Voriconazole Use in Children: Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Inclusion Criteria
2.3. Procedures
2.4. Data Collection and Definitions
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Patients and Invasive Fungal Infections
3.2. Therapeutic Drug Monitoring
3.3. Effectiveness
3.4. Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patterson, T.F.; Thompson, G.R.; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
- Baddley, J.W.; Andes, D.R.; Marr, K.A.; Kontoyiannis, D.P.; Alexander, B.D.; Kauffman, C.A.; Oster, R.A.; Anaissie, E.J.; Walsh, T.J.; Schuster, M.G.; et al. Factors Associated with Mortality in Transplant Patients with Invasive Aspergillosis. Clin. Infect. Dis. 2010, 50, 1559–1567. [Google Scholar] [CrossRef]
- Stanzani, M.; Lewis, R.E.; Fiacchini, M.; Ricci, P.; Tumietto, F.; Viale, P.; Ambretti, S.; Baccarani, M.; Cavo, M.; Vianelli, N. A risk prediction score for invasive mold disease in patients with hematological malignancies. PLoS ONE 2013, 8, e75531. [Google Scholar] [CrossRef] [PubMed]
- Marr, K.A.; Carter, R.A.; Crippa, F.; Wald, A.; Corey, L. Epidemiology and Outcome of Mould Infections in Hematopoietic Stem Cell Transplant Recipients. Clin. Infect. Dis. 2002, 34, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Pagano, L.; Akova, M.; Dimopoulos, G.; Herbrecht, R.; Drgona, L.; Blijlevens, N. Risk assessment and prognostic factors for mould-related diseases in immunocompromised patients. J. Antimicrob. Chemother. 2011, 66, i5–i14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pana, Z.D.; Roilides, E.; Warris, A.; Groll, A.H.; Zaoutis, T. Epidemiology of Invasive Fungal Disease in Children. J. Pediatric Infect. Dis. Soc. 2017, 6, S3–S11. [Google Scholar] [CrossRef] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2015, 62, e1–e50. [Google Scholar] [CrossRef]
- Warris, A.; Lehrnbecher, T.; Roilides, E.; Castagnola, E.; Brüggemann, R.J.M.; Groll, A.H. ESCMID-ECMM guideline: Diagnosis and management of invasive aspergillosis in neonates and children. Clin. Microbiol. Infect. 2019, 25, 1096–1113. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24, e1–e38. [Google Scholar] [CrossRef] [Green Version]
- Groll, A.H.; Castagnola, E.; Cesaro, S.; Dalle, J.-H.H.; Engelhard, D.; Hope, W.; Roilides, E.; Styczynski, J.; Warris, A.; Lehrnbecher, T. Fourth European Conference on Infections in Leukaemia (ECIL-4): Guidelines for diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or allogeneic haemopoietic stem-cell transplantation. Lancet Oncol. 2014, 15, e327–e340. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Akova, M.; Herbrecht, R.; Viscoli, C.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Calandra, T.; Castagnola, E.; et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: Adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin. Microbiol. Infect. 2012, 18, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Tissot, F.; Agrawal, S.; Pagano, L.; Petrikkos, G.; Groll, A.H.; Skiada, A.; Lass-Flörl, C.; Calandra, T.; Viscoli, C.; Herbrecht, R. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica 2017, 102, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Cuenca-Estrella, M.; Meis, J.F.; Ullmann, A.J. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Fungal Infection Study Group (EFISG) and European Confederation of Medical Mycology (ECMM) 2013 joint guidelines on diagnosis and management of rare and emerging fungal diseases. Clin. Microbiol. Infect. 2014, 20, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Hope, W.W.; Castagnola, E.; Groll, A.H.; Roilides, E.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Cornely, O.A.; et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Prevention and management of invasive infections in neonates and children caused by Candida spp. Clin. Microbiol. Infect. 2012, 18, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Pascual, A.; Calandra, T.; Bolay, S.; Buclin, T.; Bille, J.; Marchetti, O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin. Infect. Dis. 2008, 46, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Pasqualotto, A.C.; Xavier, M.O.; Andreolla, H.F.; Linden, R. Voriconazole therapeutic drug monitoring: Focus on safety. Expert Opin. Drug Saf. 2010, 9, 125–137. [Google Scholar] [CrossRef]
- Soler-Palacin, P.; Frick, M.A.; Martin-Nalda, A.; Lanaspa, M.; Pou, L.; Rosello, E.; Diaz de Heredia, C.; Figueras, C. Voriconazole drug monitoring in the management of invasive fungal infection in immunocompromised children: A prospective study. J. Antimicrob. Chemother. 2012, 67, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Hamada, Y.; Seto, Y.; Yago, K.; Kuroyama, M. Investigation and threshold of optimum blood concentration of voriconazole: A descriptive statistical meta-analysis. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2012, 18, 501–507. [Google Scholar] [CrossRef]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic drug monitoring (TDM) of antifungal agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2014, 69, 1162–1176. [Google Scholar] [CrossRef] [Green Version]
- Chau, M.M.; Kong, D.C.M.; van Hal, S.J.; Urbancic, K.; Trubiano, J.A.; Cassumbhoy, M.; Wilkes, J.; Cooper, C.M.; Roberts, J.A.; Marriott, D.J.E.; et al. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy, 2014. Intern. Med. J. 2014, 44, 1364–1388. [Google Scholar] [CrossRef]
- Schelenz, S.; Barnes, R.A.; Barton, R.C.; Cleverley, J.R.; Lucas, S.B.; Kibbler, C.C.; Denning, D.W. British Society for Medical Mycology best practice recommendations for the diagnosis of serious fungal diseases. Lancet. Infect. Dis. 2015, 15, 461–474. [Google Scholar] [CrossRef]
- Luong, M.-L.; Al-Dabbagh, M.; Groll, A.H.; Racil, Z.; Nannya, Y.; Mitsani, D.; Husain, S. Utility of voriconazole therapeutic drug monitoring: A meta-analysis. J. Antimicrob. Chemother. 2016, 71, 1786–1799. [Google Scholar] [CrossRef]
- Jin, H.; Wang, T.; Falcione, B.A.; Olsen, K.M.; Chen, K.; Tang, H.; Hui, J.; Zhai, S. Trough concentration of voriconazole and its relationship with efficacy and safety: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2016, 71, 1772–1785. [Google Scholar] [CrossRef] [Green Version]
- Hanai, Y.; Hamada, Y.; Kimura, T.; Matsumoto, K.; Takahashi, Y.; Fujii, S.; Nishizawa, K.; Takesue, Y. Optimal trough concentration of voriconazole with therapeutic drug monitoring in children: A systematic review and meta-analysis. J. Infect. Chemother. 2021, 27, 151–160. [Google Scholar] [CrossRef]
- Stockmann, C.; Constance, J.E.; Roberts, J.K.; Olson, J.; Doby, E.H.; Ampofo, K.; Stiers, J.; Spigarelli, M.G.; Sherwin, C.M.T. Pharmacokinetics and Pharmacodynamics of Antifungals in Children and their Clinical Implications. Clin. Pharmacokinet. 2014, 53, 429–454. [Google Scholar] [CrossRef]
- Job, K.M.; Olson, J.; Stockmann, C.; Constance, J.E.; Enioutina, E.Y.; Rower, J.E.; Linakis, M.W.; Balch, A.H.; Yu, T.; Liu, X.; et al. Pharmacodynamic studies of voriconazole: Informing the clinical management of invasive fungal infections. Expert Rev. Anti. Infect. Ther. 2016, 14, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U.; Ihle, F.; Derendorf, H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin. Pharmacokinet. 2006, 45, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Karthaus, M.; Lehrnbecher, T.; Lipp, H.-P.; Kluge, S.; Buchheidt, D. Therapeutic drug monitoring in the treatment of invasive aspergillosis with voriconazole in cancer patients--an evidence-based approach. Ann. Hematol. 2015, 94, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Pieper, S.; Kolve, H.; Gumbinger, H.G.; Goletz, G.; Würthwein, G.; Groll, A.H. Monitoring of voriconazole plasma concentrations in immunocompromised paediatric patients. J. Antimicrob. Chemother. 2012, 67, 2717–2724. [Google Scholar] [CrossRef] [PubMed]
- Bartelink, I.H.; Wolfs, T.; Jonker, M.; de Waal, M.; Egberts, T.C.G.; Ververs, T.T.; Boelens, J.J.; Bierings, M. Highly variable plasma concentrations of voriconazole in pediatric hematopoietic stem cell transplantation patients. Antimicrob. Agents Chemother. 2013, 57, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friberg, L.E.; Ravva, P.; Karlsson, M.O.; Liu, P. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob. Agents Chemother. 2012, 56, 3032–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.M.; Macias-Parra, M.; Mudry, P.; Conte, U.; Yan, J.L.; Liu, P.; Capparella, M.R.; Aram, J.A. Safety, Efficacy, and Exposure–Response of Voriconazole in Pediatric Patients With Invasive Aspergillosis, Invasive Candidiasis or Esophageal Candidiasis. Pediatr. Infect. Dis. J. 2017, 36, e1–e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lempers, V.J.; Meuwese, E.; Mavinkurve-Groothuis, A.M.; Henriet, S.; van der Sluis, I.M.; Hanff, L.M.; Warris, A.; Koch, B.C.P.; Brüggemann, R.J. Impact of dose adaptations following voriconazole therapeutic drug monitoring in pediatric patients. Med. Mycol. 2019, 57, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Duehlmeyer, S.; Klockau, C.; Yu, D.; Rouch, J. Characterization of Therapeutic Drug Monitoring Practices of Voriconazole and Posaconazole at a Pediatric Hospital. J. Pediatr. Pharmacol. Ther. 2021, 26, 26–32. [Google Scholar] [CrossRef] [PubMed]
- De Pauw, B.; Walsh, T.J.; Donnelly, J.P.; Stevens, D.A.; Edwards, J.E.; Calandra, T.; Pappas, P.G.; Maertens, J.; Lortholary, O.; Kauffman, C.A.; et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) C. Clin. Infect. Dis. 2008, 46, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea, S.; Pennick, G.J.; Modak, A.; Fothergill, A.W.; Sutton, D.A.; Sheehan, D.J.; Rinaldi, M.G. Comparison of high-performance liquid chromatographic and microbiological methods for determination of voriconazole levels in plasma. Antimicrob. Agents Chemother. 2000, 44, 1209–1213. [Google Scholar] [CrossRef] [Green Version]
- Pascual, A.; Nieth, V.; Calandra, T.; Bille, J.; Bolay, S.; Decosterd, L.A.; Buclin, T.; Majcherczyk, P.A.; Sanglard, D.; Marchetti, O. Variability of voriconazole plasma levels measured by new high-performance liquid chromatography and bioassay methods. Antimicrob. Agents Chemother. 2007, 51, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Segal, B.H.; Herbrecht, R.; Stevens, D.A.; Ostrosky-Zeichner, L.; Sobel, J.; Viscoli, C.; Walsh, T.J.; Maertens, J.; Patterson, T.F.; Perfect, J.R.; et al. Defining responses to therapy and study outcomes in clinical trials of invasive fungal diseases: Mycoses Study Group and European Organization for Research and Treatment of Cancer consensus criteria. Clin. Infect. Dis. 2008, 47, 674–683. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, N.I. of H.N.C.I. Common Terminology Criteria for Adverse Events (CTCAE), Version 5.0. Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf (accessed on 9 October 2019).
- Hu, L.; Dai, T.; Zou, L.; Li, T.; Ding, X.; Yin, T. Therapeutic Drug Monitoring of Voriconazole in Children from a Tertiary Care Center in China. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.J.; Driscoll, T.; Milligan, P.A.; Wood, N.D.; Schlamm, H.; Groll, A.H.; Jafri, H.; Arrieta, A.C.; Klein, N.J.; Lutsar, I. Pharmacokinetics, Safety, and Tolerability of Voriconazole in Immunocompromised Children. Antimicrob. Agents Chemother. 2010, 54, 4116–4123. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Kobayashi, R.; Kato, K.; Maeda, N.; Fukushima, K.; Goto, H.; Inoue, M.; Muto, C.; Okayama, A.; Watanabe, K.; et al. Pharmacokinetics and Safety of Voriconazole Intravenous-to-Oral Switch Regimens in Immunocompromised Japanese Pediatric Patients. Antimicrob. Agents Chemother. 2015, 59, 1004–1013. [Google Scholar] [CrossRef] [Green Version]
- Silva Marambio, F.; Navea, D.; Salas, C.; Torres, J.P.; Catalán, P.; Morales, J. Análisis de concentraciones plasmáticas de voriconazol y su perfil de seguridad en pacientes oncológicos pediátricos. Rev. Chil. Infectol. 2016, 33, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.M.; Lee, H.J.; Cho, E.Y.; Yu, K.-S.; Lee, H.; Lee, J.W.; Kang, H.J.; Park, K.D.; Shin, H.Y.; Choi, E.H. The Clinical Significance of Voriconazole Therapeutic Drug Monitoring in Children With Invasive Fungal Infections. Pediatr. Hematol. Oncol. 2015, 32, 557–567. [Google Scholar] [CrossRef]
- Boast, A.; Curtis, N.; Cranswick, N.; Gwee, A. Voriconazole dosing and therapeutic drug monitoring in children: Experience from a paediatric tertiary care centre. J. Antimicrob. Chemother. 2016, 71, 2031–2036. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Nagao, M.; Yamamoto, M.; Matsumura, Y.; Takakura, S.; Fukuda, K.; Ichiyama, S. Oral administration and younger age decrease plasma concentrations of voriconazole in pediatric patients. J. Infect. Chemother. 2016, 22, 27–31. [Google Scholar] [CrossRef]
- Tucker, L.; Higgins, T.; Egelund, E.F.; Zou, B.; Vijayan, V.; Peloquin, C.A. Voriconazole monitoring in children with invasive fungal infections. J. Pediatr. Pharmacol. Ther. Off. J. PPAG 2015, 20, 17–23. [Google Scholar] [CrossRef]
- Choi, S.-H.; Lee, S.-Y.; Hwang, J.-Y.; Lee, S.H.; Yoo, K.H.; Sung, K.W.; Koo, H.H.; Kim, Y.-J. Importance of voriconazole therapeutic drug monitoring in pediatric cancer patients with invasive aspergillosis. Pediatr. Blood Cancer 2013, 60, 82–87. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.; Wu, T.; Jiang, H.; Yang, S.; Zhang, Y. Dose optimisation of voriconazole with therapeutic drug monitoring in children: A single-centre experience in China. Int. J. Antimicrob. Agents 2017, 49, 483–487. [Google Scholar] [CrossRef]
- Allegra, S.; Fatiguso, G.; De Francia, S.; Favata, F.; Pirro, E.; Carcieri, C.; De Nicolò, A.; Cusato, J.; Di Perri, G.; D’Avolio, A. Therapeutic drug monitoring of voriconazole for treatment and prophylaxis of invasive fungal infection in children. Br. J. Clin. Pharmacol. 2018, 84, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Katada, J.; Hashimoto, M.; Matsui, H.; Aida, Y.; Ohashi, A.; Ozawa, N.; Ochiai, H.; Fredrik, A.; Shimizu, H.; et al. Bioinformatics Research on Inter-racial Difference in Drug Metabolism I. Analysis on Frequencies of Mutant Alleles and Poor Metabolizers on CYP2D6 and CYP2C19. Drug Metab. Pharmacokinet. 2003, 18, 48–70. [Google Scholar] [CrossRef]
- Bellmann, R.; Smuszkiewicz, P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017, 45, 737–779. [Google Scholar] [CrossRef]
- Desta, Z.; Zhao, X.; Shin, J.-G.; Flockhart, D.A. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 2002, 41, 913–958. [Google Scholar] [CrossRef]
- Matsumoto, K.; Ikawa, K.; Abematsu, K.; Fukunaga, N.; Nishida, K.; Fukamizu, T.; Shimodozono, Y.; Morikawa, N.; Takeda, Y.; Yamada, K. Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int. J. Antimicrob. Agents 2009, 34, 91–94. [Google Scholar] [CrossRef]
- Gastine, S.; Lehrnbecher, T.; Müller, C.; Farowski, F.; Bader, P.; Ullmann-Moskovits, J.; Cornely, O.A.; Groll, A.H.; Hempel, G. Pharmacokinetic Modeling of Voriconazole To Develop an Alternative Dosing Regimen in Children. Antimicrob. Agents Chemother. 2018, 62, e01194-17. [Google Scholar] [CrossRef]
- van Wanrooy, M.J.P.P.; Span, L.F.R.R.; Rodgers, M.G.G.G.; van den Heuvel, E.R.; Uges, D.R.A.A.; van der Werf, T.S.; Kosterink, J.G.W.W.; Alffenaar, J.-W.C. Inflammation is associated with voriconazole trough concentrations. Antimicrob. Agents Chemother. 2014, 58, 7098–7101. [Google Scholar] [CrossRef] [Green Version]
- Naito, T.; Yamada, T.; Mino, Y.; Kawakami, J. Impact of inflammation and concomitant glucocorticoid administration on plasma concentration of triazole antifungals in immunocompromised patients. Clin. Chim. Acta 2015, 441, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Encalada Ventura, M.A.; Span, L.F.R.R.; van den Heuvel, E.R.; Groothuis, G.M.M.M.; Alffenaar, J.-W.C.; Alffenaara, J.W.C. Influence of inflammation on voriconazole metabolism. Antimicrob. Agents Chemother. 2015, 59, 2942–2943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dote, S.; Sawai, M.; Nozaki, A.; Naruhashi, K.; Kobayashi, Y.; Nakanishi, H. A retrospective analysis of patient-specific factors on voriconazole clearance. J. Pharm. Health Care Sci. 2016, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura, M.A.E.; van Wanrooy, M.J.P.P.; Span, L.F.R.R.; Rodgers, M.G.G.G.; van den Heuvel, E.R.; Uges, D.R.A.A.; van der Werf, T.S.; Kosterink, J.G.W.W.; Alffenaar, J.W.C.C.; Encalada Ventura, M.A.; et al. Longitudinal analysis of the effect of inflammation on voriconazole trough concentrations. Antimicrob. Agents Chemother. 2016, 60, 2727–2731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veringa, A.; ter Avest, M.; Span, L.F.R.; van den Heuvel, E.R.; Touw, D.J.; Zijlstra, J.G.; Kosterink, J.G.W.; van der Werf, T.S.; Alffenaar, J.-W.C. Voriconazole metabolism is influenced by severe inflammation: A prospective study. J. Antimicrob. Chemother. 2017, 72, 261–267. [Google Scholar] [CrossRef]
- Vreugdenhil, B.; van der Velden, W.J.F.M.; Feuth, T.; Kox, M.; Pickkers, P.; van de Veerdonk, F.L.; Blijlevens, N.M.A.; Brüggemann, R.J.M. Moderate correlation between systemic IL-6 responses and CRP with trough concentrations of voriconazole. Br. J. Clin. Pharmacol. 2018, 84, 1980–1988. [Google Scholar] [CrossRef]
- Gautier-Veyret, E.; Fonrose, X.; Tonini, J.; Thiebaut-Bertrand, A.; Bartoli, M.; Quesada, J.-L.; Bulabois, C.-E.; Cahn, J.-Y.; Stanke-Labesque, F. Variability of voriconazole plasma concentrations after allogeneic hematopoietic stem cell transplantation: Impact of cytochrome p450 polymorphisms and comedications on initial and subsequent trough levels. Antimicrob. Agents Chemother. 2015, 59, 2305–2314. [Google Scholar] [CrossRef] [Green Version]
- ter Avest, M.; Veringa, A.; van den Heuvel, E.R.; Kosterink, J.G.W.; Schölvinck, E.H.; Tissing, W.J.E.; Alffenaar, J.-W.C. The effect of inflammation on voriconazole trough concentrations in children. Br. J. Clin. Pharmacol. 2017, 83, 678–680. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Li, T.; Hu, L.; Liu, S.; Zhao, H.; Zhang, J.; Feng, Y.; Huang, L. Differential effects of C-reactive protein levels on voriconazole metabolism at three age groups in allogeneic hematopoietic cell transplant recipients. J. Chemother. 2021, 33, 95–105. [Google Scholar] [CrossRef]
- Denning, D.W.; Ribaud, P.; Milpied, N.; Caillot, D.; Herbrecht, R.; Thiel, E.; Haas, A.; Ruhnke, M.; Lode, H. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2002, 34, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Troke, P.F.; Hockey, H.P.; Hope, W.W. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob. Agents Chemother. 2011, 55, 4782–4788. [Google Scholar] [CrossRef] [Green Version]
- Dolton, M.J.; McLachlan, A.J. Voriconazole pharmacokinetics and exposure-response relationships: Assessing the links between exposure, efficacy and toxicity. Int. J. Antimicrob. Agents 2014, 44, 183–193. [Google Scholar] [CrossRef]
- Elewa, H.; El-Mekaty, E.; El-Bardissy, A.; Ensom, M.H.H.; Wilby, K.J. Therapeutic Drug Monitoring of Voriconazole in the Management of Invasive Fungal Infections: A Critical Review. Clin. Pharmacokinet. 2015, 54, 1223–1235. [Google Scholar] [CrossRef]
- Neely, M.; Rushing, T.; Kovacs, A.; Jelliffe, R.; Hoffman, J. Voriconazole pharmacokinetics and pharmacodynamics in children. Clin. Infect. Dis. 2010, 50, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Pana, Z.D.; Kourti, M.; Vikelouda, K.; Vlahou, A.; Katzilakis, N.; Papageorgiou, M.; Doganis, D.; Petrikkos, L.; Paisiou, A.; Koliouskas, D.; et al. Voriconazole Antifungal Prophylaxis in Children with Malignancies: A Nationwide Study. J. Pediatr. Hematol. Oncol. 2018, 40, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, T.A.; Yu, L.C.; Frangoul, H.; Krance, R.A.; Nemecek, E.; Blumer, J.; Arrieta, A.; Graham, M.L.; Bradfield, S.M.; Baruch, A.; et al. Comparison of Pharmacokinetics and Safety of Voriconazole Intravenous-to-Oral Switch in Immunocompromised Children and Healthy Adults. Antimicrob. Agents Chemother. 2011, 55, 5770–5779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, H.Y.; Jain, R.; Xie, H.; Pottinger, P.; Fredricks, D.N. Voriconazole therapeutic drug monitoring: Retrospective cohort study of the relationship to clinical outcomes and adverse events. BMC Infect. Dis. 2013, 13, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N (%) or Median (IQR) | ||
---|---|---|
Patients | 27 | |
Age, y | 9 (6–10) | |
Weight, kg | 25 (20.2–32.3) | |
Sex | Male | 15 (55.6) |
Female | 12 (44.4) | |
Ethnicity | White | 16 (59.3) |
Asian | 4 (14.8) | |
Maghreb | 3 (11.1) | |
South American | 3 (11.1) | |
Sub-Saharan | 1 (3.7) | |
Underlying diseases | PID a | 8 (29.6) |
ALL | 8 (29.6) | |
AML | 5 (18.5) | |
MDS | 1 (3.7) | |
Other b | 5 (18.5) | |
Previous allogenic HSCT | Yes | 18 (66.7) |
No | 9 (33.3) | |
Previous GVHD (in HSCT patients) | Yes | 10 (55.6) |
No | 8 (44.4) | |
Neutropenia at the beginning of treatment | Yes | 12 (44.4) |
No | 15 (55.6) | |
CMV viremia during IFI episode (in HSCT patients) | Yes | 8 (44.4) |
No | 10 (55.6) |
N (%) or Median (IQR) | |||
---|---|---|---|
Episodes of proven or probable IFI a | 18 | ||
Microorganism | Moulds | Aspergillus spp. b | 13 (72.2) |
Cladosporium cladosporioides | 1 (5.6) | ||
Fusarium solani | 1 (5.6) | ||
Yeasts | Candida spp. c | 2 (11.1) | |
Trichosporon asahii | 1 (5.6) | ||
Affected sites d | Disseminated d | 6 (33) | |
Lung | 13 (72.2) | ||
Cranial sinus | 2 (11.1) | ||
CNS | 2 (11.1) | ||
Skin | 3 (16.7) | ||
Bloodstream | 1 (5.6) | ||
Spleen | 2 (11.1) | ||
Kidney | 2 (11.1) | ||
Heart (endocarditis) | 2 (11.1) | ||
Other sites (8 cases) e | 1 (5.6) | ||
Type of treatment | Primary | 10 (55.6) | |
Salvage treatment | 5 (27.8) | ||
Suppressive treatment f | 3 (16.7) | ||
Duration of voriconazole treatment, days | 80.5 (15–117) | ||
Dual antifungal therapy at some point in the episode | 12 (66.7) | ||
Duration of dual antifungal treatment, days | 27.5 (12.8–64.3) | ||
Surgery | 10 (55.6) |
Plasma Voriconazole Levels | p | ||||
---|---|---|---|---|---|
<1 mg/L | 1–5.5 mg/L | >5.5 mg/L | |||
Determinations, n (%) | 63 (27.5) | 147 (64.2) | 19 (8.3) | - | |
Dose, mean (min-max) a | 18.4 mg/kg/day (3.7–52) | 18.2 mg/kg/day (5.4–40) | 18.1 mg/kg/day (4.5–38) | NS | |
Administration route | IV, n (%) | 41 (29.1) | 87 (61.7) | 13 (9.2) | NS |
Oral, n (%) | 22 (25) | 60 (68.2) | 6 (6.8) | ||
Concomitant omeprazole administration | No, n (%) | 7 (22.6) | 20 (64.5) | 4 (12.9) | NS |
Yes, n (%) | 56 (28.3) | 127 (64.1) | 15 (7.6) | ||
CRP b | ≤4 mg/dL, n (%) | 31 (23.3) | 92 (69.2) | 10 (7.5) | NS |
>4 mg/dL, n (%) | 26 (34.2) | 41 (54) | 9 (11.8) | ||
Plasma albumin | >3.4 mg/dL, n (%) | 28 (23.5) | 83 (69.8) | 8 (6.7) | 0.02 |
3–3.4 mg/dL, n (%) | 21 (30.4) | 45 (65.2) | 3 (4.4) | ||
<3 mg/dL, n (%) | 14 (34.2) | 19 (46.3) | 8 (19.5) |
Plasma Voriconazole Levels | p | ||||
---|---|---|---|---|---|
Overall | Non-Therapeutic (<1 mg/L; >5.5 mg/L) | Therapeutic (1–5.5 mg/L) | |||
Determinations, n (%) | 229 | 82 (35.8) | 147 (64.2) | - | |
CRP a | ≤4 mg/dL | 133 (63.6) | 41 (30.8) | 92 (69.2) | 0.03 |
>4 mg/dL | 76 (36.4) | 35 (46) | 41 (54) | ||
Plasma albumin | >3.4 mg/dL | 119 (52) | 36 (30.3) | 83 (69.7) | 0.03 |
3–3.4 mg/dL | 69 (30.1) | 24 (34.8) | 45 (65.2) | ||
<3 mg/dL | 41 (17.9) | 22 (53.7) | 19 (46.3) |
Response to Treatment a, n = 15 b | |||||
---|---|---|---|---|---|
Early evaluation (4–6 weeks) c | Success, n (%) | 9 (60) | Complete response | 3 (20) | |
Partial response | 6 (40) | ||||
Failure, n (%) | 6 (40) | Stable disease | 4 (26.7) | ||
Progression of IFI | 2 (13.3) | ||||
Death | - | ||||
Late evaluation (12 weeks) | Success, n (%) | 8 (53.3) | Complete response | 5 (33.3) | |
Partial response | 3 (20) | ||||
Failure, n (%) | 7 (46.7) | Stable disease | 1 (6.7) | ||
Progression of IFI | 4 (26.7) | ||||
Death | 2 (13.3) | ||||
Survival at 6 months, n (%) | 12 (80) | ||||
Death attributed to IFI/death due to any cause at 6 months, n/n | 0/3 d | ||||
Follow-up, median (IQR) | 326 days (177–614.5) |
Adverse Events | Severity a | Patients (N = 27), n (%) | |
---|---|---|---|
Liver abnormalities | ALT | Grade ≥ 1 | 13/27 (48.2) |
Grade ≥ 2 | 7/27 (25.9) | ||
Grade ≥ 3 | 1/27 (3.7) | ||
Grade ≥ 4 | - | ||
TBIL | Grade ≥ 1 | 8/27 (29.6) | |
Grade ≥ 2 | 6/27 (22.2) | ||
Grade ≥ 3 | 2/27 (7.4) | ||
Grade ≥ 4 | - | ||
ALP | Grade ≥ 1 | 9/27 (33.3) | |
Grade ≥ 2 | 5/27 (18.5) | ||
Grade ≥ 3 | 1/27 (3.7) | ||
Grade ≥ 4 | - | ||
GGT | Grade ≥ 1 | 22/27 (81.5) | |
Grade ≥ 2 | 15/27 (55.6) | ||
Grade ≥ 3 | 11/27 (40.7) | ||
Grade ≥ 4 | 6/27 (22.2) | ||
Visual | Grade 1 | 1/27 (3.7) | |
Neurological/Psychiatric | Grade 1 | 2/27 (7.4) | |
Gastrointestinal | Grade 2 | 2/27 (7.4) | |
Skin | Grade 2 | 2/27 (7.4) | |
Renal | Grade 2 | 1/27 (3.7) |
Author (Year of Publication) | Patients / Determinations, Number | Age, Years | Initial Dose | % PC < 1 mg/L | % PC 1–5.5 mg/L | % PC > 5.5 mg/L | Comments |
---|---|---|---|---|---|---|---|
Soler et al. [17] (2012) | 30/196 | <18 | Lower than 2012 recommendations | 50% | 43% | 7% | - Predominance of white Europeans - Median dose for correct PC in <5 years: 38 mg/kg/day |
Pieper et al. [29] (2012) | 74/251 | <18 | Lower than 2012 recommendations | 57.7% | 34.2% | 8% | - Predominance of white Europeans - Therapeutic range considered: 1–5 mg/L |
Bartelink et al. [30] (2013) | 61/380 | <20 | Lower than 2012 recommendations | 1st PC 61% | 1st PC 34% | 1st PC 5% | - Ethnicity NA (study conducted in The Netherlands) - Therapeutic range considered: 1–5 mg/L - Median dose for correct PC in <2 years: 31.5 mg/kg/day - 80% PC correction when dose adjusted (dose adjustment recommendation not specified) |
Choi et al. [49] (2013) | 27/193 | <19 | Lower than 2012 recommendations | 31.6% | 63.7% | 4.7% | - Asian population - Therapeutic range considered: 1–6 mg/L - Mean dose for correct PC in ≤6 years: 17.8 mg/kg/day P.O. |
Kang et al. [45] (2015) | 31/271 | <19 | Lower than 2012 recommendations | 1st PC 36.6% | - Asian population - 61 patients, 31 of whom underwent VRC monitoring | ||
Overall 29.9% | Overall 49.4% | Overall 20.7% | |||||
Silva et al. [44] (2016) | 26/112 | 2–18 | Lower than 2012 recommendations | 46% | 47% | 7% | - Ethnicity NA (study conducted in Chile) - Relationship between IV route and correct PC |
Boast et al. [46] (2016) | 55/256 | <18 | Lower than 2012 recommendations | 44.2% | 44.2% | 11.7% | - Ethnicity NA (study conducted in Australia) - Therapeutic range considered: 1–5 mg/L - Mean dose for correct PC in <6 years: 17.6 mg/kg/day |
Kato et al. [47] (2016) | 20/111 | <18 | Lower than 2012 recommendations | 1st PC 55% | NA | NA | - Asian population - Median dose for correct PC in ≤5 years: 13.1 mg/kg/day IV and 30.1 mg/kg/day P.O. - Association of sub-therapeutic PCs with oral administration and younger age |
Liu et al. [50] (2017) | 107/128 | <12 | Lower than 2012 recommendations | 1st PC 48.6% | 1st PC 47.7% | 1st PC 3.7% | - Asian population - Relationship between omeprazole and PC elevation - Relationship between hypoalbuminemia and PC elevation |
Martin et al. [32] (2017) | 53/NA | 2–17 | According to 2012 recommendations | NA | NA | NA | - 45.3% Asian population (58.1% Asian in IA study) - Included patients from 2009 to 2013 |
Hu et al. [41] (2018) | 42/138 | 2–14 | According to 2012 recommendations | 1st PC 37.5% | 1st PC 50% | 1st PC 14.3% | - Asian population - Mean dose for correct PC: 15.4 mg/kg/day IV and 11.2 mg/kg/day P.O. - Mean dose for correct PC in <6 years: 22 mg/kg/day P.O. - 67% PC correction when dose adjusted (dose adjustment recommendation not specified) - Association of PC elevation with IV route and PPI |
Allegra et al. [51] (2018) | 237/NA | <18 | Lower than 2012 recommendations | NA | NA | NA | - Predominance of white Europeans - 63.5% of patients on VRC prophylaxis - Relationship between higher serum creatinine and PC elevation - Relationship between male sex and higher PC - Positive correlation between age and PC in IV route |
Lempers et al. [33] (2019) | 21/485 | <19 | Changes throughout the study | 1st PC 52.4% | - Predominance of white Europeans - Therapeutic range considered: 1–6 mg/L - Median dose for PC between 1 and4 mg/L in 2–12 years: 24.5 mg/kg/day IV and 25.9 mg/kg/day P.O. - 60% sub-therapeutic PC corrected and 51% supra-therapeutic PC corrected when dose adjusted (dose adjustment recommendation not specified) | ||
Overall 24.1% | Overall 58.2% | Overall 17.7% | |||||
Duehlmeyer et al. [34] (2021) | 45/127 | <20 | Changes based on provider and patient | NA | 45.7% | NA | - Predominance of Caucasians - Included patients from 2010 to 2016 - 53.5% of patients under TDM were on VRC prophylaxis - Initial dose in prophylaxis lower than 2012 recommendations - Therapeutic range considered: 2 to 5.5 mg/L for treatment and >0.5 mg/L for prophylaxis |
Valle et al. (2021) | 27/229 | 2–12 | According to 2012 recommendations | 1st PC 37% | 1st PC 55.6% | 1st PC 7.4% | - Predominance of white Europeans - Median dose for correct PC in ≤7 years: 21 mg/kg/day - 75% corrected PC when dose adjusted according to protocolled recommendations - Association of less adequate VRC PC with elevated CRP and severe hypoalbuminemia |
Overall 27.5% | Overall 64.2% | Overall8.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valle-T-Figueras, J.M.; Renedo Miró, B.; Benítez Carabante, M.I.; Díaz-de-Heredia, C.; Vima Bofarull, J.; Mendoza-Palomar, N.; Martín-Gómez, M.T.; Soler-Palacín, P. Voriconazole Use in Children: Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment. J. Fungi 2021, 7, 456. https://doi.org/10.3390/jof7060456
Valle-T-Figueras JM, Renedo Miró B, Benítez Carabante MI, Díaz-de-Heredia C, Vima Bofarull J, Mendoza-Palomar N, Martín-Gómez MT, Soler-Palacín P. Voriconazole Use in Children: Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment. Journal of Fungi. 2021; 7(6):456. https://doi.org/10.3390/jof7060456
Chicago/Turabian StyleValle-T-Figueras, José María, Berta Renedo Miró, Maria Isabel Benítez Carabante, Cristina Díaz-de-Heredia, Jaume Vima Bofarull, Natalia Mendoza-Palomar, Maria Teresa Martín-Gómez, and Pere Soler-Palacín. 2021. "Voriconazole Use in Children: Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment" Journal of Fungi 7, no. 6: 456. https://doi.org/10.3390/jof7060456
APA StyleValle-T-Figueras, J. M., Renedo Miró, B., Benítez Carabante, M. I., Díaz-de-Heredia, C., Vima Bofarull, J., Mendoza-Palomar, N., Martín-Gómez, M. T., & Soler-Palacín, P. (2021). Voriconazole Use in Children: Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment. Journal of Fungi, 7(6), 456. https://doi.org/10.3390/jof7060456