effects following molecular reactions [234] that are potentially harmful to humans and animals.
3.4. Innovative Biocontrol and Detoxification Strategies
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdallah, H.F.; Ameye, M.; De Saeger, S.; Audenaert, K.; Haesaert, G. Biological Control of Mycotoxigenic Fungi and Their Toxins: An Update for the Pre-Harvest Approach, Mycotoxins—Impact and Management Strategies; Njobeh, P.B., Stepman, F., Eds.; IntechOpen: London, UK, 2018; Available online: https://www.intechopen.com/books/mycotoxins-impact-and-management-strategies/biological-control-of-mycotoxigenic-fungi-and-their-toxins-an-update-for-the-pre-harvest-approach (accessed on 14 April 2021). [CrossRef] [Green Version]
- Gould, G.W. Industry perspectives on the use of natural antimicrobials and inhibitors for food applications. J. Food Prot. 1996, 59, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Bankole, S.A. Effects of essential oils of two Nigerian medicinal plants (Azadirachta indica and Morinda lucida) on growth and aflatoxin B1 production in maize grain by a toxigenic Aspergillus flavus. Lett. Appl. Microbiol. 1997, 24, 190–192. [Google Scholar] [CrossRef]
- Ntushelo, K.; Ledwaba, L.K.; Rauwane, M.E.; Adebo, O.A.; Njobeh, P.B. The Mode of Action of Bacillus Species against Fusarium graminearum, Tools for Investigation, and Future Prospects. Toxins 2019, 11, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security: An overview. Plant Pathol. 2011, 60, 2–14. [Google Scholar] [CrossRef]
- Parikka, P.; Hakala, K.; Tiilikkala, K. Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Addit. Contam. Part A 2012, 29, 1543–1555. [Google Scholar] [CrossRef]
- Zhang, H.; van der Lee, T.; Waalwijk, C.; Chen, W.; Xu, J.; Xu, J.; Zhang, Y.; Feng, J. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE 2012, 7, e31722. [Google Scholar] [CrossRef] [Green Version]
- Janhanger, J. Mycotoxins—An Increasing Problem?—The Effect of Climate Changes on Fusarium Mould Populations and the Occurrence of Fusarotoxins in Swedish Cereals; Independent Project in Food Science; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018; Available online: https://stud.epsilon.slu.se/13677/12/janhager_j-180821.pdf (accessed on 28 January 2021).
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Final Report Summary-MYCORED (Novel Integrated Strategies for Worldwide Mycotoxin Reduction in the Food and Feed Chains). Available online: https://cordis.europa.eu/project/id/222690/reporting (accessed on 14 April 2021).
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Bottallico, A.; Perrone, G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. J. Plant. Pathol. 2002, 108, 611–624. [Google Scholar] [CrossRef]
- McMullen, M.; Bergstrom, G.C.; DeWolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant. Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [Green Version]
- Backhouse, D.; Burgess, L.W.; Summerell, B.A. Biogeography of Fusarium. In Fusarium Nelson Memorial Symposium; Summerell, B.A., Leslie, J.F., Backhouse, D., Bryden, W.L., Burgess, L.W., Eds.; APS Press: St Paul, MN, USA, 2012; pp. 122–137. [Google Scholar]
- Tekauz, A.; McCallum, B.; Ames, N.; Mitchell Fetch, J. Fusarium head blight of oat—Current status in western Canada. Can. J. Plant Pathol. 2004, 26, 473–479. [Google Scholar] [CrossRef]
- Chełkowski, J.; Gromadzka, K.; Stepien, Ł.; Lenc, L.; Kostecki, M.; Berthiller, F. Fusarium species, zearalenone and deoxynivalenol content in preharvest scabby wheat heads from Poland. World Mycotoxin J. 2012, 5, 133–141. [Google Scholar] [CrossRef]
- Wisniewska, H.; Stepien, L.; Waskiewicz, A.; Beszterda, M.; Góral, T.; Belter, J. Toxigenic Fusarium species infecting wheat heads in Poland. Cent. Eur. J. Biol. 2014, 9, 163–172. [Google Scholar] [CrossRef]
- Hellin, P.; Dedeurwaerder, G.; Duvivier, M.; Scauflaire, J.; Huybrechts, B.; Callebaut, A.; Munaut, F.; Legrève, A. Relationship between Fusarium spp. diversity and mycotoxin contents of mature grains in southern Belgium. Food Addit. Contam. Part A 2016, 33, 1228–1240. [Google Scholar] [CrossRef] [Green Version]
- Hietaniemi, V.; Rämö, S.; Yli-Mattila, T.; Jestoi, M.; Peltonen, S.; Kartio, M.; Sieviläinen, E.; Koivisto, T.; Parikka, P. Updated survey of Fusarium species and toxins in Finnish cereal grains. Food Addit. Contam. Part A 2016, 33, 831–848. [Google Scholar] [CrossRef]
- Tekauz, A.; Mitchell Fetch, J.W.; Rossnagel, B.G.; Savard, M.E. Progress in assessing the impact of Fusarium head blight on oat in western Canada and screening of Avena germplasm for resistance. Cereal Res. Commun. 2008, 36, 49–56. [Google Scholar] [CrossRef]
- Pearse, P.G.; Holzgang, G.; Weitzel, C.N.; Fernandez, M.R. Fusarium head blight in barley and oat in Saskatchewan in 2006. Can. Plant Dis. Surv. 2007, 87, 61–62. [Google Scholar]
- Tamburic-Ilincic, L. Fusarium species and mycotoxins associated with oat in southwestern Ontario, Canada. Can. J. Plant Sci. 2010, 90, 211–216. [Google Scholar] [CrossRef]
- Bernhoft, A.; Torp, M.; Clasen, P.-E.; Løes, A.-K. Influence of agronomic and climatic factors on Fusarium infestation and mycotoxin contamination of cereals in Norway. Food Addit. Contam. 2012, 29, 1129–1140. [Google Scholar]
- Salgado, J.D.; Madden, L.V.; Paul, P.A. Efficacy and economics of integrating in-field and harvesting strategies to manage Fusarium head blight of wheat. Plant Dis. 2014, 98, 1407–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, D.W.; Jenkinson, P.; McLeoad, L. Fusarium ear blight (scab) in small grain cereals—A review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Infantino, A.; Santori, A.; Shah, D.A. Community structure of the Fusarium complex on wheat seed in Italy. Eur. J. Plant Pathol. 2012, 132, 499–510. [Google Scholar] [CrossRef]
- Miller, J.D. Mycotoxins in small grains and maize: Old problems, new challenges. Food Addit. Contam 2008, 25, 219–230. [Google Scholar] [CrossRef]
- Golinski, P.; Waskiewicz, A.; Wisniewska, H.; Kiecana, I.; Mielniczuk, E.; Gromadzka, M.; Kostecki, M.; Bocianowski, J.; Rymaniak, E. Reaction of winter wheat (Triticum aestivum L.) cultivars to infection with Fusarium spp. mycotoxins contamination in grain and chaff. Food Addit. Contam. A. 2010, 27, 1015–1024. [Google Scholar] [CrossRef] [Green Version]
- Covarelli, L.; Beccari, G.; Prodi, A.; Generotti, S.; Etruschi, F.; Juan, C.; Ferrer, E.; Mañes, J. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in anarea of central Italy. J. Sci. Food Agric. 2015, 95, 540–551. [Google Scholar] [CrossRef]
- Stenglein, S.A.; Dinolfo, M.I.; Barros, G.; Bongiorno, F.; Chulze, S.N.; Moreno, M.V. Fusarium poae pathogenicity and mycotoxin accumulation on selected wheat and barley genotypes at a single location in Argentina. Plant Dis. 2014, 98, 1733–1738. [Google Scholar]
- Gräfenhan, T.; Patrick, S.K.; Roscoe, M.; Trelka, R.; Gaba, D.; Chan, J.M.; McKendry, T.; Clear, R.M.; Tittlemier, S.A. Fusarium damage in cereal grains from Western Canada. 1. Phylogenetic analysis of moniliformin-producing fusarium species and their natural occurrence in mycotoxin-contaminated wheat, oats, and rye. J. Agric. Food Chem. 2013, 61, 5425–5437. [Google Scholar] [CrossRef]
- Czaban, J.; Wróblewska, B.; Sułek, A.; Mikos, M.; Boguszewska, E.; Podolska, G.; Nieróbca, A. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions. Food Addit. Contam. Part A 2015, 32, 874–910. [Google Scholar]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules 2016, 21, 627. [Google Scholar]
- Linkmeyer, A.; Hofer, K.; Rychlik, M.; Herz, M.; Hausladen, H.; Hückelhoven, R.; Hess, M. Influence of inoculum and climatic factors on the severity of Fusarium head blight in German spring and winter barley. Food Addit. Contam. Part A 2016, 33, 489–499. [Google Scholar] [CrossRef]
- Kiecana, I.; Mielniczuk, E.; Kaczmarek, Z.; Kostecki, M.; Golinski, P. Scab response and moniliformin accumulation in kernels of oat genotypes inoculated with Fusarium avenaceum in Poland. Eur. J. Plant Pathol. 2002, 108, 245–251. [Google Scholar] [CrossRef]
- Barreto, D.; Carmona, M.; Ferrazini, M.; Zanelli, M.; Perez, B.A. Occurrence and pathogenicity of Fusarium poae in barley in Argentina. Cereal Res. Commun. 2004, 32, 53–60. [Google Scholar] [CrossRef]
- Touati-Hattab, S.; Barreau, C.; Verdal-Bonnin, M.-N.; Chereau, S.; Forget, F.R.; Hadjout, S.; Mekliche, L.; Bouznad, Z. Pathogenicity and trichothecenes production of Fusarium culmorum strains causing head blight on wheat and evaluation of resistance of the varieties cultivated in Algeria. Eur. J. Plant Pathol. 2016, 145, 797–814. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Devi, S.; Lee, K.E.; Kang, S.G.; Kumar, P. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.G. Fusarium mycotoxin content of UK organic and conventional oats. Food Addit. Contam. 2009, 26, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Yli-Mattila, T. Detection of trichothecene-producing Fusarium species in cereals in northen Europe and Asia. Agron. Res. 2011, 9, 521–526. [Google Scholar]
- Yli-Mattila, T.; Rämö, S.; Hietaniemi, V.; Hussien, T.; Carlobos-Lopez, A.L.; Cumagun, C.J.R. Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms 2013, 1, 162–174. [Google Scholar] [CrossRef]
- Lenc, L. Fusarium head blight (FHB) and Fusarium populations in grain of winter wheat grown in differ end cultivation systems. J. Plant Prot. Res. 2015, 55, 94–109. [Google Scholar] [CrossRef] [Green Version]
- Kulik, T.; Jestoi, M. Quantification of Fusarium poae DNA and associated mycotoxins in symptomatically contaminated wheat. Int. J. Food Microbiol. 2009, 130, 233–237. [Google Scholar] [CrossRef]
- Leslie, J.F. Introductory biology of Fusarium moniliforme. In Fumonisins in Food; Jackson, L.S., De Vries, J.W., Bullerman, L.B., Eds.; Plenum Press: New York, NY, USA, 1996; pp. 153–164. [Google Scholar]
- Nelson, P.E. Taxonomy and biology of Fusarium moniliforme. Mycopathologia 1992, 117, 29–36. [Google Scholar] [CrossRef]
- Nelson, P.E.; Desjardins, A.E.; Plattner, R.D. Fumonisins, mycotoxins produced by Fusarium species: Biology, chemistry and significance. Annu. Rev. Phytopathol. 1993, 31, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Headrick, J.; Pataky, J. Maternal influence on the resistance of sweet corn lines to kernel infection by Fusarium moniliforme. Phytopathology 1991, 81, 268–274. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Carlton, W.M. Influence of inoculation method on systemic Fusarium moniliforme infection of maize plants grown from infected seeds. Plant Dis. 1997, 81, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Munkvold, G.P.; Helmich, R.L.; Showers, W.B. Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology 1997, 87, 1071–1077. [Google Scholar] [CrossRef] [Green Version]
- Munkvold, G.P.; McGee, D.C.; Carlton, W.M. Importance of different pathways for maize kernel infection by Fusarium verticillioides. Phytopathology 1997, 97, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Foley, D.C. Systemic infection of corn by Fusarium moniliforme. Phytopathology 1962, 52, 870–872. [Google Scholar]
- Desjardins, A.E.; Plattner, R.D.; Nelsen, T.C.; Leslie, J.F. Genetic analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays) seedlings. Appl. Environ. Microbiol. 1995, 61, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Cleveland, T.; Woloshuk, C.; Payne, G.; Bhatnagar, D. Growth inhibition of a Fusarium verticillioides GUS strain in corn kernels of aflatoxin-resistant genotypes. Appl. Biotechnol. Microbiol. 2001, 57, 708–711. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds—Draft Guidance; Food and Drug Administration: Washington, DC, USA, 2000.
- Oldenburg, E.; Höppner, F.; Ellner, F.; Weinert, J. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Res. 2017, 33, 167–182. [Google Scholar] [CrossRef]
- Munkvold, G.P. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 2003, 109, 705–713. [Google Scholar] [CrossRef]
- Parsons, M.W.; Munkvold, G.P. Effects of planting date and environmental factors on Fusarium ear rot symptoms and fumonisin B1 accumulation in maize grown in six North American locations. Plant Pathol. 2012, 61, 1130–1142. [Google Scholar] [CrossRef]
- Mielniczuk, E.; Skwaryło-Bednarz, B. Fusarium Head Blight, Mycotoxins and Strategies for Their Reduction. Agronomy 2020, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Duncan, K.E.; Howard, R.J. Biology of maize kernel infection by Fusarium verticillioides. Mol. Plant Microbe Interact. 2010, 23, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Reid, L.M.; Nicol, R.W.; Ouellet, T.; Savard, M.; Miller, J.D.; Young, J.C.; Stewart, D.W.; Schaafsma, A.W. Interaction of Fusarium graminearum and F. moniliforme in maize ears: Disease progress, fungal biomass, and mycotoxin accumulation. Phytopathology 1999, 89, 1028–1037. [Google Scholar] [CrossRef] [Green Version]
- Oldenburg, E.; Ellner, F. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum. Mycotoxin Res. 2015, 31, 117–126. [Google Scholar] [CrossRef]
- Schollenberger, M.; Müller, H.-M.; Ernst, K.; Sondermann, S.; Liebscher, M.; Schlecker, C.; Wischer, G.; Drochner, W.; Hartung, K.; Piepho, H.-P. Occurrence and distribution of 13 trichothecene toxins in naturally contaminated maize plants in Germany. Toxins 2012, 4, 778–787. [Google Scholar] [CrossRef]
- Czembor, E. Impact of plant morphology for kinetics of red ear rot of maize caused by Fusarium graminearum development and deoxynivalenol formation. In Proceedings of the 13th European Fusarium Seminar, Martina Franca (TA), Apulia, Italy, 10–14 May 2015; Conference Abstracts, Session 3. pp. 23–137. [Google Scholar]
- Czembor, E.; Stępień, Ł.; Waśkiewicz, A. Fusarium temperatum as a new species causing ear rot on maize in Poland. Plant Dis. 2014, 98, 1001. [Google Scholar] [CrossRef]
- Boutigny, A.; Scauflaire, J.; Ballois, N.; Ioos, R. Fusarium temperatum isolated from maize in France. Eur. J. Plant Pathol. 2017, 148, 997–1001. [Google Scholar] [CrossRef]
- Scauflaire, J.; Gourgue, M.; Callebaut, A.; Munaut, F. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia 2011, 103, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Scarpino, V.; Reyneri, A.; Vanara, F.; Scopel, C.; Causin, R.; Blandino, M. Relationship between European corn borer injury, Fusarium proliferatum and F. subglutinans infection and moniliformin contamination in maize. Field Crop Res. 2015, 183, 69–78. [Google Scholar] [CrossRef]
- Mesterházy, A.; Lemmens, M.; Reid, L.M. Breeding for resistance to ear rots caused by Fusarium spp. in maize—A review. Plant Breed. 2012, 131, 1–19. [Google Scholar] [CrossRef]
- Al-Juboory, H.H.; Juber, K.S. Efficiency of some inoculation methods of Fusarium proliferatum and F. verticillioides on the systemic infection and seed transmission on maize under field conditions. Agric. Biol. J. N. Am. 2013, 4, 583–589. [Google Scholar]
- Griessler, K.; Rodrigues, I.; Handl, J.; Hofstetter, U. Occurrence of mycotoxins in southern Europe. World Mycotoxin J. 2010, 3, 301–309. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Evaluation of the increase of risk for public health related to a possible temporary derogation from the maximum level of deoxynivalenol, zearalenone and fumonisins for maize and maize products. EFSA J. 2014, 12, 3699. [Google Scholar]
- Santiago, R.; Cao, A.; Butrón, A. Genetic factors involved in fumonisin accumulation in maize kernels and their implications in maize agronomic management and breeding. Toxins 2015, 7, 3267–3296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waskiewicz, A.; Wit, M.; Golinski, P.; Chelkowski, J.; Warzecha, R.; Ochodzki, P.; Wakulinski, W. Kinetics of fumonisin B1 formation in maize ears inoculated with Fusarium verticillioides. Food Addit. Contam. 2012, 29, 1752–1761. [Google Scholar] [CrossRef]
- Bluhm, B.H.; Woloshuk, C.P. Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol. Plant Microbe Interact. 2005, 12, 1333–1339. [Google Scholar] [CrossRef] [Green Version]
- Logrieco, A.; Bottalico, A.; Mulé, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur. J. Plant Pathol. 2003, 109, 645–667. [Google Scholar] [CrossRef]
- Lazzaro, I.; Falavigna, C.; Galaverna, G.; Dall’Asta, C.; Battilani, P. Cornmeal and starch influence the dynamic of fumonisin B, A and C production and masking in Fusarium verticillioides and F. proliferatum. Int. J. Food Microbiol. 2013, 166, 21–27. [Google Scholar] [CrossRef]
- Bottalico, A.; Logrieco, A. Occurrence of toxigenic fungi and mycotoxins in Italy. In Occurrence of Toxigenic Fungi in Plants, Foods and Feeds in Europe; Logrieco, A., Ed.; European Commission: Brussels, Belgium, 2001; COST Action 835, EUR 19695; pp. 69–104. [Google Scholar]
- Jestoi, M. Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef]
- Logrieco, A.; Moretti, A.; Perrone, G.; Mulè, G. Biodiversity of complexes of mycotoxinogenic fungal species associated with Fusarium ear rot of maize and Aspergillus rot of grape. Int. J. Food Microbiol. 2007, 119, 11–16. [Google Scholar] [CrossRef]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [Green Version]
- Leggieri, C.; Bertuzzi, T.; Pietry, A.; Battilani, P. Mycotoxin occurrence in maize produced in northern Italy over the years 2009–2011: Focus on the role of crop related factors. Phytopathol. Mediterr. 2015, 54, 212–221. [Google Scholar]
- Dodd, J.L.; White, D.G. Seed rot, seedling blight, and damping-off. In Compendium of Corn Diseases; White, D.G., Ed.; The American Phytopathological Society: Saint Paul, MN, USA, 1999; pp. 10–11. [Google Scholar]
- Broders, K.D.; Lipps, P.E.; Paul, P.A.; Dorrance, A.E. Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling disease in Ohio. Plant Dis. 2007, 91, 1155–1160. [Google Scholar] [CrossRef] [Green Version]
- Pintos Varela, C.; Aguín Casal, O.; Chavez Padin, M.; Ferreiroa Martinez, V.; Sainz Oses, M.J.; Scauflaire, J.; Munaut, F.; Bande Castro, M.J.; Mansilla Vázquez, J.P. First report of Fusarium temperatum causing seedling blight and stalk rot on maize in Spain. Plant Dis. 2013, 97, 1252. [Google Scholar]
- Pascale, M.; Visconti, A.; Chelkowski, J. Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. Eur. J. Plant Pathol. 2002, 108, 645–651. [Google Scholar] [CrossRef]
- Xu, X.M.; Nicholson, P.; Thomsett, M.A.; Simpson, D.; Cooke, B.M.; Doohan, F.M.; Edwards, S.G. Relationship between the fungal complex causing Fusarium head blight of wheat and environmental conditions. Phytopathology 2008, 98, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Popovski, S.; Celar, F.A. The impact of environmental factors on the infection of cereals with Fusarium species and mycotoxin production—A review. Acta Agric. Slov. 2013, 101, 105–116. [Google Scholar] [CrossRef]
- Stenglein, S.A.; Dinolfo, M.I.; Bongiorno, F.; Moreno, M.V. Response of wheat (Triticum spp.) and barley (Hordeum vulgare) to Fusarium poae. Agrociencia 2012, 46, 299–306. [Google Scholar]
- Yli-Mattila, T. Ecology and evolution of toxigenic Fusarium species in cereals in Northern Europe and Asia. J. Plant Pathol. 2010, 92, 7–18. [Google Scholar]
- Osborne, L.E.; Stein, J.M. Epidemiology of Fusarium head blight on small-grain cereals. Int. J. Food Microbiol. 2007, 119, 103–108. [Google Scholar] [CrossRef]
- Hjelkrem, A.-G.R.; Torp, T.; Brodal, G.; Aamot, H.U.; Strand, E.; Nordskog, B.; Dill-Macky, R.; Edwards, S.G.; Hofgaard, I.S. DON content in oat grains in Norway related to weather conditions at different growth stages. Eur. J. Plant Pathol. 2017, 148, 577–594. [Google Scholar] [CrossRef] [Green Version]
- Paul, P.A.; Lipps, P.E.; Madden, L.V. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: A Meta-Analysis. Phytopathology 2005, 95, 1225–1236. [Google Scholar] [CrossRef] [Green Version]
- Pasquali, M.; Beyer, M.; Logrieco, A.; Audenaert, K.; Balmas, V.; Basler, R.; Boutigny, A.-L.; Chrpová, J.; Czembor, E.; Gagkaeva, T.; et al. A European Database Fusarium graminearum and F. culmorum Trichothecene Genotypes. Front. Microbiol. 2016, 7, 406. [Google Scholar] [CrossRef] [Green Version]
- Klich, M.A. Biogeography of Aspergillus species in soil and litter. Mycologia 2002, 94, 21–27. [Google Scholar] [CrossRef]
- Raper, K.B.; Fennell, D.I. Aspregillus niger Group. In The Genus Aspergillus; Raper, K.B., Fennell, D.I., Eds.; The Williams & Wilkins Co.: Baltimore, MD, USA, 1965; Chapter 16; pp. 293–344. [Google Scholar]
- Samson, R.A.; Varga, J. Molecular systematics of Aspergillus and its teleomophs. In Aspergillus: Molecular Biology and Genomics; Machida, M., Gomi, K., Eds.; Caister Academic Press: Tsukuba, Ibaraki, Japan, 2010; pp. 20–25. [Google Scholar]
- Abarca, M.L.F.; Accensi, F.; Cano, J.; Cabanes, F.J. Taxonomy and significance of black Aspergilli. Antonie Van Leeuwenhoek 2004, 86, 33–49. [Google Scholar] [CrossRef]
- Accensi, F.; Abarca, M.L.; Cano, J.; Figuera, L.; Cabanes, F.J. Distribution of ochratoxin a producing strains in the A. niger aggregate. Antonie Van Leeuwenhoek 2001, 79, 365–370. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.; Kuijpers, A.; Frank, J.M.; Frisvad, J.C. New ochratoxin or sclerotium producing species in Aspergillus section Nigra. Stud. Mycol. 2004, 50, 45–61. [Google Scholar]
- Allcroft, R.C.R.B.; Sargent, K.; O’Kelly, J. A toxic factor in Brazilian groundnut meal. Vet. Rec. 1961, 73, 428. [Google Scholar]
- Sargeant, K.; Sheridan, A.; O’Kelly, J.; Carnaghan, R.B.A. Toxicity assocaited with certain samples of groundnuts. Nature 1961, 192, 1096. [Google Scholar] [CrossRef]
- Palencia, E.R.; Hinton, D.M.; Bacon, C.W. The Black Aspergillus Species of Maize and Peanuts and Their Potential for Mycotoxin Production. Toxins 2010, 2, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Thomma, B. Alternaria spp.: From general saprophyte to specific parasite. Mol. Plant Pathol. 2003, 4, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Kosiak, B.; Torp, M.; Skjerve, E.; Andersen, B. Alternaria and Fusarium in Norwegian grains of reduced quality—A matched pair sample study. Int. J. Food Microbiol. 2004, 93, 51–62. [Google Scholar] [CrossRef]
- Medina, A.; Valle-Algarra, F.; Mateo, R.; Gimeno-Adelantado, J.; Mateo, F.; Jiménez, F. Survey of the mycobiota of Spanish malting barley and evaluation of the mycotoxin producing potential of species of Alternaria, Aspergillus and Fusarium. Int. J. Food Microbiol. 2006, 108, 196–203. [Google Scholar] [CrossRef]
- Hudec, K. Influence of harvest date and geographical location on kernel symptoms, fungal infestation and embryo viability of malting barley. Int. J. Food Microbiol. 2007, 113, 125–132. [Google Scholar] [CrossRef]
- Kwasna, H.; Kosiak, B. Lewia avenicola sp. nov. and its Alternaria anamorph from oat grain, with a key to the species of Lewia. Mycol. Res. 2003, 107, 371–376. [Google Scholar] [CrossRef]
- Grabarkiewicz-Szczęsna, J.; Chelkowski, J.; Zajkowski, P. Natural occurrence of Alternaria mycotoxins in the grain and chaff of cereals. Mycotoxin Res. 1989, 5, 77–80. [Google Scholar] [CrossRef]
- Logrieco, A.; Bottalico, A.; Solfrizzo, M.; Mule, G. Incidence of Alternaria Species in Grains from Mediterranean Countries and Their Ability to Produce Mycotoxins. Mycologia 1990, 82, 501–505. [Google Scholar] [CrossRef]
- Bensassi, F.; Zidi, M.; Rhouma, A.; Bacha, H.; Hajlaoui, M.R. First report of Alternaria species associated with black point of wheat in Tunisia. Ann. Microbiol. 2009, 59, 465–467. [Google Scholar] [CrossRef]
- Kütt, M.L.; Lõiveke, H.; Tanner, R. Detection of alternariol in Estonian grain samples. Agron. Res. 2010, 8, 317–322. [Google Scholar]
- Mašková, Z.; Tančinová, D.; Barboráková, Z.; Felšöciová, S.; Císarová, M. Comparison of occurrence and toxigenity of Alternaria spp. isolated from samples of conventional and new crossbread wheat of Slovak origin. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 552–562. [Google Scholar]
- Prasada, R.; Prabhu, A.S. Leaf blight of wheat caused by new species of Alternaria triticina. Indian Phytopathol. 1962, 15, 292–293. [Google Scholar]
- Perello, A.E.; Sisterna, M.N. Leaf blight of wheat caused by Alternaria triticina in Argentina. Plant Pathol. 2006, 55, 303. [Google Scholar] [CrossRef]
- Toth, B.; Csosz, M.; Szabo-Hever, A. Alternaria hungarica sp. nov., a minor foliar pathogen of wheat in Hungary. Mycologia 2011, 103, 94–100. [Google Scholar] [CrossRef]
- Vučković, J.; Bagi, F.; Bodroža-Solarov, M.; Stojšin, V.; Budakov, D.; Ugrenović, V.; Aćimović, M. Alternaria spp. on spelt kernels (Triticum aestivum ssp. spelta). Plant Dr. 2012, 1, 50–55. [Google Scholar]
- Ivanović, M.; Martić, M.; Đurić, N.; Dragović, G. The most common wheat disease in the conditions of Pančevački rit. Inst. PKB Agroekon. 2001, 7, 27–31. [Google Scholar]
- Liu, G.; Qian, Y.; Zhang, P.; Dong, W.; Qi, Y.; Guo, H. Etiological role of Alternaria alternata in human esophageal cancer. Chin. Med. J. 1992, 105, 394–400. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain. Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 2011, 9, 2407. [Google Scholar]
- Corden, J.; Millington, W.; Mullins, J. Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK—Are differences in climate and cereal production having an effect? Aerobiologia 2003, 19, 191–195. [Google Scholar] [CrossRef]
- Kilic, M.; Altintas, U.; Yilmaz, M.; Kendirli, G.; Karakoc, B.; Taskin, E.; Ceter, T.; Pinar, N.M. The effects of meteorological factors and Alternaria spore concentrations on children sensitised to Alternaria. Allergol. Immunopathol. 2010, 38, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Pavón, M.A.; González, I.; Pegels, N.; Martín, R.; García, T. PCR detection and identification of Alternaria species-groups in processed foods based on the genetic marker Alt a 1. Food Control 2010, 21, 1745–1756. [Google Scholar] [CrossRef]
- Ostry, V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008, 1, 175–188. [Google Scholar] [CrossRef]
- Logrieco, A.; Moretti, A.; Solfrizzo, M. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin J. 2009, 2, 129–140. [Google Scholar] [CrossRef]
- Battilani, P.; Costa, L.G.; Dossena, A.; Gullino, M.L.; Marchelli, R.; Galaverna, G.; Pietri, A.; Dall’Asta, C.; Giorni, P.; Spadaro, D.; et al. Scientific information on mycotoxins and natural plant toxicants. Sci. Tech. Rep. Submitt. EFSA 2009, 8214, 10. [Google Scholar] [CrossRef] [Green Version]
- Asam, A.; Konitzer, K.; Rychlik, M. Precise determination of the Alternaria mycotoxins alternariol and alternariol monomethyl ether in cereal, fruit and vegetable products using stable isotope dilution assays. Mycotoxin Res. 2011, 27, 23–28. [Google Scholar] [CrossRef]
- Siegel, D.; Rasenko, T.; Koch, M.; Nehls, I. Determination of the Alternaria mycotoxin tenuazonic acid in cereals by high-performance liquid chromatography–electrospray ionization ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. J. Chromatogr. A 2009, 1216, 4582–4588. [Google Scholar] [CrossRef]
- Malachova, A.; Dzuman, Z.; Veprikova, Z.; Vaclavikova, M.; Zachariasova, M.; Hajslova, J. Deoxynivalenol, Deoxynivalenol-3-glucoside, and Enniatins: The Major Mycotoxins Found in Cereal-Based Products on the Czech Market. J. Agric. Food Chem. 2011, 59, 12990–12997. [Google Scholar] [CrossRef]
- Li, F.; Yoshizawa, T. Alternaria mycotoxins in weathered wheat from China. J. Agric. Food Chem. 2000, 48, 2920–2924. [Google Scholar] [CrossRef]
- Patriarca, A.; Azcarate, M.P.; Terminiello, L.; Fernández, V. Mycotoxin production by Alternaria strains isolated from Argentinean wheat. Int. J. Food Microbiol. 2007, 119, 219–222. [Google Scholar] [CrossRef]
- Cabañes, F.J.; Bragulat, M.R. Ochratoxin A in profiling and speciation. In Aspergillus in the Genomic Era; Varga, J., Samson, R.A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008; pp. 57–70. [Google Scholar]
- Accensi, F.; Abarca, M.L.; Cabañes, F.J. Occurrence of Aspergillus species in mixed feeds and component raw materials and their ability to produce ochratoxin A. Food Microbiol. 2004, 21, 623–627. [Google Scholar] [CrossRef]
- Elmholt, S.; Rasmussen, P.H. Penicillium verrucosum occurrence and Ochratoxin A contents in organically cultivated grain with special reference to ancient wheat types and drying practice. Mycopathologia 2005, 159, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Boudra, H.; Le Bars, P.; Le Bars, J. Thermostability of ochratoxin A in wheat under two moisture conditions. Appl. Environ. Microbiol. 1995, 61, 1156–1158. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, K.; Rasmussen, G.; Thorup, I. Ochratoxin A in Danish cereals 1986–1992 and daily intake by the Danish population. Food Addit. Contam. 1996, 13, 95–104. [Google Scholar] [CrossRef]
- Jørgensen, K.; Jacobsen, J.S. Occurrence of ochratoxin A in Danish wheat and rye, 1992–1999. Food Addit. Contam. 2002, 19, 1184–1189. [Google Scholar] [CrossRef]
- Miller, J.D. Review. Fungi and mycotoxins in grain: Implications for stored product research. J. Stored Prod. Res. 1995, 31, 1–16. [Google Scholar] [CrossRef]
- Carson, M.L. Diseases of minor importance and limited occurrence. In Compendium of Corn Diseases, 3rd ed.; White, D.G., Ed.; The American Phytopathological Society: St. Paul, MN, USA, 1999; pp. 23–25. [Google Scholar]
- Kurtzman, C.P.; Ciegler, A. Mycotoxin from a blue-eye mold of corn. Appl. Microbiol. 1970, 20, 204–207. [Google Scholar] [CrossRef]
- Auerbach, H.; Oldenburg, E.; Weissbach, F. Incidence of Penicillium roqueforti and roquefortine C in silages. J. Sci. Food Agric. 1998, 76, 565–572. [Google Scholar] [CrossRef]
- Ohmomo, S.; Kitamoto, H. Detection of roquefortines in Penicillium roqueforti isolated from moulded silage. J. Sci. Food Agric. 1994, 64, 211–215. [Google Scholar] [CrossRef]
- Sumarah, M.W.; Miller, J.D.; Blackwell, B.A. Isolation and metabolite production by Penicillium roqueforti, P. paneum and P. crustosum isolated in Canada. Mycopathologia 2005, 159, 571–577. [Google Scholar] [CrossRef]
- Vesely, D.; Vesela, D.; Adamkova, A. Occurrence of Penicillium roqueforti producing PR toxin in maize silage. Vet. Med. Czech 1981, 26, 109–115. [Google Scholar]
- Boysen, M.E.; Jacobsson, K.G.; Schnurer, J. Molecular identification of species from the Penicillium roqueforti group associated with spoiled animal feed. Appl. Environ. Microbiol. 2000, 66, 1523–1526. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, K.F.; Sumarah, M.W.; Frisvad, J.C.; Miller, J.D. Production of metabolites from the Penicillium roqueforti complex. J. Agric. Food Chem. 2006, 54, 3756–3763. [Google Scholar] [CrossRef]
- O’Brien, M.; Nielsen, K.; O’Kiely, P.; Forristal, P.D.; Fuller, H.T.; Frisvad, J.C. Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J. Agric. Food Chem. 2006, 54, 9268–9276. [Google Scholar] [CrossRef] [Green Version]
- Frisvad, J.C.; Filtenborg, O. Terverticillate penicillia: Chemotoxonomy and mycotoxin production. Mycologia 1989, 81, 837–861. [Google Scholar] [CrossRef]
- Haggblom, P. Isolation of roquefortine C from feed grain. Appl. Environ. Microbiol. 1990, 56, 2924–2926. [Google Scholar] [CrossRef] [Green Version]
- Still, P.E.; Wei, R.D.; Smalley, E.B.; Srong, F.M. A mycotoxin from Penicillium roqueforti isolated from toxic cattle feed. Fed. Proc. 1972, 31, 733. [Google Scholar]
- Boysen, S.R.; Rozanski, E.A.; Chan, D.L.; Grobe, T.L.; Fallon, M.J.; Rush, J.E. Tremorgenic mycotoxicosis in four dogs from a single household. J. Am. Vet. Med. Assoc. 2002, 221, 1420. [Google Scholar] [CrossRef]
- Naude, T.W.; O’Brien, O.M.; Rundberget, T.; McGregor, A.D.; Roux, C.; Flaoyen, A. Tremorgenic neuromycotoxicosis in 2 dogs ascribed to the ingestion of penitrem A and possibly roquefortine in rice contaminated with Penicillium crustosum. J. S. Afr. Vet. Assoc. 2002, 73, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Young, K.L.; Villar, D.; Carson, T.L.; Ierman, P.M.; Moore, R.A.; Botoff, M.R. Tremorgenic mycotoxin intoxication with penitrem A and roquefortine in two dogs. J. Am. Vet. Med. Assoc. 2003, 222, 52–53. [Google Scholar] [CrossRef]
- Sabater-Vilar, M.; Maas, R.F.M.; De Bosschere, H.; Ducatelle, R.; Fink-Gremmels, J. Patulin produced by an Aspergillus clavatus isolated from feed containing malting residues associated with a lethal neurotoxicosis in cattle. Mycopathologia 2004, 158, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Bentley, R. Mycophenolic acid: A one hundred year odyssey from antibiotic to immunosuppressant. Chem. Rev. 2000, 100, 3801–3825. [Google Scholar] [CrossRef] [PubMed]
- Schneweis, I.; Meyer, K.; Hormansdorfer, S.; Bauer, J. Mycophenolic acid in silage. Appl. Environ. Microbiol. 2000, 66, 3639–3641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorner, J.W.; Cole, R.J.; Lomax, L.G.; Gosser, H.S.; Diener, U.L. Cyclopiazonic acid production by Aspergillus flavus and its effects on broiler chickens. Appl. Environ. Microbiol. 1983, 46, 698–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasongsidh, B.C.; Kailaspathy, K.; Skurray, G.R.; Bryden, W.L. Kinetic study of cyclopiazonic acid during the heat processing of milk. Food Chem. 1998, 62, 467–472. [Google Scholar] [CrossRef]
- Mansfield, M.A.; Kuldau, G.A. Microbiological and molecular determination of mycobiota in fresh and ensiled maize silage. Mycologia 2007, 99, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Gock, M.A.; Hocking, A.D.; Pitt, J.I.; Poulos, P.G. Influence of temperature, water activity and pH on growth of some xerophilic fungi. Int. J. Food Microbiol. 2003, 81, 11–19. [Google Scholar] [CrossRef]
- Magan, N.; Lacey, J. Effect of temperature and pH on water relations of field and storage fungi. Trans. Br. Mycol. Soc. 1984, 82, 71–81. [Google Scholar] [CrossRef]
- Ben Taheur, F.; Kouidhi, B.; Al Qurashi, Y.M.A.; Ben Salah-Abbès, J.; Chaieb, K. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019, 160, 12–22. [Google Scholar] [CrossRef]
- Umesha, S.; Manukumar, H.M.G.; Chandrasekhar, B.; Shivakumara, P.; Kumar, J.S.; Raghava, S.; Avinash, P.; Shirin, M.; Bharathi, T.R.; Rajini, S.B.; et al. Aflatoxins and food pathogens: Impact of biologically active aflatoxins and their control strategies. J. Sci. Food Agric. 2017, 97, 1698–1707. [Google Scholar] [CrossRef]
- Hassan, Y.I.; Zhou, T. Addressing the mycotoxin deoxynivalenol contamination with soil-derived bacterial and enzymatic transformations targeting the C3 carbon. World Mycotoxin J. 2018, 11, 101–111. [Google Scholar] [CrossRef]
- Kagot, V.; Okoth, S.; De Boevre, M.; De Saeger, S. Biocontrol of Aspergillus and Fusarium mycotoxins in Africa: Benefits and limitations. Toxins 2019, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- Adebo, O.A.; Kayitesi, E.; Njobeh, P.B. Reduction of Mycotoxins during fermentation of Whole Grain Sorghum to Whole Grain Ting (A Southern African Food). Toxins 2019, 11, 180. [Google Scholar] [CrossRef] [Green Version]
- Palazzini, J.; Roncallo, P.; Cantoro, R.; Chiotta, M.; Yerkovich, N.; Palacios, S.; Echenique, V.; Torres, A.; Ramirez, M.; Karlovsky, P.; et al. Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists. Toxins 2018, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Zeidan, R.; Ul-Hassan, Z.; Al-Thani, R.; Migheli, Q.; Jaoua, S. In-Vitro Application of a Qatari Burkholderia cepacia strain (QBC03) in the Biocontrol of Mycotoxigenic Fungi and in the Reduction of Ochratoxin A biosynthesis by Aspergillus carbonarius. Toxins 2019, 11, 700. [Google Scholar] [CrossRef] [Green Version]
- Nazareth, T.d.M.; Luz, C.; Torrijos, R.; Quiles, J.M.; Luciano, F.B.; Mañes, J.; Meca, G. Potential Application of Lactic Acid Bacteria to Reduce Aflatoxin B1 and Fumonisin B1 Occurrence on Corn Kernels and Corn Ears. Toxins 2020, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Jensen, B.; Knudsen, I.M.B.; Jensen, D.F. Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: Biocontrol efficacy against Fusarium culmorum. Eur. J. Plant Pathol. 2000, 106, 233–242. [Google Scholar] [CrossRef]
- Xue, A.G.; Voldeng, H.D.; Savard, H.D.; Fedak, G.; Tian, X.; Hsiang, T. Biological control of fusarium head blight of wheat with Clonostachys rosea strain ACM941. Can. J. Plant Pathol. 2009, 31, 169–179. [Google Scholar]
- Liu, Y.; Chang, J.; Wang, P.; Yin, Q.; Huang, W.; Liu, C.; Bai, X.; Zhu, Q.; Gao, T.; Zhou, P. Effects of Saccharomyces cerevisiae on alleviating cytotoxicity of porcine jejunal epithelia cells induced by deoxynivalenol. AMB Express 2019, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Mendieta, C.R.; Gomez, G.V.; Del Río, J.C.G.; Cuevas, A.C.; Arce, J.M.; Ávila, E.G. Effect of the addition of Saccharomyces cerevisiae yeast cell walls to diets with mycotoxins on the performance and immune responses of broilers. J. Poult. Sci. 2018, 55, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, M.; Wu, C.; Peng, B. Physical adsorption of patulin by Saccharomyces cerevisiae during fermentation. J. Food Sci. Technol. 2019, 56, 2326–2331. [Google Scholar] [CrossRef]
- Jakopovic, Ž.; Čiča, K.H.; Mrvčić, J.; Pucić, I.; Čanak, I.; Frece, J.; Pleadin, J.; Stanzer, D.; Zjalić, S.; Markov, K. Properties and fermentation activity of industrial yeasts Saccharomyces cerevisiae, S. uvarum, Candida utilis and Kluyveromyces marxianus exposed to AFB1, OTA and ZEA. Food Technol. Biotechnol. 2018, 56, 208–217. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Zhang, H.; Li, C.; Zhang, X. Ochratoxin A is degraded by Yarrowia lipolytica and generates non-toxic degradation products. World Mycotoxin J. 2016, 9, 269–278. [Google Scholar] [CrossRef]
- Li, X.; Tang, H.; Yang, C.; Meng, X.; Liu, B. Detoxification of mycotoxin patulin by the yeast Rhodotorula mucilaginosa. Food Control 2019, 96, 47–52. [Google Scholar] [CrossRef]
- Zeidan, R.; Ul-Hassan, Z.; Al-Thani, R.; Balmas, V.; Jaoua, S. Application of Low-Fermenting Yeast Lachancea thermotolerans for the Control of Toxigenic Fungi Aspergillus parasiticus, Penicillium verrucosum and Fusarium graminearum and Their Mycotoxins. Toxins 2018, 10, 242. [Google Scholar] [CrossRef] [Green Version]
- Alberts, J.F.; Lilly, M.; Rheeder, J.P.; Burger, H.M.; Shephard, G.S.; Gelderblom, W.C.A. Technological and community-based methods to reduce mycotoxin exposure. Food Control 2017, 73, 101–109. [Google Scholar] [CrossRef]
- Sarrocco, S.; Mauro, A.; Battilani, P. Use of Competitive Filamentous Fungi as anAlternative Approach for Mycotoxin Risk Reductionin Staple Cereals: State of Art and Future Perspectives. Toxins 2019, 11, 701. [Google Scholar] [CrossRef] [Green Version]
- Pellan, L.; Durand, N.; Martinez, V.; Fontana, A.; Schorr-Galindo, S.; Strub, C. Commercial Biocontrol Agents Reveal Contrasting Comportments against Two Mycotoxigenic Fungi in Cereals: Fusarium graminearum and Fusarium verticillioides. Toxins 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, E.M.; Mourits, M.C.M.; Fels-Klerx, H.J.; Oude Lansink, A.G.J.M. Pre-harvest measures against Fusarium spp. Infection and related mycotoxins implemented by Dutch wheat farmers. Crop Prot. 2019, 122, 9–18. [Google Scholar] [CrossRef]
- Hofgaard, I.S.; Aamot, H.U.; Torp, T.; Jestoi, M.; Lattanzio, V.M.T.; Klemsdal, S.S.; Waalwijk, C.; Van der Lee, T.; Brodal, G. Associations between Fusarium species and mycotoxins in oats and spring wheat from farmers’ fields in Norway over a six-year period. World Mycotoxin J. 2016, 9, 365–378. [Google Scholar] [CrossRef]
- Weber, R.; Kita, W. The effects of tillage systems and preceding crop types on the frequency of the incidence of Fusarium culmorum and Fusarium avenaceum on culm bases of some winter wheat cultivars. Acta Agrobot. 2010, 63, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Dong, F.; Yu, M.; Xu, J.; Shi, J. Effect of preceding crop on Fusarium species and mycotoxin contamination of wheat grains. J. Sci. Food Agric. 2016, 96, 4536–4541. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, A.W.; Tamburic-Ilinic, L.; Miller, J.D.; Hooker, D.C. Agronomic considerations for reducing deoxynivalenol in wheat grain. Can. J. Plant Pathol. 2001, 23, 279–285. [Google Scholar] [CrossRef]
- Fernandez, M.R.; Conner, R.L. Root and crown rot of wheat. Prairie Soils Crop. J. 2011, 4, 151–157. [Google Scholar]
- Dill-Macky, R.; Jones, R.K. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis. 2000, 84, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Kraska, P.; Mielniczuk, E. The occurrence of fungi on the stem base and roots of spring wheat (Triticum aestivum L.) grown in monoculture depending on tillage sys-tems and catch crops. Acta Agrobot. 2012, 65, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Klix, M.B. Major Mycotoxin Producin Fusarium Species in Wheat-Factors A Ecting the Species Complex Composition and Disease Management; Cuvillier Verlag: Göttingen, Germany, 2007; pp. 17–32. [Google Scholar]
- Steinkellner, S.; Langer, I. Impact of tillage on the incidence of Fusarium spp. in soil. Plant Soil 2004, 267, 13–22. [Google Scholar] [CrossRef]
- Gajecki, M.; Jakimiuk, E.; Gajecka, M.; Motyka, J.; Obremski, K. Praktyczne metody zmniejszania aktywnosci mikotoksyn w paszach. Mag. Weter. Monogr. 2010, 6, 605–610. [Google Scholar]
- Yi, C.; Kaul, H.P.; Kübler, E.; Schwadorf, K.; Aufhammer, I. Head blight (Fusarium graminearum) and deoxynivalenol concentration in winter wheat as affected by pre-crop soil tillage and nitrogen fertilisation. Pflanzen 2001, 108, 217–230. [Google Scholar]
- Podolska, G.; Bryła, M.; Sułek, A.; Waskiewicz, A.; Szymczyk, K.; Jedrzejczak, R. Influence of the cultivar and nitrogen fertilisation level on the mycotoxin contamination in winter wheat. Qual. Assur. Saf. Crop. Foods 2017, 9, 451–461. [Google Scholar] [CrossRef]
- Champeil, A.; Fourbet, J.F.; Dore, T.; Rossignol, L. Influence of cropping system on Fusarium head blight and mycotoxin levels in winter wheat. Crop Prot. 2004, 23, 531–537. [Google Scholar] [CrossRef]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Blandino, M.; Scarpino, V.; Giordano, D.; Sulyok, M.; Krska, M.; Vanara, F.; Reyneri, A. Impact of sowing time, hybrid and environmental conditions on the contamination of maize by emerging mycotoxins and fungal metabolites. Ital. J. Agron. 2017, 12, 928. [Google Scholar] [CrossRef] [Green Version]
- Torelli, E.; Firrao, G.; Bianchi, G.; Saccardo, F.; Locci, R. The influence of local factors on the prediction of fumonisin contamination in maize. J. Sci. Food Agric. 2012, 92, 1808–1814. [Google Scholar] [CrossRef]
- Gautam, P.; Dill-Macky, R. Impact of moisture, host genetics and Fusarium graminearum isolates on Fusarium head blight development and trichothecene accumulation in spring wheat. Mycotoxin Res. 2012, 28, 45–58. [Google Scholar] [CrossRef]
- Edwards, S.G. Influence of agricultural practices on fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol. Lett. 2004, 153, 29–35. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Lemmens, M.; Hartl, L.; Doldi, L.; Steiner, B.; Stierschneider, M.; Ruckenbauer, P. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor. Appl. Genet. 2002, 104, 84–91. [Google Scholar] [CrossRef]
- Lanubile, A.; Maschietto, V.; Borrelli, V.M.; Stagnati, L.; Logrieco, A.F.; Marocco, A. Molecular basis of resistance to Fusarium Ear Rot in maize. Front. Plant Sci. 2017, 12, 1774. [Google Scholar] [CrossRef]
- Perincherry, L.; Lalak-Kanczugowska, J.; Stepien, Ł. Fusarium-Produced mycotoxins in plant-pathogen interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, H.W.; Christensen, J.J. Factors affecting resistance of wheat to scab by Gibberella zeae. Phytopathology 1963, 53, 831–838. [Google Scholar]
- Steiner, B.; Buerstmayr, M.; Michel, S. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop. Plant Pathol. 2017, 42, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Mesterhazy, A. Types and components of resistance to Fusarium head blight of wheat. Plant Breed. 1995, 114, 377–386. [Google Scholar] [CrossRef]
- Boutigny, A.L.; Richard-Forget, F.; Barreau, C. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur. J. Plant Pathol. 2008, 121, 411–423. [Google Scholar] [CrossRef]
- Kluger, B.; Bueschl, C.; Lemmens, M.; Michlmayr, H.; Malachova, A.; Koutnik, A.; Maloku, I.; Berthiller, F.; Adam, G.; Krska, R.; et al. Biotransformation of the mycotoxin deoxynivalenol in Fusarium resistant and susceptible near isogenic wheat lines. PLoS ONE 2015, 10, e0119656. [Google Scholar] [CrossRef]
- Bekalu, Z.E.; Krogh Madsen, C.; Dionisio, G.; Bæksted Holme, I.; Jørgensen, L.N.S.; Fomsgaard, I.; Brinch-Pedersen, H. Overexpression of nepenthesin HvNEP-1 in barley endosperm reduces Fusarium head blight and mycotoxin accumulation. Agronomy 2020, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Machado, A.K.; Brown, N.A.; Urban, M.; Kanyuka, K.; Hammond-Kosack, K.E. RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals. Pest Manag. Sci. 2018, 74, 790–799. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, R.; Rajasekaran, K.; Cary, J.W. RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: Concepts and considerations. Front. Plant Sci. 2017, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Kuzniar, A.; Włodarczyk, K.; Wolinska, A. Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions. Agronomy 2019, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Dutta, D.; Puzari, K.C.; Gogoi, R.; Dutta, P. Endophytes: Exploitation as a tool in plant protection. Braz. Arch. Biol. Technol. 2014, 57, 5. [Google Scholar] [CrossRef]
- Ferrigo, D.; Raiola, A.; Picollo, E.; Scopel, C.; Causin, R. Trichoderma harzianum T22 induces in maize systemic resistance against Fusarium verticillioides. J. Plant Pathol. 2014, 96, 133–142. [Google Scholar]
- Mutiga, S.K.; Mushongi, A.A.; Kangéthe, E.K. Enhancing food safety through adoption of long-term technical advisory, financial, and storage support services in maize growing areas of East Africa. Sustainability 2019, 11, 2827. [Google Scholar] [CrossRef] [Green Version]
- Mutiga, S.K.; Were, V.; Homann, V.; Harvey, H.W.; Milgroom, M.G.; Nelson, R.J. Extent and drivers of mycotoxin contamination: Inferences from a survey of Kenyan maize mills. Phytopathology 2014, 104, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Cheli, F.; Pinotti, L.; Rossi, L.; Dell’Orto, V. Effect of milling procedures on mycotoxin distribution in wheat fractions: A review. LWT Food Sci. Technol. 2013, 54, 307–314. [Google Scholar] [CrossRef]
- Karlovsky, P.; Suman, M.; Berthiller, F.; Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Grenier, B.; Bracarense, A.P.; Leslie, J.F.; Oswald, I.P. Physical and chemical methods for mycotoxin decontamination in maize. In Mycotoxin Reduction in Grain Chains; Leslie, J.F., Logrieco, A.F., Eds.; Wiley Blackwell: New Delhi, IA, USA, 2014; pp. 116–129. [Google Scholar]
- Tanaka, K.; Sago, Y.; Zheng, Y.; Nakagawa, H.; Kushiro, M. Mycotoxins in rice. Int. J. Food Microbiol. 2007, 20, 59–66. [Google Scholar] [CrossRef]
- Huwig, A.; Freimund, S.; Käppeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef]
- Li, M.M.; Guan, E.Q.; Bian, K. Effect of ozone treatment on deoxynivalenol and quality evaluation of ozonized wheat. Food Addit. Contam. Part A 2015, 32, 544–553. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Mohapatra, D.; Kumar, S.; Kotwaliwale, N.; Singh, K.K. Critical factors responsible for fungi growth in stored food grains and non-Chemical approaches for their control. Ind. Crop. Prod. 2017, 108, 162–182. [Google Scholar] [CrossRef]
- Trombete, F.M.; Porto, Y.D.; Freitas-Silva, O.; Pereira, R.V.; Direito, G.M.; Saldanha, T.; Fraga, M.E. Effycacy of ozone treatment on mycotoxins and fungal reduction in artificially contaminated soft wheat grains: Effcacy of O3 on mycotoxins and fungi. J. Food Process. Preserv. 2016, 41, e12927. [Google Scholar]
- Piemontese, L.; Messia, M.C.; Marconi, E.; Falasca, L.; Zivoli, R.; Gambacorta, L.; Perrone, G.; Solfrizzo, M. Effect of gaseous ozone treatments on DON, microbial contaminants and technological parameters of wheat and semolina. Food Addit. Contam. Part A 2018, 35, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Porto, Y.D.; Trombete, F.M.; Freitas-Silva, O.; de Castro, I.M.; Direito, G.M.; Ascheri, J.L.R. Gaseous Ozonation to Reduce Aflatoxins Levels and Microbial Contamination in Corn Grits. Microorganisms 2019, 7, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandre, A.P.S.; Castanha, N.; Calori-Domingues, M.A.; Augusto, P.E.D. Ozonation of whole wheat flour and wet milling euent: Degradation of deoxynivalenol (DON) and rheological properties. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 516–524. [Google Scholar] [CrossRef]
- Alexandre, A.P.S.; Castanha, N.; Costa, N.S.; Santos, A.S.; Badiale-Furlong, E.; Augusto, P.E.D.; Calori-Dominguesa, M.A. Ozone technology to reduce zearalenone contamination in whole maize flour: Degradation kinetics and impact on quality. J. Sci. Food Agric. 2019, 99, 6814–6821. [Google Scholar] [CrossRef]
- Santos Alexandre, A.P.; Vela-Paredes, R.S.; Santos, A.S.; Costa, N.S.; Canniatti-Brazaca, S.G.; Calori-Domingues, M.A.; Augusto, P.E.D. Ozone treatment to reduce deoxynivalenol (DON) and zearalenone (ZEN) contamination in wheat bran and its impact on nutritional quality. Food Addit. Contam. Part A 2018, 35, 1189–1199. [Google Scholar] [CrossRef]
- Shanakhat, H.; Sorrentino, A.; Raiola, A.; Romano, A.; Masi, P.; Cavella, S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: An overview. J. Sci. Food Agric. 2018, 98, 4003–4013. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Kamasani, J.R.; Mudili, V. Assessment of detoxification effcacy of irradiation on zearalenone mycotoxin in various fruit juices by response surface methodology and elucidation of its in-vitro toxicity. Front. Microbiol. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Li, S.; Bai, Y.; Prates, L.L.; Lei, Y.; Yu, P. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies. Food Control 2018, 91, 202–215. [Google Scholar] [CrossRef]
- Gonçalves, A.; Gkrillas, A.; Dorne, J.L.; Dall’Asta, C.; Palumbo, R.; Lima, N.; Battilani, P.; Venâncio, A.; Giorni, P. Pre- and Postharvest Strategies to Minimize Mycotoxin Contamination in the Rice Food Chain. Compr. Rev. Food Sci. Food Saf. 2019, 18, 441–454. [Google Scholar] [CrossRef]
- Walravens, J.; Mikula, H.; Rychlik, M.; Asamd, S.; Ediagea, E.N.; Di Mavungua, J.D.; Landschoote, A.V.; Vanhaeckef, L.; De Saeger, S. Development and validation of an ultra-high-performance liquidchromatography tandem mass spectrometric method for the simultaneous determination of free andconjugated Alternaria toxins in cereal-based foodstuffs. J. Chromatogr. A 2014, 1372, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, X.; Li, J. Updating techniques on controlling mycotoxins—A review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Tarazona, A.; Gómez, J.V.; Mateo, E.M.; Jiménez, M.; Mateo, F. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Int. J. Food Microbiol. 2019, 306, 108259. [Google Scholar] [CrossRef]
- González-Jartín, J.M.; de Castro Alves, L.; Alfonso, A.; Piñeirob, Y.; Vilar, S.Y.; Gomez, M.G.; Osorio, Z.V.; Sainz, M.J.; Vieytes, M.R.; Rivas, J.; et al. Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chem. 2019, 294, 60–66. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, S.; Wang, F.; Li, Q.; He, C.; Duan, N.; Wang, Z. Assessing the toxicity in vitro of degradation products from deoxynivalenol photocatalytic degradation by using upconversion nanoparticles@ TiO2 composite. Chemosphere 2020, 238, 124648. [Google Scholar] [CrossRef]
- Chulze, S.N. Strategies to reduce mycotoxin levels in maize during storage: A review. Food Addit. Contam. Part A 2010, 27, 651–657. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Dwivedy, A.K.; Singh, V.K.; Das, S.; Singh, A.; Dubey, N.K. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environ. Sci. Pollut. Res. 2019, 26, 25414–25431. [Google Scholar] [CrossRef]
- Perczak, A.; Jus, K.; Gwiazdowska, D.; Marchwinska, K.; Waskiewicz, A. The Effciency of Deoxynivalenol Degradation by Essential Oils under In Vitro Conditions. Foods 2019, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Sanzani, S.M.; Reverberi, M.; Geisen, R. Mycotoxins in harvested fruits and vegetables: Insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biol. Technol. 2016, 122, 95–105. [Google Scholar] [CrossRef]
- Sánchez-Montero, L.; Córdoba, J.J.; Alía, A.; Peromingo, B.; Núñez, F. Effect of Spanish smoked paprika “Pimentón de La Vera” on control of ochratoxin A and aflatoxins production on a dry-cured meat modelsystem. Int. J. Food Microbiol. 2019, 308, 108303. [Google Scholar] [CrossRef]
- Kollia, E.; Proestos, C.; Zoumpoulakis, P.; Markaki, P. Capsaicin, an inhibitor of Ochratoxin A production by Aspergillus section Nigri strains in grapes (Vitis vinifera L.). Food Addit. Contam. Part. A 2019, 36, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Velluti, A.; Sanchis, V.; Ramos, A.J.; Egido, J.; Marın, S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int. J. Food Microbiol. 2003, 89, 145–154. [Google Scholar] [CrossRef]
- Bullerman, L.B.; Lieu, F.Y.; Seire, A.S. Inhibition of growth and aflatoxin production by cinnamon and clove oils, cinnamic aldehyde and eugenol. J. Food Sci. 1977, 42, 1107–1116. [Google Scholar]
- Montes-Belmont, R.; Carvajal, M. Control of Aspergillus flavus in maize with plant essential oils and their components. J. Food Prot. 1998, 61, 616–619. [Google Scholar] [CrossRef]
- Sinha, K.K.; Sinha, A.K.; Prasad, G. The effect of clove and cinnamon oils on growth of and aflatoxin production by Aspergillus flavus. Lett. Appl. Microbiol. 1993, 16, 114–117. [Google Scholar] [CrossRef]
- Velluti, A.; Sanchis, V.; Ramos, A.J.; Marın, S. Control of Fusarium verticillioides growth and fumonisin B1 production in maize grain by the addition of cinnamon, clove, lemongrass, oregano and palmarose essential oils. J. Food Sci. 2002, 217, 332–337. [Google Scholar]
- Velluti, A.; Marın, S.; Gonzalez, P.; Ramos, A.J.; Sanchis, V. Initial screening for inhibitiory activity of essential oils on growth of Fusarium verticillioides, F. proliferatum and F. graminearum on maize-based agar media. Food Microbiol. 2004, 21, 649–656. [Google Scholar] [CrossRef]
- Paster, N.; Juven, B.J.; Shaaya, E.; Menasherov, M.; Nitzan, R.; Weisslowicz, H.; Ravid, U. Inhibitory effect of oregano and thyme essential oils on moulds and foodborne bacteria. Lett. Appl. Microbiol. 1990, 11, 33–37. [Google Scholar] [CrossRef]
- Paster, N.; Menasherov, M.; Ravid, U.; Juven, B. Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. J. Food Prot. 1995, 58, 81–85. [Google Scholar] [CrossRef]
- Pattnaik, S.; Subramanyam, V.R.; Kole, C. Antibacterial and antifungal activity of ten essential oils in vitro. Microbios 1996, 86, 237–246. [Google Scholar]
- Kanižai Šarić, G.; Klapec, T.; Milaković, Z.; Šarkanj, B.; Pavlović, H. Growth inhibition of Fusarium sp. In livestock feed. Poljoprivreda 2011, 17, 22–27. [Google Scholar]
- Hojnik, N.; Cvelbar, U.; Tavˇcar-Kalcher, G.; Walsh, J.L.; Križaj, I. Mycotoxin decontamination of food: Old atmospheric pressure plasma versus “classic” decontamination. Toxins 2017, 9, 151. [Google Scholar] [CrossRef]
- Wielogorska, E.; Ahmed, Y.; Meneely, J.; Graham, W.G.; Elliott, C.T.; Gilmore, B.F. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chem. 2019, 301, 125281. [Google Scholar] [CrossRef]
- Basaran, P.; Basaran-Akgul, N.; Oksuz, L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol. 2008, 25, 626–632. [Google Scholar] [CrossRef]
- Pittet, A.C. Natural occurrence of mycotoxins in foods and feeds: An update review. Rev. Med. Vet. 1998, 6, 479–492. [Google Scholar]
- Zachetti, V.G.L.; Cendoya, E.; Nichea, M.J.; Chulze, S.N.; Ramirez, M.L. Preliminary study on the use of chitosan as an eco-friendly alternative to control Fusarium growth and mycotoxin production on maize and wheat. Pathogens 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Manwar, A.V.; Khandelwal, S.R.; Chaudhari, B.L.; Meyer, J.M.; Chincholkar, S.B. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Appl. Biochem. Biotechnol. 2004, 118, 243–252. [Google Scholar] [CrossRef]
- Rane, M.R.; Sarode, P.D.; Chaudhari, B.L.; Chincholkar, S.B. Exploring antagonistic metabolites of established biocontrol agent of marine origin. Appl. Biochem. Biotechnol. 2008, 151, 665–675. [Google Scholar] [CrossRef]
- Gohel, V.; Chaudhary, T.; Vyas, P.; Chhatpar, H.S. Isolation and identification of marine chitinolytic bacteria and their potential in antifungal biocontrol. Indian J. Exp. Biol. 2004, 42, 715–720. [Google Scholar]
- Yandigeri, M.S.; Malviya, N.; Solanki, M.K.; Shrivastava, P.; Sivakumar, G. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J. Microbiol. Biotechnol. 2015, 31, 1217–1225. [Google Scholar] [CrossRef]
- Kong, Q.; Shan, S.H.; Liu, Q.Z.; Wang, X.D.; Yu, F.T. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. Int. J. Food Microbiol. 2010, 139, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Chi, C.; Yu, J.J.; Shan, S.H.; Li, Q.Y.; Li, Q.T.; Bennett, J.W. The inhibitory effects of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus. Appl. Microbiol. Biotechnol. 2014, 98, 5161–5172. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Montiel, L.G.; Ochoa, J.L.; Troyo-Diéguez, E.; Larralde-Corona, C.P. Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biol. Technol. 2010, 56, 181–187. [Google Scholar] [CrossRef]
- Estrada, R.R.G.; Valle, F.D.J.A.; Sánchez, J.A.R.; Santoyo, M.C. Use of a marine yeast as a biocontrol agent of the novel pathogen Penicillium citrinum on Persian lime. Emir. J. Food Agric. 2017, 29, 114–122. [Google Scholar]
- Medina-Córdova, N.; López-Aguilar, R.; Ascencio, F.; Castellanos, T.; Campa-Córdova, A.I.; Angulo, C. Biocontrol activity of the marine yeast Debaryomyces hansenii against phytopathogenic fungi and its ability to inhibit mycotoxins production in maize grain (Zea mays L.). Biol. Control 2016, 97, 70–79. [Google Scholar] [CrossRef]
- Schlingmann, G.; Milne, L.; Williams, D.R.; Carter, G.T. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256 II. Isolation and structure determination. J. Antibiot. 1998, 51, 303–316. [Google Scholar]
- Kuo, H.C.; Wang, T.Y.; Chen, P.P.; Chen, R.S.; Chen, T.Y. Genome sequence of Trichoderma virens FT-333 from tropical marine climate. FEMS Microbiol. Lett. 2015, 362, fnv036. [Google Scholar] [CrossRef] [Green Version]
- Losgen, S.; Schlörke, O.; Meindl, K.; Herbst-Irmer, R.; Zeeck, A. Structure and biosynthesis of chaetocyclinones, new polyketides produced by an endosymbiotic fungus. Eur. J. Org. Chem. 2007, 2007, 2191–2196. [Google Scholar] [CrossRef]
- Garo, E.; Starks, C.M.; Jensen, P.R.; Fenical, W.; Lobkovsky, E.; Clardy, J. Trichodermanides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J. Nat. Prod. 2003, 66, 423–426. [Google Scholar] [CrossRef]
- Gal-Hemed, I.; Atanasova, L.; Komon-Zelazowska, M.; Druzhinina, I.S.; Viterbo, A.; Yarden, O. Marine isolates of Trichoderma spp. As potential halotolerant agents of biological control for arid-zone agriculture. Appl. Environ. Microbiol. 2011, 77, 5100–5109. [Google Scholar] [CrossRef] [Green Version]
- Holler, U.; Konig, G.M.; Wright, A.D. Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J. Nat. Prod. 1999, 62, 114–118. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.; Liu, Z.; Shi, Y.; Liu, J.; Xu, X.; Hao, S.; Mu, P.; Deng, F.; Deng, Y. Aflatoxin B1 degradation and detoxification by Escherichia coli CG1061 isolated from chicken cecum. Front. Pharmacol. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Abdallah, M.F.; De Boevre, M.; Landschoot, S.; De Saeger, S.; Haesaert, G.; Audenaert, K. Fungal Endophytes Control Fusarium graminearum and Reduce Trichothecenes and Zearalenone in Maize. Toxins 2018, 10, 493. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Zhang, Y.; Li, M.; Garba, B.; Zhang, Q.; Wang, Y.; Zhang, H.; Li, P. Isolation and characterization of a Bacillus subtilis strain with aflatoxin B1 biodegradation capability. Food Control 2017, 75, 92–98. [Google Scholar] [CrossRef]
- Nešić, K.; Habschied, K.; Mastanjević, K. Possibilities for the Biological Control of Mycotoxins in Food and Feed. Toxins 2021, 13, 198. [Google Scholar] [CrossRef]
- Crane, J.; Gibson, D.; Vaughan, R.; Bergstrom, G. Iturin Levels on Wheat Spikes Linked to Biological Control of Fusarium Head Blight by Bacillus amyloliquefaciens. Biol. Control 2013, 103, 146–155. [Google Scholar]
- Dunlap, C.; Bowman, M.; Schisler, D. Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: A biocontrol antagonist of Fusarium head blight. Biol. Control 2013, 64, 166–175. [Google Scholar] [CrossRef]
- Palazzini, J.; Ramirez, M.; Torres, A.; Chulze, S. Potential biocontrol agents for Fusarium Head Blight and deoxynivalenol production in wheat. Crop Prot. 2007, 26, 1702–1710. [Google Scholar] [CrossRef]
- Palazzini, J.M.; Alberione, E.; Torres, A.; Donat, C.; Köhl, J.; Chulze, S. Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina. Biol. Control 2016, 94, 56–61. [Google Scholar] [CrossRef]
- Schisler, D.A.; Khan, N.I.; Boehm, M.J.; Lipps, P.E.; Zhang, S. Selection and evaluation of the potential of choline-metabolizing microbial strains to reduce Fusarium head blight. Biol. Control 2006, 39, 497–506. [Google Scholar] [CrossRef]
- Zhao, Y.; Selvaraj, J.; Xing, F.; Zhou, L.; Wang, Y.; Song, H.; Tan, X.; Sun, L.; Sangare, L.; Folly, Y.; et al. Antagonistic action of Bacillus subtilis strain sg6 on Fusarium graminearum. PLoS ONE 2014, 9, e92486. [Google Scholar] [CrossRef]
- Khan, M.R.; Doohan, F. Bacterium-mediated control of Fusarium head blight disease of wheat and barley and associated mycotoxin contamination of grain. Biol. Control 2009, 48, 42–47. [Google Scholar] [CrossRef]
- Palazzini, J.M.; Yerkovich, N.; Alberione, E.; Chiotta, M.; Chulze, S. An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions. Plant Gene 2017, 9, 13–18. [Google Scholar] [CrossRef]
- Schisler, D.A.; Core, A.B.; Boehm, M.J.; Horst, L.; Krause, C.; Dunlap, C.A.; Rooney, A.P. Population dynamics of the Fusarium head blight biocontrol agent Cryptococcus flavescens OH 182.9 on wheat anthers and heads. Biol. Control 2014, 70, 17–27. [Google Scholar] [CrossRef]
- Xue, A.G.; Chen, Y.; Voldeng, H.D.; Fedak, G.; Savard, M.E.; Längle, T.; Zhang, J.; Harman, G.E. Concentration and cultivar effects on efficacy of CLO-1 biofungicide in controlling Fusarium head blight of wheat. Biol. Control 2014, 73, 2–7. [Google Scholar] [CrossRef]
- Legrand, F.; Picot, A.; Cobo-Díaz, J.; Chen, W.; Le Floch, G. Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biol. Control 2017, 113, 26–38. [Google Scholar] [CrossRef]
- Comby, M.; Gacoin, M.; Robineau, M.; Rabenoelina, F.; Ptas, S.; Dupont, J.; Profizi, C.; Baillieul, F. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol. Res. 2017, 202, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Denancé, N.; Sánchez-Vallet, A.; Goffner, D.; Molina, A. Disease resistance on growth: The role of plant hormones in balancing immune response s and fitness costs. Front. Plant Sci. 2013, 4, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cereal | World Region | Mycotoxin | Fungi | Source |
---|---|---|---|---|
Wheat | Europe | Ochratoxin A | A. ochraceus, A. carbonarius, A. niger, A. westerdijkiae, A. steynii, P. verrucosum | [12] |
Central/South America, Europe, North Asia and South-Eastern Asia | Zearalenone | F. graminearum, F. culmorum, F. crookwellense | ||
Europe and North Asia | T-2/HT-2 toxins | F. sporotrichioides, F. langsethiae, F. poae | ||
Europe | Deoxynivalenol | F. graminearum, F. culmorum | ||
Rye | Europe and North Asia | T-2/HT-2 toxins | F. sporotrichioides, F. langsethiae, F. poae | |
Barley | Europe | Ochratoxin A | A. ochraceus, A. carbonarius, A. niger, A. westerdijkiae, A. steynii, P. verrucosum | |
Europe and North Asia | T-2/HT-2 toxins | F. sporotrichioides, F. langsethiae, F. poae | ||
Worldwide | Deoxynivalenol | F. graminearum, F. culmorum | ||
Oats | Europe and North Asia | T-2/HT-2 toxins | F. sporotrichioides, F. langsethiae, F. poae | |
Maize | Common in Central/South America, Africa, South-East Asia; Occassional in North America, Europe and North Asia | Aflatoxins B1, B2, G1, G2 | A. flavus, A. parasiticus | |
Europe | Ochratoxin A | A. ochraceus, A. carbonarius, A. niger, A. westerdijkiae, A. steynii, P. verrucosum | ||
Central/South America, Europe, North Asia and South-Eastern Asia | Zearalenone | F. graminearum, F. culmorum, F. crookwellense | ||
Europe and North Asia | T-2/HT-2 toxins | F. sporotrichioides, F. langsethiae, F. poae | ||
Worldwide | Fumonisins B1, B2, B3 | F. verticillioides, F. proliferatum | ||
Worldwide | Deoxynivalenol | F. graminearum, F. culmorum |
Method | ||||
---|---|---|---|---|
Microbiological approach | Microorganisms | Bacteria [162,163,164,165,166,167,168,169,170,171] | ||
Yeast [172,173,174,175,176,177,178] | ||||
Fungi [1,163,179,180] | ||||
Commercial agents [181] | ||||
Preharvest agronomical strategies | Agro-technical measures | Crop rotation [182,183,184,185] | Forecrop [184,186,187,188] | |
Catch crop [189] | ||||
Tillage [190,191] | ||||
Fertilization [192,193,194] | ||||
Seed and sowing [195,196,197,198,199,200] | ||||
Breeding and selection [201,202,203,204,205,206,207,208,209,210,211,212] | ||||
Post harvest | Microbiological agents | Fungus [213,214,215] | ||
Phisical methods | Moisture adjustement [216,217,218] | |||
UV light and opto-electronic sorting [219] | ||||
Cleaning, husking and removing residues [220,221] | ||||
Adsorbents [222] | ||||
Ozonation [223,224,225,226,227,228,229,230,231] | ||||
Radiation [232,233,234,235,236] | ||||
Innovative methods | Nanoparticles [237,238,239,240] | |||
Essential oils [241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256] | ||||
Cold plasma [257,258,259,260] | ||||
Chitosan application [261] | ||||
Marine microorganisms [262,263,264,265,266,267] | Yeast [268,269,270] | |||
Fungi [271,272,273,274,275,276] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habschied, K.; Krstanović, V.; Zdunić, Z.; Babić, J.; Mastanjević, K.; Šarić, G.K. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. J. Fungi 2021, 7, 348. https://doi.org/10.3390/jof7050348
Habschied K, Krstanović V, Zdunić Z, Babić J, Mastanjević K, Šarić GK. Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. Journal of Fungi. 2021; 7(5):348. https://doi.org/10.3390/jof7050348
Chicago/Turabian StyleHabschied, Kristina, Vinko Krstanović, Zvonimir Zdunić, Jurislav Babić, Krešimir Mastanjević, and Gabriella Kanižai Šarić. 2021. "Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products" Journal of Fungi 7, no. 5: 348. https://doi.org/10.3390/jof7050348
APA StyleHabschied, K., Krstanović, V., Zdunić, Z., Babić, J., Mastanjević, K., & Šarić, G. K. (2021). Mycotoxins Biocontrol Methods for Healthier Crops and Stored Products. Journal of Fungi, 7(5), 348. https://doi.org/10.3390/jof7050348