Antifungal Combinations in Dermatophytes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Antifungal Combinations
3.2. Antifungals Combined with Several Chemical Compounds
3.3. Clinical Cases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Weitzman, I.; Summerbell, R.C. The dermatophytes. Clin. Microbiol. Rev. 1995, 8, 240–259. [Google Scholar] [CrossRef]
- Gräser, Y.; Monod, M.; Bouchara, J.-P.; Dukik, K.; Nenoff, P.; Kargl, A.; Kupsch, C.; Zhan, P.; Packeu, A.; Chaturvedi, V.; et al. New insights in dermatophyte research. Med. Mycol. 2018, 56 (Suppl. 1), S2–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Hoog, G.S.; Dukik, K.; Monod, M.; Packeu, A.; Stubbe, D.; Hendrickx, M.; Kupsch, C.; Stielow, J.B.; Freeke, J.; Göker, M.; et al. Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes. Mycopathologia 2016, 182, 5–31. [Google Scholar] [CrossRef] [Green Version]
- Degreef, H. Clinical Forms of Dermatophytosis (Ringworm Infection). Mycopathologia 2008, 166, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Chermette, R.; Ferreiro, L.; Guillot, J. Dermatophytoses in Animals. Mycopathologia 2008, 166, 385–405. [Google Scholar] [CrossRef]
- Gupta, A.K.; Cooper, E.A. Update in Antifungal Therapy of Dermatophytosis. Mycopathologia 2008, 166, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.B.; Rønnest, M.H.; Larsen, T.O.; Clausen, M.H. The Chemistry of Griseofulvin. Chem. Rev. 2014, 114, 12088–12107. [Google Scholar] [CrossRef] [Green Version]
- Nivoix, Y.; LeDoux, M.-P.; Herbrecht, R. Antifungal Therapy: New and Evolving Therapies. Semin. Respir. Crit. Care Med. 2020, 41, 158–174. [Google Scholar] [CrossRef]
- Mueller, S.W.; Kedzior, S.K.; Miller, M.A.; Reynolds, P.M.; Kiser, T.H.; Krsak, M.; Molina, K.C. An overview of current and emerging antifungal pharmacotherapy for invasive fungal infections. Expert Opin. Pharmacother. 2021, 22, 1355–1371. [Google Scholar] [CrossRef]
- Lopes, A.I.R.; Tavaria, F.; Pintado, M.E. Conventional and natural compounds for the treatment of dermatophytosis. Med. Mycol. 2020, 58, 707–720. [Google Scholar] [CrossRef]
- Gupta, A.K.; Foley, K.A.; Versteeg, S.G. New Antifungal Agents and New Formulations Against Dermatophytes. Mycopathologia 2017, 182, 127–141. [Google Scholar] [CrossRef]
- Saunte, D.M.L.; Hare, R.K.; Jørgensen, K.M.; Jørgensen, R.; Deleuran, M.; Zachariae, C.O.; Thomsen, S.F.; Bjørnskov-Halkier, L.; Kofoed, K.; Arendrup, M.C. Emerging Terbinafine Resistance in Trichophyton: Clinical Characteristics, Squalene Epoxidase Gene Mutations, and a Reliable EUCAST Method for Detection. Antimicrob. Agents Chemother. 2019, 63, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Arora, P.; Sardana, K.; Kaur, R.; Goyal, R.; Ghunawat, S. Is antifungal resistance a cause for treatment failure in dermatophytosis: A study focused on tinea corporis and cruris from a tertiary centre? Indian Dermatol. Online J. 2018, 9, 90–95. [Google Scholar] [CrossRef]
- Singh, A.; Masih, A.; Khurana, A.; Singh, P.K.; Gupta, M.; Hagen, F.; Meis, J.F.; Chowdhary, A. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses 2018, 61, 477–484. [Google Scholar] [CrossRef]
- Khurana, A.; Sardana, K.; Chowdhary, A. Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genet. Biol. 2019, 132, 103255. [Google Scholar] [CrossRef]
- Yamada, T.; Maeda, M.; Alshahni, M.M.; Tanaka, R.; Yaguchi, T.; Bontems, O.; Salamin, K.; Fratti, M.; Monod, M. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene. Antimicrob. Agents Chemother. 2017, 61, e00115-17. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.J.; Arendrup, M.C.; Verma, S.; Saunte, D.M.L. The Emerging Terbinafine-Resistant Trichophyton Epidemic: What Is the Role of Antifungal Susceptibility Testing? Dermatology 2021, 31, 1–20. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. CLSI Document M38- ACLSI, Wayne, PA. [Internet]. April 2008. Available online: https://clsi.org/me-dia/1455/m38a2_sample.pdf (accessed on 1 June 2021).
- Arendrup, M.C.; Kahlmeter, G.; Guinea, J.; Meletiadis, J. How to: Perform antifungal susceptibility testing of microconid-ia-forming dermatophytes following the new reference EUCAST method E.Def 11.0, exemplified by Trichophyton. Clin. Microbiol. Infect. 2021, 27, 55–60. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Jørgensen, K.M.; Guinea, J.; Lagrou, K.; Chryssanthou, E.; Hayette, M.-P.; Barchiesi, F.; Lass-Flörl, C.; Hamal, P.; Dannaoui, E.; et al. Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. J. Antimicrob. Chemother. 2020, 75, 1807–1819. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Yan, H.; Min, L.; Wang, H.; Chen, X.; Shi, J.; Sun, S. The antifungal activity of caspofungin in combination with antifungals or non-antifungals against Candida species In Vitro and in clinical therapy. Expert Rev. Anti-Infect. Ther. 2021, 28, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Venkataraman, M.; Renaud, H.J.; Summerbell, R.; Shear, N.H.; Piguet, V. The increasing problem of treatment-resistant fungal infections: A call for antifungal stewardship programs. Int. J. Dermatol. 2021, 17. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Banič, S.; Lunder, M. Additive Effect of the combination of griseofulvin and ketoconazole against Microsporum canis in vitro. Mycoses 1989, 32, 487–489. [Google Scholar] [CrossRef]
- Harman, S.; Ashbee, H.R.; Evans, E.G.V. Testing of antifungal combinations against yeasts and dermatophytes. J. Dermatol. Treat. 2004, 15, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Laurent, A.; Monod, M. Production ofTrichophyton rubrummicrospores in large quantities and its application to evaluate amorolfine/azole compound interactions In Vitro. Mycoses 2017, 60, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Polak, A. Combination of amorolfine with various antifungal drugs in dermatophytosis. Mycoses 1993, 36, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.A.; Hamdan, J.S. In Vitro antifungal oral drug and drug-combination activity against onychomycosis causative dermatophytes. Med. Mycol. 2006, 44, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiura, K.; Masumoto, A.; Tachibana, H.; Tatsumi, Y. In Vitro Combination Effect of Topical and Oral Anti-Onychomycosis Drugs on Trichophyton rubrum and Trichophyton interdigitale. J. Fungi 2021, 7, 208. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Asahara, M.; Yamamoto, M.; Yamaura, M.; Matsumura, M.; Goto, K.; Rezaei-Matehkolaei, A.; Mirhendi, H.; Makimura, M.; Makimura, K. In Vitro susceptibility of dermatomycoses agents to six antifungal drugs and evaluation by fractional inhibitory concentration index of combined effects of amorolfine and itraconazole in dermatophytes. Microbiol. Immunol. 2014, 58, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Danielli, L.J.; Pippi, B.; Duarte, J.A.; Maciel, A.J.; Lopes, W.; Machado, M.; Oliveira, L.F.S.; Vainstein, M.; Teixeira, M.L.; Bordignon, S.A.L.; et al. Antifungal mechanism of action of Schinus lentiscifolius Marchand essential oil and its synergistic effect In Vitro with terbinafine and ciclopirox against dermatophytes. J. Pharm. Pharmacol. 2018, 70, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Dias, N.; Dias, M.; Cavaleiro, C.; Sousa, M.D.C.R.; Lima, N.; Machado, M. Oxygenated monoterpenes-rich volatile oils as potential antifungal agents for dermatophytes. Nat. Prod. Res. 2016, 31, 460–464. [Google Scholar] [CrossRef]
- Ala, F.; Yusuf, U.K.; Jamal, F.; Khodavandi, A. In Vitro antifungal activity of allicin alone and in combination with two med-ications against Trichophyton rubrum. World J. Microbiol. Biotechnol. 2010, 26, 2193–2198. [Google Scholar] [CrossRef]
- Galgóczy, L.; Papp, T.; Pócsi, I.; Hegedűs, N.; Vágvölgyi, C. In Vitro activity of Penicillium chrysogenum antifungal protein (PAF) and its combination with fluconazole against different dermatophytes. Antonie Leeuwenhoek 2008, 94, 463–470. [Google Scholar] [CrossRef]
- Houël, E.; Rodrigues, A.M.S.; Jahn-Oyac, A.; Bessière, J.-M.; Eparvier, V.; Deharo, E.; Stien, D. In Vitro antidermatophytic activity of Otacanthus azureus (Linden) Ronse essential oil alone and in combination with azoles. J. Appl. Microbiol. 2014, 116, 288–294. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Ahmad, I. Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl. Microbiol. Biotechnol. 2011, 90, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Ahmad, I.; Cameotra, S.S. Carum copticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp. Braz. J. Microbiol. 2014, 45, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Khoury, M.; El Beyrouthy, M.; Ouaini, N.; Eparvier, V.; Stien, D. Hirtellina lobelii DC. essential oil, its constituents, its combination with antimicrobial drugs and its mode of action. Fitoterapia 2019, 133, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Maciel, A.J.; Lacerda, C.P.; Danielli, L.J.; Bordignon, S.A.L.; Fuentefria, A.M.; Apel, M.A. Antichemotactic and Antifungal Action of the Essential Oils from Cryptocarya aschersoniana, Schinus terebinthifolia, and Cinnamomum amoenum. Chem. Biodivers. 2019, 16, e1900204. [Google Scholar] [CrossRef] [PubMed]
- Pyun, M.-S.; Shin, S. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine 2006, 13, 394–400. [Google Scholar] [CrossRef]
- Roana, J.; Mandras, N.; Scalas, D.; Campagna, P.; Tullio, V. Antifungal Activity of Melaleuca alternifolia Essential Oil (TTO) and Its Synergy with Itraconazole or Ketoconazole against Trichophyton rubrum. Molecules 2021, 26, 461. [Google Scholar] [CrossRef]
- Rodriguez, M.V.; Sortino, M.A.; Ivancovich, J.J.; Pellegrino, J.M.; Favier, L.S.; Raimondi, M.P.; Gattuso, M.A.; Zacchino, S.A. Detection of synergistic combinations of Baccharis extracts with Terbinafine against Trichophyton rubrum with high throughput screening synergy assay (HTSS) followed by 3D graphs. Behavior of some of their components. Phytomedicine 2013, 20, 1230–1239. [Google Scholar] [CrossRef]
- Shin, S.; Lim, S. Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J. Appl. Microbiol. 2004, 97, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Shin, S. Essential oil compounds from Agastache rugosa as antifungal agents against Trichophyton species. Arch. Pharmacal Res. 2004, 27, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Sim, Y.; Shin, S. Combinatorial anti-Trichophyton effects of Ligusticum chuanxiong essential oil components with antibiotics. Arch. Pharmacal. Res. 2008, 31, 497–502. [Google Scholar] [CrossRef]
- Soares, L.A.; Gullo, F.P.; Sardi, J.D.C.O.; Pitangui, N.D.S.; Costa-Orlandi, C.B.; Sangalli-Leite, F.; Scorzoni, L.; Regasini, L.O.; Petrônio, M.S.; Souza, P.F.; et al. Anti-Trichophyton activity of protocatechuates and their synergism with fluconazole. Evid. Based Complement. Altern. Med. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, N.; Pandit, R.; Gaikwad, S.; Gade, A.; Rai, M. Biosynthesis of zinc oxide nanoparticles by petals extract of Rosa indica L.; its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis. IET Nanobiotechnology 2017, 11, 205–211. [Google Scholar] [CrossRef]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Evaluation of the Antifungal Activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) Essential Oil and Its Synergistic Interaction with Azoles. Molecules 2019, 24, 3148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vörös-Horváth, B.; Das, S.; Salem, A.; Nagy, S.; Böszörményi, A.; Kőszegi, T.; Pál, S.; Széchenyi, A. Formulation of Tioconazole and Melaleuca alternifolia Essential Oil Pickering Emulsions for Onychomycosis Topical Treatment. Molecules 2020, 25, 5544. [Google Scholar] [CrossRef]
- Onyewu, C.; Eads, E.; Schell, W.A.; Perfect, J.R.; Ullmann, Y.; Kaufman, G.; Horwitz, B.A.; Berdicevsky, I.; Heitman, J. Targeting the Calcineurin Pathway Enhances Ergosterol Biosynthesis Inhibitors against Trichophyton mentagrophytes In Vitro and in a Human Skin Infection Model. Antimicrob. Agents Chemother. 2007, 51, 3743–3746. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, H.; Okabayashi, K.; Kano, R.; Watanabe, S.; Hasegawa, A. Antifungal Activities of the Combination of Tacrolimus and Itraconazole Against Trichophyton mentagrophytes. J. Vet. Med. Sci. 2005, 67, 629–630. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tan, J.; Yang, L.; He, Y. Tacrolimus, not triamcinolone acetonide, interacts synergistically with itraconazole, terbinafine, bifonazole, and amorolfine against clinical dermatophyte isolates. J. Mycol. Med. 2018, 28, 612–616. [Google Scholar] [CrossRef]
- Simonetti, O.; Arzeni, D.; Ganzetti, G.; Silvestri, C.; Cirioni, O.; Gabrielli, E.; Castelletti, S.; Kamysz, W.; Kamysz, E.; Scalise, G.; et al. In Vitro activity of the lipopeptide derivative (Pal-lys-lys-NH2), alone and in combination with antifungal agents, against clinical isolates of dermatophytes. Br. J. Dermatol. 2009, 161, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, O.; Ganzetti, G.; Arzeni, D.; Campanati, A.; Marconi, B.; Silvestri, C.; Cirioni, O.; Gabrielli, E.; Lenci, I.; Kamysz, W.; et al. In Vitro activity of Tachyplesin III alone and in combination with terbinafine against clinical isolates of dermatophytes. Peptides 2009, 30, 1794–1797. [Google Scholar] [CrossRef]
- Simonetti, O.; Silvestri, C.; Arzeni, D.; Cirioni, O.; Kamysz, W.; Conte, I.; Staffolani, S.; Orsetti, E.; Morciano, A.; Castelli, P.; et al. In Vitro activity of the protegrin IB-367 alone and in combination compared with conventional antifungal agents against dermatophytes. Mycoses 2013, 57, 233–239. [Google Scholar] [CrossRef]
- Moriello, K.A.; Verbrugge, M. Use of isolated infected spores to determine the sporocidal efficacy of two commercial antifungal rinses against Microsporum canis. Veter. Dermatol. 2007, 18, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Perrins, N.; Bond, R. Synergistic inhibition of the growth in vitro of Microsporum canis by miconazole and chlorhexidine. Veter. Dermatol. 2003, 14, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Perrins, N.; Howell, S.A.; Moore, M.; Bond, R. Inhibition of the growth In Vitro of Trichophyton mentagrophytes, Trichophyton erinacei and Microsporum persicolor by miconazole and chlorhexidine. Vet. Dermatol. 2005, 16, 330–333. [Google Scholar] [CrossRef]
- Nyilasi, I.; Kocsubé, S.; Krizsán, K.; Galgóczy, L.; Papp, T.; Pesti, M.; Nagy, K.; Vágvölgyi, C. Susceptibility of clinically important dermatophytes against statins and different statin-antifungal combinations. Med. Mycol. 2014, 52, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Aneke, C.I.; Rhimi, W.; Otranto, D.; Cafarchia, C. Synergistic Effects of Efflux Pump Modulators on the Azole Antifungal Susceptibility of Microsporum canis. Mycopathologia 2020, 185, 1–10. [Google Scholar] [CrossRef]
- Adamski, Z.; Kowalczyk, M.J.; Adamska, K.; Kubisiak-Rzepczyk, H.; Bowszyc-Dmochowska, M.; Banaszak, A.; Bartkiewicz, P.; Żaba, R. The First Non-African Case of Trichophyton rubrum var. raubitschekii or a Urease-Positive Trichophyton rubrum in Central Europe? Mycopathologia 2014, 178, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Budihardja, D.; Freund, V.; Mayser, P. Widespread erosive tinea corporis by Arthroderma benhamiae in a renal transplant recipient: Case report. Mycoses 2010, 53, 530–532. [Google Scholar] [CrossRef] [PubMed]
- Czaika, V.A. Misdiagnosed zoophile tinea faciei and tinea corporis effectively treated with isoconazole nitrate and diflucortolone valerate combination therapy. Mycoses 2013, 56 (Suppl. 1), 26–29. [Google Scholar] [CrossRef]
- Durant, J.-F.; Fonteyne, P.-A.; Richez, P.; Marot, L.; Belkhir, L.; Tennstedt, D.; Gala, J.-L. Real-time PCR and DNA sequencing for detection and identification of Trichophyton rubrumas a cause of culture negative chronic granulomatous dermatophytosis. Med. Mycol. 2009, 47, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Fabrizi, V.; Zacconi, I.; Principato, M.; Pesca, C.; Cruciani, D.; Crotti, S.; Papini, M. Toenail onychomycosis by Trichophyton rubrum and concurrent infestation with Tyrophagus putrescentiae. Infez. Med. 2017, 25, 377–380. [Google Scholar] [PubMed]
- Ghislanzoni, M. Tinea incognito due to Trichophyton rubrum responsive to topical therapy with isoconazole plus corticosteroid cream. Mycoses 2008, 51 (Suppl. 4), 39–41. [Google Scholar] [CrossRef]
- Hsieh, A.; Quenan, S.; Riat, A.; Toutous-Trellu, L.; Fontao, L. A new mutation in the SQLE gene of Trichophyton mentagrophytes associated to terbinafine resistance in a couple with disseminated tinea corporis. J. Mycol. Med. 2019, 29, 352–355. [Google Scholar] [CrossRef]
- Jang, M.S.; Bin Park, J.; Jang, J.Y.; Yang, M.H.; Kim, J.H.; Lee, K.H.; Hwangbo, H.; Suh, K.S. Kerion celsi caused by Trichophyton erinacei from a hedgehog treated with terbinafine. J. Dermatol. 2016, 44, 1070–1071. [Google Scholar] [CrossRef] [PubMed]
- Khaled, A.; Mbarek, L.B.; Kharfi, M.; Zeglaoui, F.; Bouratbine, A.; Fazaa, B.; Barek, M.R.K. Tinea capitis favosa due to Tri-chophyton schoenleinii. Acta Dermatovenerol. Alp. Panon. Adriat. 2007, 16, 34–36. [Google Scholar]
- Kimura, U.; Hiruma, M.; Kano, R.; Matsumoto, T.; Noguchi, H.; Takamori, K.; Suga, Y. Caution and warning: Arrival of terbinafine-resistant Trichophyton interdigitale of the Indian genotype, isolated from extensive dermatophytosis, in Japan. J. Dermatol. 2020, 47, e192–e193. [Google Scholar] [CrossRef] [PubMed]
- Kotrekhova, L. The effective use of isoconazole nitrate and diflucortolone valerate cream in the treatment of inguino-femoral skin fold mycosis. Mycoses 2008, 51 (Suppl. 4), 29–31. [Google Scholar] [CrossRef]
- Lacaz, C.D.S.; Zaitz, C.; Ruiz, L.R.B.; De Souza, V.M.; Santos, A.R.A.; Muramatu, L.H.; De Melo, N.T.; Heins-Vaccari, E.M.; Hernández-Arriagada, G.L.; De Freitas-Leite, R.S. Dermatophytosis caused by Trichophyton raubitschekii. Report of the first case in São Paulo, Brazil. Rev. Inst. Med. Trop. São Paulo 1999, 41, 313–317. [Google Scholar] [CrossRef]
- Lee, G.-Y.; Kim, W.-S. Tinea corporis of the shin and chest successfully treated with a topical antifungal and corticosteroid cream. Mycoses 2008, 51 (Suppl. 4), 34–36. [Google Scholar] [CrossRef]
- Lin, C.-M.; Pao, S.-I.; Chen, Y.-H.; Chen, J.-T.; Lu, D.-W.; Chen, C.-L. Fungal endophthalmitis caused by Trichophyton spp. after cataract surgery. Clin. Exp. Ophthalmol. 2014, 42, 696–697. [Google Scholar] [CrossRef] [PubMed]
- Papini, M.; Greco, C.; Pileri, F. Onychomycosis caused by an isolate conforming to the description of Trichophyton raubitschekii. Med. Mycol. 2004, 42, 273–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrzak, A.; Tomasiewicz, K.; Kanitakis, J.; Paszkowski, T.; Dybiec, E.; Donica, H.; Wójtowicz, A.; Terlecki, P.; Chodorowska, G. Trichophyton mentagrophytes-associated Majocchi’s granuloma treated with cryotherapy. Folia Histochem. Cytobiol. 2012, 50, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Markey, R.J.; Staat, M.A.; Gerrety, M.J.T.; Lucky, A.W. Tinea capitis due to Trichophyton soudanense in Cincinnati, Ohio, in internationally adopted children from Liberia. Pediatr. Dermatol. 2003, 20, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, G.; Nino, M.; La Bella, S.; Gallo, L. Trichophyton violaceum infection in an adult black patient in Europe. Int. J. Dermatol. 2011, 50, 761–763. [Google Scholar] [CrossRef]
- Balci, D.D.; Cetin, M. Widespread, chronic, and fluconazole-resistant Trichophyton rubrum infection in an immunocompetent patient. Mycoses 2008, 51, 546–548. [Google Scholar] [CrossRef]
- Veraldi, S.; Pontini, P.; Nazzaro, G. A Case of Tinea Imbricata in an Italian Woman. Acta Derm. Venereol. 2015, 95, 235–237. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.; Xiao, Y.; Ran, Y.; Kang, D.; Dai, Y.; Lama, J. Microsporum canis Infection in Three Familial Cases with Tinea Capitis and Tinea Corporis. Mycopathologia 2013, 176, 259–265. [Google Scholar] [CrossRef]
- Zhan, P.; Li, Z.; Geng, C.; Jiang, Q.; Jin, Y.; Dolatabadi, S.; Liu, W.; De Hoog, G.S. A Chronic Disseminated Dermatophytosis Due to Trichophyton violaceum. Mycopathologia 2014, 179, 159–161. [Google Scholar] [CrossRef]
- Zhang, H.; Ran, Y.; Liu, Y.; Zhang, R.; Lin, X.; Yan, W.; Dai, Y. Arthroderma vanbreuseghemiiinfection in three family members with kerion and tinea corporis. Med. Mycol. 2009, 47, 539–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Xiong, X.; Liu, T.; Ran, Y. Generalized Superficial Mycosis Caused by Trichophyton raubitschekii in China: Case Report and Review of the Literature. Mycopathologia 2015, 179, 279–284. [Google Scholar] [CrossRef]
- Zhuang, K.W.; Dai, Y.L.; Ran, Y.P.; Lama, J.; Fan, Y.M. Tinea faciei on the right eyebrow caused by Trichophyton interdigitale. An. Bras. Dermatol. 2016, 91, 829–831. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A.; Al-Rajhi, A.; Wagoner, M.D. Trichophyton Fungal Keratitis. Cornea 2006, 25, 118–122. [Google Scholar] [CrossRef]
- Romano, C.; Feci, L.; Fimiani, M. Thirty-six cases of epidemic infections due toTrichophyton violaceumin Siena, Italy. Mycoses 2014, 57, 307–311. [Google Scholar] [CrossRef]
- Erbakan, N.; Or, A.N.; Palali, Z.; Basaran, E. Studies on the treatment of dermatophytic infections of glabrous skin by topical treatment alone or with combination of griseofulvin for comparison. Mycopathologia 1974, 52, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Baran, R.; Sigurgeirsson, B.; De Berker, D.; Kaufmann, R.; Lecha, M.; Faergemann, J.; Kerrouche, N.; Sidou, F. A multicentre, randomized, controlled study of the efficacy, safety and cost-effectiveness of a combination therapy with amorolfine nail lacquer and oral terbinafine compared with oral terbinafine alone for the treatment of onychomycosis with matrix involvement. Br. J. Dermatol. 2007, 157, 149–157. [Google Scholar] [CrossRef]
- Hussain, I.; Muzaffar, F.; Rashid, T.; Ahmad, T.J.; Jahangir, M.; Haroon, T.S. A randomized, comparative trial of treatment of kerion celsi with griseofulvin plus oral prednisolone vs. griseofulvin alone. Med. Mycol. 1999, 37, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Baran, R. Topical amorolfine for 15 months combined with 12 weeks of oral terbinafine, a cost-effective treatment for ony-chomycosis. Br. J. Dermatol. 2001, 145 (Suppl. 60), 15–19. [Google Scholar] [CrossRef]
Reference | Number of Isolates and Species | Combinations | Methods | Reading Endpoint | Results |
---|---|---|---|---|---|
Banic et al., 1989 [24] | 28 M. canis | GRI + KTZ | Growth in Broth; 28 °C, 168 h | % of inhibition | Some strains of M. canis were completely inhibited by GRI + KTZ |
Harman et al., 2009 [25] | 4 T. rubrum, 2 T. mentag. var. interdigitale, 2 T. mentag. var. granulare, 1 T. tonsurans | AMF + TER/FLU/ITZ | Ck; 27 °C, 168 h | ≥80% inhibition | Additivism or indifference |
Laurent et al., 2017 [26] | 9 T. rubrum | AMF + ITZ/KTZ/MIZ/SER/SUL | Ck, disk diffusion and E-test assay; 30 °C, 168 h | ≥80% inhibition | Synergy: 100% |
Polak et al., 1993 [27] | 3 T. mentagrophytes, 1 T. rubrum, 2 M. canis, | AMF + ITZ/FLU/GRI/TER/KET | Agar dilution Ck; 30 °C, 96 h | No visible growth |
Synergy: AMF + GRI 16%; AMF + KET 50%; AMF + ITZ 66%; AMF + TER 50%. Indifference: 100% AMF + FLU |
Santos et al., 2006 [28] | 52 T. rubrum, 40 T. mentagrophytes | CCL + ITZ/KTZ | Ck; 28 °C, 168 h | ≥80% inhibition | Synergy: 100% |
Sugiura et al., 2021 [29] | 8 T. rubrum, 8 T. interdigitale | EFZ + TER, EFZ + ITZ, LUZ + TER, LUZ + ITZ, TAV + TER, TAV + ITZ, LUZ + TAV | Ck, 35 °C, 96 h | ≥80% inhibition | Synergy: EFZ + TER 43.8%, EFZ + ITZ 12.5%, LUZ + ITZ 31.25%, TAV + ITZ 18.7%. Additivism: EFZ + TER 43.75%, EFZ + ITZ 18.75%, LUZ + TER 31.25%, LUZ + ITZ 18.75%, TAV + TER 25%, TAV + ITZ 6.25%. Indifference: EFZ + TER 12.5%, EFZ + ITZ 68.75%, LUZ + TER 68.75%, LUZ + ITZ 50%, TAV + ITZ/TER 75%. LUZ + TAV indifferent effect on some strain |
Tamura et al., 2014 [30] | 11 T. rubrum, 8 T. Mentagrophytes, 1 T. tonsurans, 1 T. verrucosum, 3 M. gypseum, 3 E. floccosum | AMF + ITZ | Ck; 30 °C, 72–168 h | ≥80% inhibition | Synergistic interactions: 25.9% Additivism interactions: 59.2%. Indifference effect: 14.9% No antagonistic effects were detected |
Reference | Number of Isolates and Species | Combinations | Methods | Reading Endpoint | Results |
---|---|---|---|---|---|
Danielli et al., 2018 [31] | 2 T. rubrum, 2 T. mentagrophytes, 2 M. canis, 2 M. gypseum | Schinus lentiscifolius Marchand + TER/CCL | Ck, time-kill curves; | 100% inhibition | Synergy: EO + TER 50%, EO + CCL 25%. Additivism: EO + TER 37.5%, EO + CCL 62.5%. Indifference: EO + TER 12.5%, EO + CCL 12.5. |
Dias et al., 2017 [32] | 1 T. rubrum, 1 T. mentagrophytes | E.O. L. lusieri/E.O. C. citratus + TER | Fixed ratio combination; 30 °C, 96 h | ≥90% inhibition | 5% Growth in 1:1 combination EO L. lusieri + TER, 20% growth in 1:1 combination EO C. citratus + TER |
Ala et al., 2010 [33] | 1 T. rubrum, 1 T. mentagrophytes, 1 T. verrucosum, 1 E. flocossum | Allicin + KTZ/FLU | Ck; 28 °C, 168–240 h | ≥50–90% inhibition | Synergy/additivism: 54%, indifference: 46% after 7 days. Synergy/additivism: 33.5%, 66.5%. Indifference: after 10 days. |
Galgóczy et al., 2008 [34] | 2 M. canis, 1 M. gypseum, 3 T. mentagrophytes, 1 T. rubrum, 1 T. tonsurans | PAF (Penicillin Chrysogeneum Antifungal Protein) + FLU | Ck; 37 °C, 96–168–240 h | % of inhibition | Decreased growth when used in combination |
Houël et al., 2014 [35] | 1 T. mentagrophytes, 1 M. gypseum | E.O. Otacanthus azureus + ITZ/FLU/KTZ | Ck; 32 °C, 120 h | No visible growth | Synergy in T. mentagrophytes, indifference in M. gypseum |
Khan et al., 2011 [36] | 1 T. rubrum | S. aromaticum/eugenol/C. verum/cinnamaldehyde/C. martini/geraniol + FLU | Ck; 30 °C, 48 h | No visible growth | Synergy: 100% in all combinations |
Khan et al., 2014 [37] | 1 T. rubrum | E.O. C. copticum or E.O. T. vulgaris or thymol + FLU | Ck; 30 °C, 48 h | No visible growth | Synergy: E.O. T. vulgaris or thymol + FLU. Indifference: C. copticum + FLU |
Khoury et al. 2019, [38] | 1 T. rubrum, 1 T. mentagrophytes, 1 T. violaceum, 1 T. soudanense, 1 T. tonsurans | E.O. Hitellina lobelii + FLU/GRI | Ck; 25 °C, 72 h | No visible growth | Synergy in all strains, except for additivity EO + FLU in T. tonsurans |
Maciel et al., 2019 [39] | 3 T. mentagrophytes, 2 T. rubrum, 1 M gypseum | E.O. Cryptocarya aschersoniana + TER | Ck; 35 °C, 48 h | No visible growth | Indifference for all strains except for additivism in 1. T. rubrum |
Pyun et al., 2005 [40] | 1 T. rubrum, 1 T. erinacei, 1 T. soudanense | Allium sativum/Allicin + KTZ | Ck; 24–28 °C, 72 h | No visible growth | Synergy: A. sativum + KTZ 100%. Additivism: Allicin + KTZ 100% |
Roana et al., 2021 [41] | 1 T. rubrum | Tea tree oil (TTO) + ITZ/KTZ | Ck; 28–30 °C, 168 h | No visible growth | Synergy with both combinations |
Rodriguez et al., 2013 [42] | 1 T. rubrum | 44 extracts from 9 Baccharis spp. And 4 flavonoids and 3 ent-clerodanes + TER | HTSS assay, fixed concentration; 28–30 °C, 168 h | No visible growth | Synergy with bacrispine or baccho A + TER |
Shin et al., 2004 [43] | 1 T. erinacei, 1 T. mentagrophytes, 1 T. rubrum, 1 T. tonsurans, 1 T. schoenleinii, 1 T. soudanense | P. graveolens oil, citronellol, and geraniol + KTZ | Ck; 25 °C, 72 h | No visible growth | Synergy: 100% |
Shin et al., 2004 [44] | 1 T. erinacei, 1 T. mentagrophytes, 1 T. rubrum, 1 T. schoenleinii, 1 T. soudanense. | E.O. fraction of A. rugosa + KTZ | Ck; 25 °C, 72 h | No visible growth | Synergy: 100% |
Sim et al., 2008 [45] | 1 T. erinacei, 1 T. mentagrophytes, 1 T. rubrum, 1 T. schoenleinii, 1 T. soudanense, 1 T. tonsurans | Ligustilide/Butylidene phthalide + ITZ/KTZ | Ck; 25 °C, 72 h | ≥50% inhibition | Synergy: 35% Additivism: 65% |
Soares et al., 2014 [46] | 3 T. rubrum, 3 T. mentagrophytes | Protocatechuic acids (n = 5) + FLU | Ck; 35 °C, 168 h | ≥50% inhibition | Synergy: 1 T. mentragrophytes PA9 + FLU. Additivism or indifference in other cases. |
Tiwari et al., 2017 [47] | 1 T. mentagrophytes, 1 M. canis | ZnO particles from Rosa indaca + KTZ | Disk diffusion; 28 °C, 48 h | Inhibition diameter | Decreased growth when used in combination |
Tullio et al., 2019 [48] | 1 T. mentagrophytes, 1 M. canis, 1 T. rubrum | E.O. Menta piperita + ITZ/KTZ | Ck; 30 °C, 168 h | No visible growth | Synergy in T. mentagrophytes, indifference in M. canis and T. rubrum |
Vörös-Horváth et al., 2020 [49] | 1 T. rubrum | E.O. Melaleuca altifornia + TIO | Ck; 28 °C, 168 h | No visible growth | Synergy: 100% |
Onyewu et al., 2007 [50] | 2 T. mentagrophytes | cyclosporine A or FK506 + FLU | Ck + ex vivo T. mentagrophytes human skin infection model | ≥80% inhibition | Synergy in all cases except indifference FKS506+FLU against 1 strain |
Ozawa et al., 2005 [51] | 5 T. mentagrophytes | TAC + ITR | Agar dilution, Ck; 27 °C, 168 h | ≥50% inhibition | Synergy: 80% |
Zhang et al., 2018 [52] | 13 T. rubrum, 6 T. mentagrophytes, 5 M. canis, 4 E. floccosum | TAC/TRI + ITZ/TER/BIZ/AMF | Ck; 35 °C, 96–120 h | ≥80–100% inhibition | Synergy: TAC/ITZ 39%, TAC/TRB 43%, TAC/BIZ 43%, TRI/ITZ 7%, TRI/BIZ 11%. Indifference in all other cases. |
Simonetti et al., 2009 [53] | 6 M. canis, 6 T. mentagrophytes, 10 T. rubrum, 2 M. gypseum | lipopeptide Pal-Lys-Lys-NH2 (PAL) + FLU/ITZ/TER | Ck; 35 °C, 96 h | ≥90% inhibition | Synergy: PAL/TER 52%, PAL/ITZ 67%, PAL/FLU15%. Indifference: PAL/TER 48%, PAL/ITZ 33%, PAL/FLU 85% |
Simonetti et al., 2009 [54] | 4 M. canis, 5 T. mentagrophytes, 9 T. rubrum, 2 M. gypseum | Tachiplesina III + TER | Ck; 35 °C, until visible growth | ≥90% inhibition | Synergy: 30% Indifference: 70% |
Simonetti et al., 2014 [55] | 6 M. canis, 6 T. mentagrophytes, 8 T. rubrum | IB-367 + TER/FLU/ITZ | Ck, time-kill curves; 35 °C, until visible growth | No visible growth | Synergy: M. canis IB-367 + FLU 50%, IB-367 + ITZ 17%, IB-367 + TER 33%; T. mentagrophytes IB-367 + FLU 33%, IB-367 + ITZ 67%, IB-367 + TER 17%; T. rubrum IB-367 + FLU 25%, IB-367 + ITZ 13%, IB-367 + TER 25% |
Moriello et al., 2007 [56] | 1 M. canis | CLO + MIZ | Growth in broth | No visible growth | No growth |
Perrins N., et al. 2003 [57] | 10 M. canis | CLO + MIZ | Agar Dilution: 26 °C, 120 h | No visible growth | Synergy: 50% Additivism: 40% Indifference: 10% |
Perrins et al., 2005 [58] | 9 T. mentagrophytes, 9 T. erinacei, 5 M. persicolor | CLO + MIZ | Agar dilution; 26 °C, 168 h | No visible growth | Synergy: 8.70% Additivism: 56.52% Indifference: 34.78 |
Nyilasi et al., 2014 [59] | 1 T. rubrum, 1 T. mentagrophytes, 1 M. gypseum, 1 M. canis | LOV/SIM/FLV/ROS/ATO/PRA/NYT/PN + AMB/KTZ/ITZ/FLU/TER/GRI | Ck; 30 °C, 96 h | No visible growth | Synergy: 85.92% Indifference: 14.08% |
Aneke et al., 2020 [60] | 36 M. canis | Haloperidol/ promethazine + ITZ/FLU | Ck, disk diffusion, time-kill curve; 30 °C, 48 h | ≥80% inhibition | Synergy: ITZ + PRO 91.7%, ITZ + HAL 77.8%, FLU + PRO 25%, FLU + HAL 5.5%. Indifference: ITZ + PRO 8.3%, ITZ + HAL 22.2%, FLU + PRO 47.2%, FLU + HAL 61.2%. Antagonism: FLU + PRO 27.8%, FLU + HAL 33.1%. |
Reference | Number of Isolates and Species | Combinations | Results |
---|---|---|---|
Adamski et al., 2014 [61] | A 34-year-old Polish Caucasian male with erythematous, exfoliating, clearly distinct lesion located on the index finger of the right hand caused by T. rubrum | ITZ daily dose 100 mg and topical IMZ at first; subsequently the topical drug was switched to a pyridinone derivative | Full recovery |
Budihardja et al., 2010 [62] | 45-year-old patient, renal transplant recipient with widespread erosive tinea corporis caused by T. mentagrophytes | TER daily plus CCL olamine topically for 9 weeks | Clinical cure |
Czaika et al., 2013 [63] | Two girls (11 and 7 years) with zoophile tinea faciei and tinea corporis due to T. mentagrophytes | Systemic TER at a daily dose of 125 mg, based on body weight for 5 weeks (11-year-old girl) and for 4 weeks (7-year-old girl) was prescribed. Twice daily, application of ISZ/DFV cream containing ISN 1% and DFV 0.1% was prescribed for 10 days (facial lesion) or 14 days (other lesions), subsequently to be continued with CCL. | Improvement of all lesions and pruritus in both patients 2 weeks after treatment initiation |
Durant et al., 2009 [64] | A 31-year-old patient presented with a diagnosis of granulomatous dermatophytosis due to T. rubrum | ITZ plus TER 250 mg | No improvement |
Fabrizi et al., 2017 [65] | A 74-years-old with interdigital tinea pedis and distal-lateral onychomycosis of both big toes were present due to T. rubrum and Tyrophagus putrescentiae | TER 250 mg/day and CCL 8% nail lacquer for 16 weeks | Full recovery |
Ghislanzoni, 2008 [66] | A 35-year-old male with tinea incognito due to T. rubrum | Topic ISZ plus DFC for 4 weeks | Partial improvement |
Hsieh et al., 2019 [67] | A 60-year-old man and a 51-year-old-woman with disseminated tinea corporis caused by T. mentagrophytes | ITZ with topical EBE | Full Recovery |
Jang et al., 2017 [68] | A 9-year-old male with kerion celsi caused by T. erinacei | TER 250 mg/day for 6 weeks and MTP 12 mg/day for the first week. | Full recovery |
Khaled et al., 2007 [69] | A 6-year-old Tunisian boy with tinea favosa due to T. schoenleinii | 20 mg/kg/day of oral GRI 400 mg twice daily for 6 weeks and topical IMZ for 8 weeks | Full recovery |
Kimura et al., 2020 [70] | A 27-year-old Nepalese woman with extensive dermatophytosis caused by T. mentagrophytes/T. interdigitale | Oral ITZ 100 mg/day and topical LUZ | Full recovery |
Kotrekhova, 2008 [71] | A 61-year-old male with inguino-femoral skin fold mycosis due to T. rubrum | Topic ISZ plus DFC for 4 weeks | Clinical improvement and eradication |
Lacaz et al., 1999 [72] | One patient with dermatophytosis caused by T. raubitschekii | FLU 150 mg per os/week for 4 weeks plus topical ISZ | Recurrence of lesions after the medication was discontinued. |
Lee et al., 2008 [73] | A 68-year-old male teacher with tinea corporis due to T. rubrum | Two treatments: topical cream containing a combination of CTZ 10 mg and HDC for 3 weeks; topical cream ISZ plus DFV for 2 weeks. | Recurrence of skin infection after the first treatment; improvement with cream ISZ/DFV |
Lin et al., 2014 [74] | A 58-year-old male with Trichophyton spp. Endoftalmitis | Intravitreal AMP B 5 μg/0.1 mL injection and oral VOR 200 mg twice daily + surgery | Visual acuity improvement |
Papini et al., 2004 [75] | A 22-year-old black male student with onychomycosis due to T. raubitschekii | Oral TER 250 mg/day and CYC nail lacquer for 8 weeks. | Full recovery |
Pietrzak et al., 2012 [76] | A woman with dermatophytosis of the thighs due to T. mentagrophytes | ISZ and DFV; cryotherapy with liquid nitrogen was started after antifungal therapy, for persistent lesions of the skin | Direct microscopic mycologic examination and culture on BioMerieux medium were negative; however, the lesions persisted, assuming a completely different aspect. recovery after cryotherapy. |
Markey et al., 2003 [77] | Two young sisters, ages 5 and 6 years with tinea capitis due to T. soudanense | GRI 15 mg/kg/day and 2.5% SES lotion as a shampoo twice a week for 8 weeks for the tinea capitis | Full recovery |
Calabrò et al., 2011 [78] | A 26-year-old man born in Senegal, but living in Naples for seven months with T. violaceum infection | Systemic treatment with GRI at 15 mg/kg/day and topical with TIO 1% Twice a day for one month were administered. | Full recovery |
Balci et al., 2008 [79] | A 54-year-old immunocompetent female with widespread, chronic, and fluconazole-resistant T. rubrum Infection | Systemic ITZ and SRZ cream | Full Recovery |
Veraldi et al., 2015 [80] | A 47-year-old Italian woman with tinea imbricata located on the thighs and legs due to T. concentricum | GRI 1 g/day for 6 weeks and 1% TER cream 2 applications/day for 6 weeks | Full recovery |
Yin, et al., 2013 [81] | Three familial cases with tinea capitis and tinea corporis due to M. canis | Oral TER + cream containing 1% NAF 025% KTZ-100 mg/day ITZ + cream containing 1% NAF 025% KTZ | Full recovery |
Zhan et al., 2015 [82] | A 48-year-old female with a chronic disseminated dermatophytosis due to T. violaceum | TER 0.25 g/day, 1% TER gel for external use and 2% KTZ lotion for shampoo and bath | A sufficient decrease of the scalp and skin damage after 4 weeks, but no improvement of the nails, and after that, the patients was lost to follow-up. |
Zhang et al., 2009 [83] | Three family members with kerion and tinea corporis due to T. mentagrophytes | ITZ 100 mg/day plus KTZ shampoo 2% + 3 months | Clinical cure |
Zhang et al., 2015 [84] | A 54-year-old Chinese male patient with generalized superficial mycosis caused by T. raubitschekii | TER 250mg/day and topical NHY and KTZ cream, containing 1% NHY and 0.25% KTZ. | Full recovery |
Zhuang et al., 2016 [85] | An 18-year-old girl with tinea faciei on the right eyebrow caused by T. mentagrophytes | TER 250 mg/day combined with daily topical use of 1% naftifine–0.25% ketoconazole cream, after washing the lesion with 2% ketoconazole shampoo. | Full recovery |
Abdulkarim et al., 2006 [86] | Five cases report of fungal keratitis caused by T. schoenleinii | Case 2: hourly topical NAT 50 mg/mL and OFL 3 mg/mL 4 times daily and oral FLU 200 mg twice daily. Case 3: topical AMP B 10 mg/mL every 30 min for 1 day and hourly thereafter, MIZ 10 mg/mL hourly, and OFL 3 mg/mL 4 times daily, along with oral FLU 200 mg twice daily. Case 4: hourly topical MIZ 10 mg/mL, oral FLU 200 mg twice daily for 3 days and once daily thereafter. Because of a worsening clinical course, topical AMP B 5 mg/mL was added hourly. Case 5: hourly topical NAT 50 mg/mL and oral FLU 200 mg twice daily. Following gradual improvement in the stromal infiltrate, cessation of further stromal thinning, and resolution of the hypopyon. | Improvement |
Romano et al., 2014 [87] | 18 children and 18 adults with infections due to T. violaceum | The 13 index cases and the 16 patients infected by them were treated with 10∫mg/kg day GRI for 45 days and topical IMZ for 20–30 days. 23 adults with spreading tinea corporis were treated with 100 mg ITZ for 15–20 days and those with tinea capitis with the same dose of the antimycotic for 45 days and with topical IMZ for 15–20 days, depending on the number of patches. | Full recovery |
Erbakan et al., 1974 [88] | A total of 254 patients with tinea inguinalis, corporis, pedis, manus: 69 T. rubrum, 31 T. mentagrophytes, 7 T. violaceum, 18 E. floccousm; 6 M. canis; no growth in the remaining cases | Topical (i.e., Wilkinson’s salve, iodize alcohol, undecylenic acid, 5-bromo-4′-chlorosalicylanilide, tolnaftate) plus GRI topical vs GRI alone | Topical treatment plus GRI possibly enhances the healing capacity and shortens the time of treatment but no effect in the recurrences |
Baran et al., 2007 [89] | Clinical trial AMF plus TER vs. TER alone in 249 patients with onychomycosis with matrix involvement due to T. rubrum > 90% of cases | AMF nail lacquer once weekly for 12 months plus TER 250 mg once daily for 3 months | Higher success rate for patients in combination therapy: 59.2% vs 45% |
Hussain et al., 1999 [90] | Clinical trial PRE plus GRI in 30 patients with Trichophyton infection | Oral GRI and oral PRE | No difference |
Baran, 2001 [91] | Clinical trial AMF plus ITZ vs ITZ in 131 patients with T. rubrum in the majority of cases | 15 months of once-weekly topical AMF lacquer in combination with 6 weeks (group at 6) or 12 weeks (group at 12) of oral TER 250 mg once daily | AMF plus TER is more effective than TER alone |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brescini, L.; Fioriti, S.; Morroni, G.; Barchiesi, F. Antifungal Combinations in Dermatophytes. J. Fungi 2021, 7, 727. https://doi.org/10.3390/jof7090727
Brescini L, Fioriti S, Morroni G, Barchiesi F. Antifungal Combinations in Dermatophytes. Journal of Fungi. 2021; 7(9):727. https://doi.org/10.3390/jof7090727
Chicago/Turabian StyleBrescini, Lucia, Simona Fioriti, Gianluca Morroni, and Francesco Barchiesi. 2021. "Antifungal Combinations in Dermatophytes" Journal of Fungi 7, no. 9: 727. https://doi.org/10.3390/jof7090727
APA StyleBrescini, L., Fioriti, S., Morroni, G., & Barchiesi, F. (2021). Antifungal Combinations in Dermatophytes. Journal of Fungi, 7(9), 727. https://doi.org/10.3390/jof7090727