Invasive Fungal Disease in Patients with Newly Diagnosed Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Setting
2.2. Definitions
2.3. Prophylaxis and Isolation Strategies
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Invasive Fungal Disease (IFD)
3.3. Outcomes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bhatt, V.R.; Viola, G.M.; Ferrajoli, A. Invasive fungal infections in acute leukemia. Ther. Adv. Hematol. 2011, 2, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Maertens, J.; Winston, D.J.; Perfect, J.; Ullmann, A.J.; Walsh, T.J.; Helfgott, D.; Holowiecki, J.; Stockelberg, D.; Goh, Y.-T.; et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N. Engl. J. Med. 2007, 356, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Ananda-Rajah, M.R.; Grigg, A.; Downey, M.T.; Bajel, A.; Spelman, T.; Cheng, A.; Thusky, K.T.; Vincent, J.; Slavin, M.A. Comparative clinical effectiveness of prophylactic voriconazole/posaconazole to fluconazole/itraconazole in patients with acute myeloid leukemia/myelodysplastic syndrome undergoing cytotoxic chemotherapy over a 12-year period. Haematologia 2012, 97, 459–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rausch, C.R.; DiPippo, A.J.; Bose, P.; Kontoyiannis, D.P. Breakthrough fungal infections in patients with leukemia receiving isavuconazole. Clin. Infect. Dis. 2018, 67, 1610–1612. [Google Scholar] [CrossRef]
- Kim, S.-H.; Choi, J.-K.; Cho, S.-Y.; Lee, H.-J.; Park, S.H.; Choi, S.-M.; Lee, D.-G.; Choi, J.-H.; Yoo, J.-H.; Lee, J.-W. Risk factors and clinical outcomes of breakthrough yeast bloodstream infections in patients with hematological malignancies in the era of newer antifungal agents. Med. Mycol. 2018, 56, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Breda, G.L.; Tuon, F.F.; Meis, J.F.; Herkert, P.F.; Hagen, F.; deOliveira, L.Z.; de Carvalho Dia, V.; da Cunha, C.A.; Queiroz-Telles, F. Breakthrough candidemia after the introduction of broad spectrum antifungal agents: A 5-year retrospective study. Med. Mycol. 2018, 56, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Lionakis, M.S.; Lewis, R.E.; Kontoyiannis, D.P. Breakthrough invasive mold infections in the hematology patient: Current concepts and future directions. Clin. Infect. Dis. 2018, 67, 1621–1630. [Google Scholar] [CrossRef]
- Auberger, J.; Lass-Florl, C.; Aigner, M.; Clausen, J.; Gastl, G.; Nachbaur, D. Invasive breakthrough infections, fungal colonization and emergence of resistant strains in high-risk patients receiving antifungal prophylaxis with posaconazole: Real-life data from a single-centre institutional retrospective observational study. J. Antimicrob. Chemother. 2012, 67, 2268–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biehl, L.M.; Vehreschild, J.J.; Liss, B.; Franke, B.; Markiefka, B.; Persigehl, T.; Bucker, V.; Wisplinghoff, H.; Scheid, C.; Cornely, O.A.; et al. A cohort study on breakthrough invasive fungal infections in high-risk patients receiving antifungal prophylaxis. J. Antimicrob. Chemother. 2016, 71, 2634–2641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasylyshyn, A.; Linder, K.A.; Castillo, C.G.; Zhou, S.; Kauffman, C.A.; Miceli, M.H. Breakthrough invasive fungal infections in patients with acute myeloid leukemia. Mycopathologia 2020, 185, 299–306. [Google Scholar] [CrossRef]
- Miceli, M.H.; Churay, T.; Braun, T.; Kauffman, C.A.; Couriel, D.R. Risk factors and outcomes of invasive fungal infections in allogeneic hematopoietic cell transplant recipients. Mycopathologia 2017, 182, 495–504. [Google Scholar] [CrossRef]
- Jenks, J.D.; Cornely, O.A.; Chen, S.C.; Thompson, G.R., 3rd; Hoenigl, M. Breakthrough invasive fungal infections: Who is at risk? Mycoses 2020, 63, 1021–1032. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.; Hoenigl, M.; Lass-Flörl, C.; Chen, S.C.; Kontoyiannis, D.P.; Morrissey, C.O.; Thompson, G.R. Defining breakthrough invasive fungal infection-Position paper of the Mycoses Study Group Education and Research Consortium and the European Confederation of Medical Mycology. Mycoses 2019, 62, 716–729. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Acute Myeloid Leukemia. (Version 2.2021). Available online: http://www.nccn.org/professionals/physician_gls/pdf/aml.pdf (accessed on 22 December 2020).
- Rodríguez-Veiga, R.; Montesinos, P.; Boluda, B.; Lorenzo, I.; Martínez-Cuadrón, D.; Salavert, M.; Pemán, J.; Calvillo, P.; Cano, I.; Acuña, E.; et al. Incidence and outcome of invasive fungal disease after front-line intensive chemotherapy in patients with acute myeloid leukemia: Impact of antifungal prophylaxis. Ann. Hematol. 2019, 98, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Böhme, A.l.; Reichert, D.; Reuter, S.; Maschmeyer, G.; Maertens, J.; Buchheidt, D.; Paluszewska, M.; Arenz, D.; Bethe, U.; et al. Multinational Case Registry of the Infectious Diseases Working Party of the German Society for Hematology and Oncology. Risk factors for breakthrough invasive fungal infection during secondary prophylaxis. J. Antimicrob. Chemother. 2008, 61, 939–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamoth, F.; Chung, S.J.; Damonti, L.; Alexander, B.D. Changing epidemiology of invasive mold infections in patients receiving azole prophylaxis. Clin. Infect. Dis. 2017, 64, 1619–1621. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, I.; Moncada, D. Fatal disseminated infection by Trichosporon asahii under voriconazole therapy in a patient with acute myeloid leukemia: A review of breakthrough infections by Trichosporon spp. Mycopathologia 2020, 185, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Salmanton-García, J.; Koehler, P.; Kindo, A.; Falces-Romero, I.; García-Rodríguez, J.; Ráčil, Z.; Chen, S.C.; Klimko, N.; Desoubeaux, G.; Thompson, G.R., III; et al. ECMM/ISHAM working group. Needles in a haystack: Extremely rare invasive fungal infections reported in FungiScope-Global Registry for Emerging Fungal Infections. J. Infect. 2020, 8, 802–815. [Google Scholar] [CrossRef]
- Kimura, S.; Oshima, K.; Sato, K.; Sato, M.; Terasako, K.; Nakasone, H.; Kikuchi, M.; Okuda, S.; Kako, S.; Yamazaki, R.; et al. Retrospective evaluation of the area over the neutrophil curve index to predict early infection in hematopoietic stem cell transplantation recipients. Biol. Blood Marrow Transpl. 2010, 16, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Portugal, R.D.; Garnica, M.; Nucci, M. Index to predict invasive mold infection in high-risk neutropenic patients based on the area over the neutrophil curve. J. Clin. Oncol. 2009, 27, 3849–3854. [Google Scholar] [CrossRef]
- Yılmaz, G.; Coşkun, B.; Elhan, A.; Azap, A.; Akan, H. D-index: A new scoring system in febrile neutropenic patients for predicting invasive fungal infections. Turk. J. Haematol. 2016, 33, 102–106. [Google Scholar] [CrossRef]
- Almyroudis, N.; Segal, B. Prevention and treatment of invasive fungal diseases in neutropenic patients. Curr. Opin. Infect. Dis. 2009, 22, 385–393. [Google Scholar] [CrossRef]
- Wingard, J.R.; Carter, S.T.; Walsh, T.J.; Kurtzberg, J.; Small, T.N.; Baden, L.R.; Gersten, I.D.; Mendizabal, A.M.; Leather, H.L.; Confer, D.L.; et al. Blood and Marrow Transplant Clinical Trials Network. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood 2010, 116, 5111–5118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkelman, M.A. Specificity influences in (1→3)-β-d-glucan-supported diagnosis of invasive fungal disease. J. Fungi. 2020, 7, 14. [Google Scholar] [CrossRef]
- Duarte, R.F.; Sánchez-Ortega, I.; Cuesta, I.; Arnan, M.; Patiño, B.; Fernández de Sevilla, A.; Gudiol, C.; Ayats, J.; Cuenca-Estrella, M. Serum galactomannan-based early detection of invasive aspergillosis in hematology patients receiving effective antimold prophylaxis. Clin. Infect. Dis. 2014, 59, 1696–1702. [Google Scholar] [CrossRef] [Green Version]
- Miceli, M.H.; Maertens, J. Role of non-culture-based tests, with an emphasis on galactomannan testing for the diagnosis of invasive aspergillosis. Semin. Respir. Crit. Care Med. 2015, 36, 650–661. [Google Scholar] [PubMed]
Variable | n (%) |
---|---|
Male | 138 (55) |
Female | 113 (45) |
Age, years (mean ± std dev) | 61.8 ± 14 |
Hematologic malignancy | |
Primary AML | 148 (59) |
MDS with transformation to AML | 76 (30) |
Therapy-related AML | 27 (11) |
Comorbid conditions | |
Diabetes mellitus | 37 (15) |
Coronary artery disease | 31 (12) |
Chronic obstructive pulmonary disease | 24 (10) |
Congestive heart failure | 22 (9) |
Rheumatologic disease | 11 (4) |
Interstitial lung disease | 7 (3) |
Heart transplant | 2 (1) |
Induction chemotherapy regimens (no.) | |
1 | 157 (63) |
≥2 | 94 (37) |
Allogeneic hematopoietic cell transplant | 75 (30) |
Matched related | 27 |
Matched unrelated | 43 |
Haploidentical | 4 |
Mismatched | 1 |
Graft-versus-host disease treatment | 52 |
Corticosteroids * | 37 |
Tacrolimus | 16 |
Anti-thymocyte globulin | 4 |
Methotrexate | 3 |
Organism | Type of IFD | Site of IFD | Prophylaxis Agent | Timing of IFD Diagnosis (Days) 1 | Status of AML at Time of IFD Diagnosis | Outcome at 12 Weeks |
---|---|---|---|---|---|---|
Breakthrough IFD | ||||||
Aspergillus (n = 2) | Proven | Pleural space 2 | Fluconazole | 81 | Primary consolidation | Died |
Probable | Pulmonary 3 | Isavuconazole | 321 | Post-allo HCT | Died | |
Fusarium (n = 3) | Proven | Disseminated | Fluconazole | 242 | Relapsed refractory | Died |
Probable | Pulmonary | Fluconazole | 358 | Relapsed after allo HCT | Survived | |
Probable | Pulmonary | Posaconazole | 320 | Relapsed after allo HCT | Died | |
Mucorales (n = 2) | Proven | Disseminated | Voriconazole | 150 | Relapsed refractory | Died |
Probable | Pulmonary | Voriconazole | 29 | Primary induction | Died | |
Pneumocystis (n = 1) | Probable | Pulmonary | Pentamidine (inh) | 15 | Primary induction | Survived |
Non-Breakthrough IFD | ||||||
Aspergillus (n = 4) | Probable | Pulmonary 3 | -- | 262 | Relapsed refractory | Survived |
Probable | Pulmonary 3 | -- | 48 | Primary induction | Survived | |
Probable | Pulmonary 3 | -- | 256 | Relapsed refractory | Died | |
Probable | Pulmonary 3 | -- | 137 | Primary consolidation | Died | |
Candida (n = 2) | Probable | Invasive candidiasis | -- | 261 | Remission | Died |
Proven | Invasive candidiasis | -- | 340 | Initial relapse | Died | |
Pneumocystis (n = 2) | Probable | Pulmonary | -- | 22 | Primary refractory | Died |
Probable | Pulmonary | -- | 197 | Post-allo HCT | Died | |
Mucorales (n = 1) | Probable | Pulmonary | -- | 365 | Relapsed refractory | Died |
Risk Factor | No IFD n = 220 | IFD n = 17 | Hazard Ratio (95%CI) | p Value |
---|---|---|---|---|
Age, years (mean ± std dev) | 61 ± 15 | 66 ± 12 | 1.046 (1.002–1.093) | 0.04 |
Gender | ||||
Male | 119 | 11 | 0.588 (0.218–1.591) | 0.30 |
Female | 101 | 6 | ||
Hematological disease | ||||
Primary AML | 132 | 12 | 1.062 (0.37–3.05) | 0.91 |
MDS with transformation to AML | 62 | 5 | 0.52 (0.18–1.499) | 0.23 |
Therapy-related AML | 26 | 0 | ||
Cycles of induction chemotherapy | ||||
1 | 143 | 10 | 0.885 (0.337–2.326) | 0.80 |
≥2 | 77 | 7 | ||
AML status (relapse/refractory) | 99 | 12 | 7.562 (2.585–22.123) | 0.0002 |
Allogeneic hematopoietic cell transplant | 68 | 4 | 2.638 (0.854–8.149) | 0.09 |
Graft vs. host disease | 47 | 3 | 2.047 (0.586–7.15) | 0.26 |
Cumulative days of neutropenia (mean ± std dev) | 28 ± 25 | 34 ± 20 | 1.038 (1.018–1.059) | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasylyshyn, A.I.; Linder, K.A.; Kauffman, C.A.; Richards, B.J.; Maurer, S.M.; Sheffield, V.M.; Benitez Colon, L.; Miceli, M.H. Invasive Fungal Disease in Patients with Newly Diagnosed Acute Myeloid Leukemia. J. Fungi 2021, 7, 761. https://doi.org/10.3390/jof7090761
Wasylyshyn AI, Linder KA, Kauffman CA, Richards BJ, Maurer SM, Sheffield VM, Benitez Colon L, Miceli MH. Invasive Fungal Disease in Patients with Newly Diagnosed Acute Myeloid Leukemia. Journal of Fungi. 2021; 7(9):761. https://doi.org/10.3390/jof7090761
Chicago/Turabian StyleWasylyshyn, Anastasia I., Kathleen A. Linder, Carol A. Kauffman, Blair J. Richards, Stephen M. Maurer, Virginia M. Sheffield, Lydia Benitez Colon, and Marisa H. Miceli. 2021. "Invasive Fungal Disease in Patients with Newly Diagnosed Acute Myeloid Leukemia" Journal of Fungi 7, no. 9: 761. https://doi.org/10.3390/jof7090761
APA StyleWasylyshyn, A. I., Linder, K. A., Kauffman, C. A., Richards, B. J., Maurer, S. M., Sheffield, V. M., Benitez Colon, L., & Miceli, M. H. (2021). Invasive Fungal Disease in Patients with Newly Diagnosed Acute Myeloid Leukemia. Journal of Fungi, 7(9), 761. https://doi.org/10.3390/jof7090761